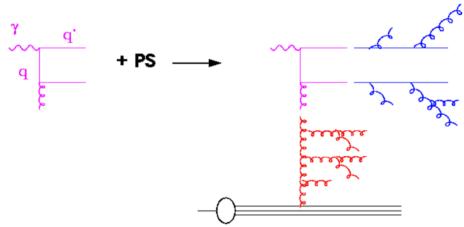
TMD PDFs for LHC

H. Jung (DESY, Uni Antwerp)

- Why TMDs?
- How can TMDs be determined?
- Application to measurements at the LHC?

Inconsistency: example from DIS



Collinear approach: incoming/outgoing partons are on mass shell

$$(\gamma + q)^2 = q^2, -Q^2 + xys = 0 \rightarrow x = Q^2/(ys)$$

BUT final state radiation:

$$(\gamma + q)^2 = q^2, -Q^2 + xys = m^2 \rightarrow x = (Q^2 + m^2)/(ys)$$

AND initial state radiation:

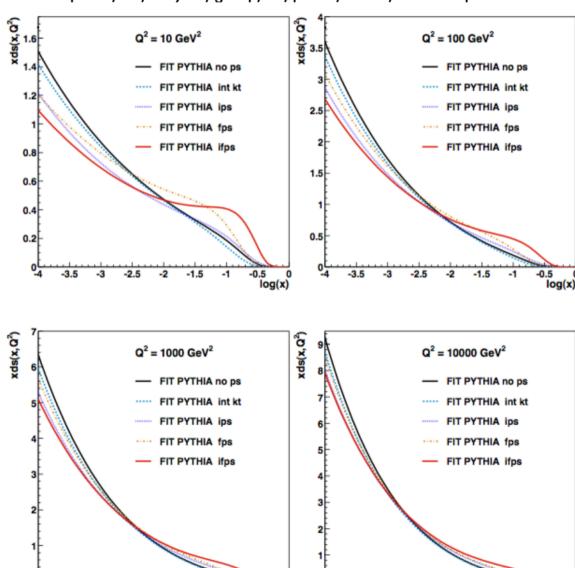
$$(\gamma + q)^2 = q^2, -Q^2 + xys + k^2 = 0 \rightarrow x = (Q^2 - k^2)/(ys)$$

Collinear approach: $q^{2}=k^{2}=0$, order by order NLO corrections... better treatment of kinematics... but still not all....

Kinematic effects in PDF determination

Determination of parton density functions using Monte Carlo event generator Federicon Samson-Himmelstjerna /afs/desy.de/group/h1/psfiles/theses/h1th-516.pdf

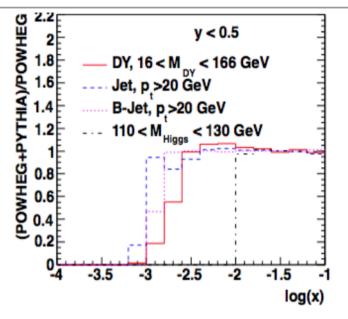
- perform fits to F_2 using a Monte Carlo event generator which includes parton showers and intrinsic k_t
- the resulting PDFs agree with standard LO ones if no PS and intrinsic k_t is applied.
- the final PDFs are different because of kinematic effects coming from transverse momenta of PS and intrinsic k_t

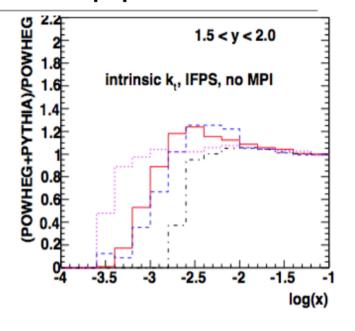


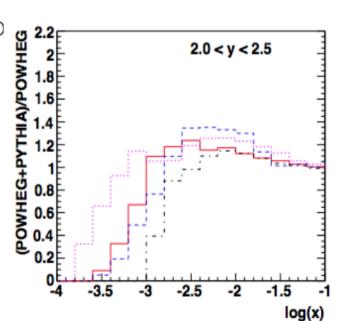
Transverse momentum effects in pp

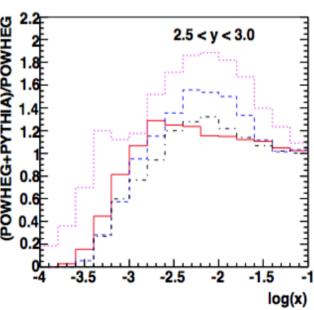
S. Dooling, et al. Longitudinal momentum shifts, showering and nonperturbative corrections in matched NLO-shower event generators. Phys.Rev., D87:094009, 2013.

- Transverse momentum effects are relevant for many processes at LHC
- parton shower
 matched with NLO
 (POWHEG) generates
 additional k_t , leading to
 energy-momentum
 mismatch
- Transverse momentum effects are visible in high p_t processes, not only at small x



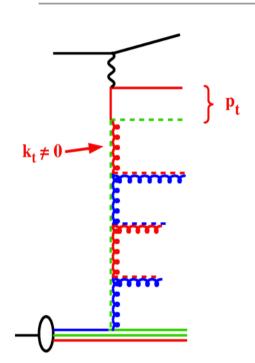






For precision predictions need precision TMDs with uncertainties!

small x TMDs from $F_2(x,Q^2)$ – general case



$$\begin{array}{cccc} & \frac{d\sigma}{dxdQ^2} & = & \int dx_g \big[dk_\perp^2 x_g \mathcal{A}_i(x_g, k_\perp^2, p) \big] \\ & & \times \hat{\sigma}(x_g, k_\perp^2, x, \mu_f^2, Q^2) \end{array}$$

 $\hat{\sigma}(x_g,k_\perp^2,x,\mu_f^2,Q^2)$ is (off-shell, k_t -dependent) hard scattering cross section

- until now, only gluon TMDs were determined
- valence quarks from starting distribution of HERAPDF or CTEQ6

$$xQ_v(x, k_t, p) = xQ_{v_0}(x, k_t, p) + \int \frac{dz}{z} \int \frac{dq^2}{q^2} \Theta(p - zq)$$

$$\times \Delta_s(p, zq)P(z, k_t) \ xQ_v\left(\frac{x}{z}, k_t + (1 - z)q, q\right)$$

$$P(z, k_t) = \bar{\alpha}_s\left(k_t^2\right) \frac{1 + z^2}{1 - z}$$

Determination of TMDs (uPDFs)

F. Hautmann and H. Jung. Transverse momentum dependent gluon density from DIS precision data. arXiv 1312.7875 Nuclear Physics B, 883:1, 2014.

- Apply formalism to describe HERA F₂ measurements
 - start with gluon only for small x
 - CCFM with full angular ordering → no k_t ordering at small x
 - include valence quarks (for large x)
 - starting distribution for gluon at q_0 :

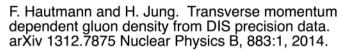
$$x\mathcal{A}_0(x,k_\perp) = Nx^{-B} \cdot (1-x)^C \left(1 - Dx + E\sqrt{x}\right) \exp\left[-k_t^2/\sigma^2\right]$$

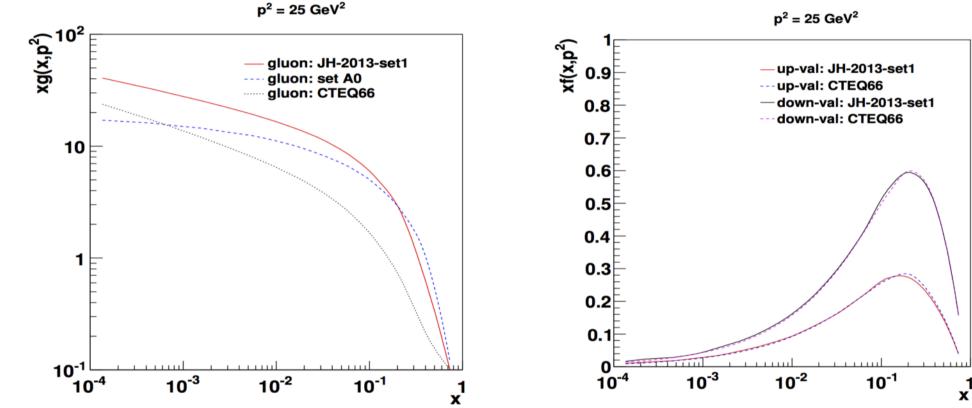
• starting distribution for valence quarks at q_0 :

$$xQ_{v0}(x,k_t,p) = xQ_{v0}(x,k_t,q_0)\Delta_s(p,q_0)$$

$$xQ_{v0}(x,k_t,q_0) = xQ_{v\text{coll.pdf}}(x,q_0) \exp[-k_t^2/\sigma^2]$$
 with $\sigma^2=q_0^2/2$

TMD - integrated



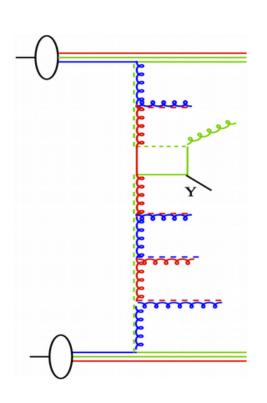


CCFM gluon is different from standard collinear gluon, since no sea quarks are directly included in fit (treated only via $g \to qq$)

• valence quarks in CCFM are similar to CTEQ, but evolution is different due to different α_s

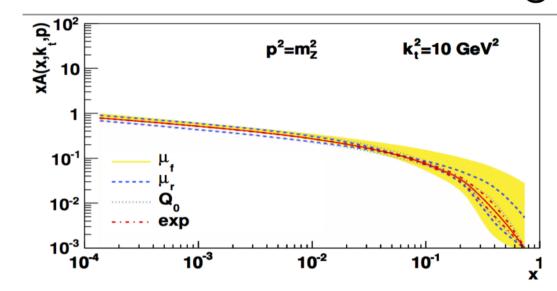
$$g^*g^* \to \Upsilon g, \ g^*g^* \to \chi_b \to \Upsilon + X$$

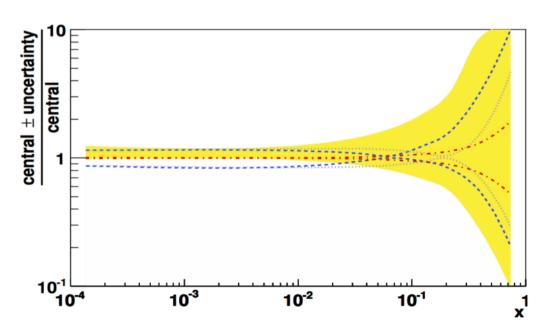
CMS Phys.Lett. B727 (2013)101, 1303.5900 Measurement of the Y(1S), Y(2S), and Y(3S) cross sections in pp collisions at $s\sqrt{=7}$ TeV



- Using TMDs with off-shell ME gives rather good description, without further tuning
- NNLO CSM is not as good!

uncertainties of CCFM gluon



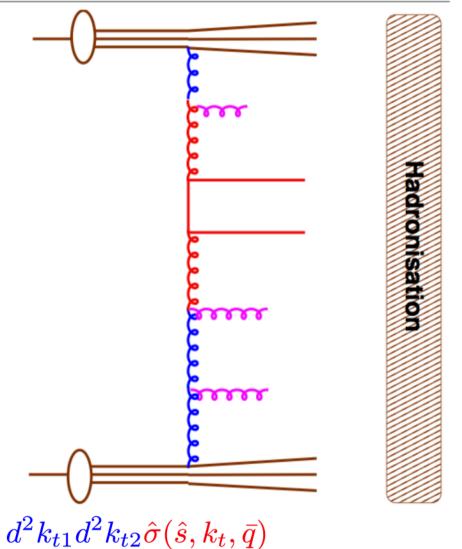


large k_t , large p^2

- experimental uncertainties result in 10-20 % for gluon uncertainty at medium and large x
- small uncertainties at small x
- NEW: factorization and renormalisation scale uncertainties
 - fit with shifted scales
 - large at large x, since no constrain from data: x < 0.005, $Q^2 > 5$ GeV²
 - dominant uncertainties

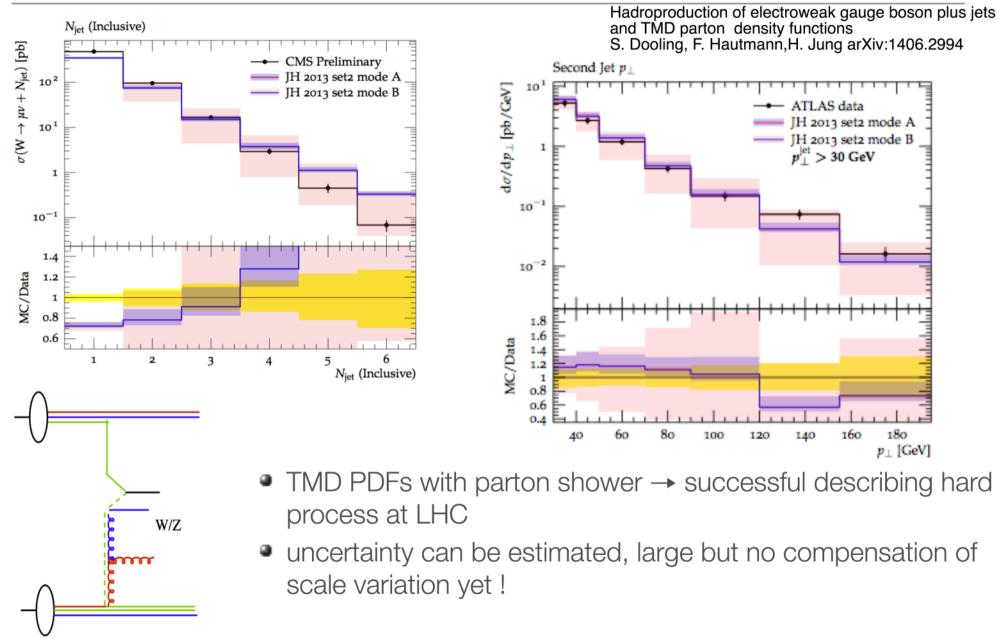
TMDs and the general pp case

- basic elements are:
 - Matrix Elements:
 - on shell/off shell
 - PDFs
 - → TMD PDFs
 - Parton Shower
 - → angular ordering
- Proton remnant and hadronization



$$\sigma(pp \to q\bar{q} + X) = \int \frac{dx_{g1}}{x_{g1}} \frac{dx_{g2}}{x_{g2}} \int d^2k_{t1} d^2k_{t2} \hat{\sigma}(\hat{s}, k_t, \bar{q}) \\
\times x_{g1} \mathcal{A}(x_{g1}, k_{t1}, \bar{q}) x_{g2} \mathcal{A}(x_{g2}, k_{t2}, \bar{q})$$

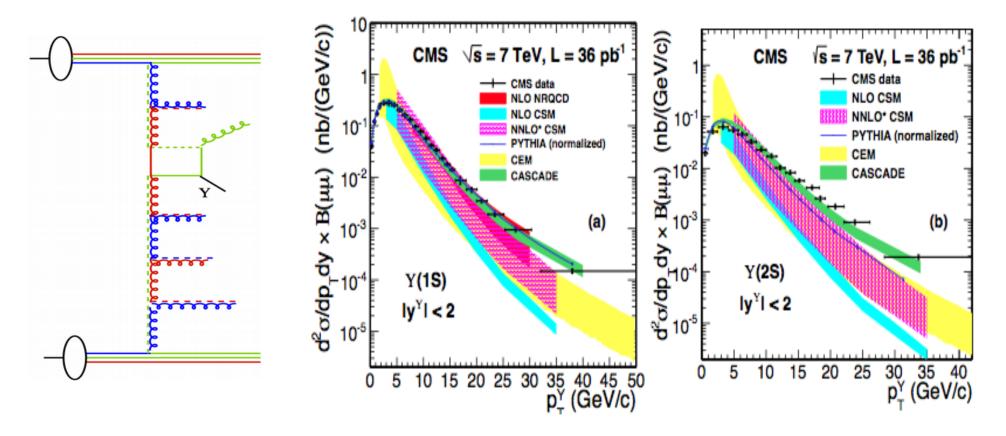
Application to W + jet production at LHC



Upsilon production

$$g^*g^* \to \Upsilon g, \ g^*g^* \to \chi_b \to \Upsilon + X$$

CMS Phys.Lett. B727 (2013)101, 1303.5900 Measurement of the Y(1S), Y(2S), and Y(3S) cross sections in pp collisions at $s\sqrt{}=7$ TeV

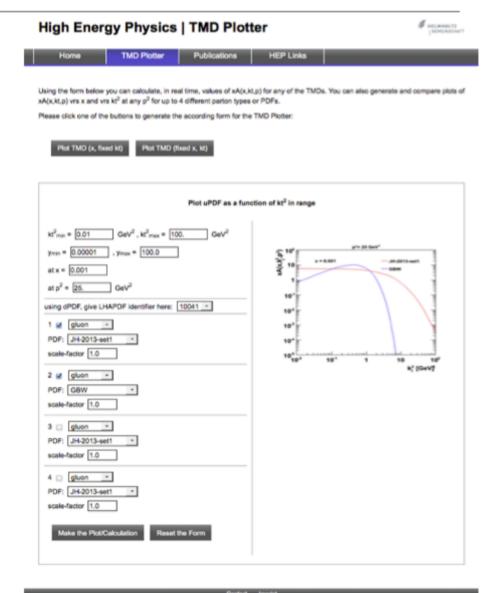


- Using TMDs with off-shell ME gives rather good description, without further tuning
- NNLO CSM is not as good!

TMDlib and TMDplotter

- combine and collect different ansaetze and approaches: http://tmd.hepforge.org/ and http://tmdplotter.desy.de
- → TMDlib: a library of parametrization of different TMDs and uPDFs (similar to LHApdf)

TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions, *F. Hautmann et al.* arXiv 1408.3015, submitted to EPJC.



ERC application (DESY): TMD-MCatLHC

- develop MC using TMDs: TMD-MCatLHC
- Needs:
 - TMDs for gluon, sea and valence quarks
 - full parton shower following exactly the TMD evolution
 - TMD fragmentation functions
 - (off-shell) matrix-elements for all possible processes → automated calculation
 - systematic investigations of factorization issues

Advantages:

- consistency form beginning: no kinematic reshuffling needed
- small higher order corrections
- scaleable to any jet multiplicity
 - via parton shower
- soft gluon resummation included from beginning, no extra factors are needed
- fast calculation
- Applications:
 - DY+jet, Higgs production
 - $tar{t}$ -(and heavy flavor) production
 - jets
 - searches

Conclusion

- TMD PDFs are important
 - effects form transverse momentum in small x processes (Υ production etc)
 but also in higher scale processes (W+2jets, etc)
 - precision determination TMD-gluon from inclusive DIS HERA data
 - now with model- and experimental uncertainties
- TMD PDFs can give a consistent recipe for initial state parton shower
 - no kinematic corrections are needed
- The big challenges:
 - TMD determination over full range in x and μ including quarks
 - Systematic extension to higher orders
 - Full TMD-MC including automated process calculation matched with TMDparton shower
 - TMD factorization in hadronic processes

Backup Slides

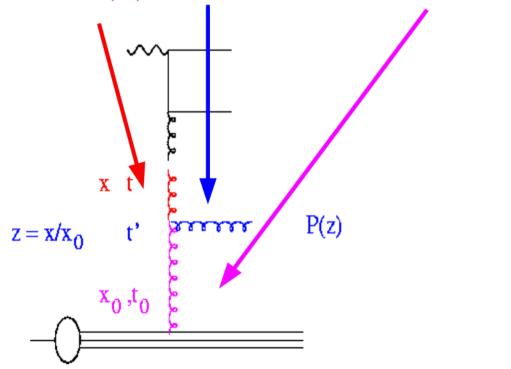
Evolution equation and TMDs

$$x\mathcal{A}(x, k_t, q) = x\mathcal{A}(x, k_t, q_0) \Delta_s(q) + \int dz \int \frac{dq'}{q'} \cdot \frac{\Delta_s(q)}{\Delta_s(q')} \tilde{P}(z, k_t, q') \frac{x}{z} \mathcal{A}\left(\frac{x}{z}, q'\right)$$

solve integral equation via iteration:

$$x\mathcal{A}_0(x,k_t,q) = x\mathcal{A}(x,k_t,q_0)\Delta(q)$$
 from q' to q w/o branching branching at q' from q_0 to q' w/o branching $x\mathcal{A}_1(x,k_t,q) = x\mathcal{A}(x,k_t,q_0)\Delta(q) + \int \frac{dq'}{q'} \frac{\Delta(q)}{\Delta(q')} \int dz \tilde{P}(z) \frac{x}{z} \mathcal{A}(x/z,k_t',q_0)\Delta(q')$

 Note: evolution equation formulated with Sudakov form factor is equivalent to "plus" prescription, but better suited for numerical solution for treatment of kinematics

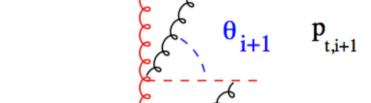


How to obtain TMDs? CCFM approach

Color coherence requires angular ordering instead of p, ordering ...

$$q_i > z_{i-1}q_{i-1}$$

with $q_i = rac{p_{ti}}{1-z_i}$



- → recover DGLAP with q ordering at medium and large x
- → at small x, no restriction on q p_{ti} can perform a random walk
- → splitting fct:

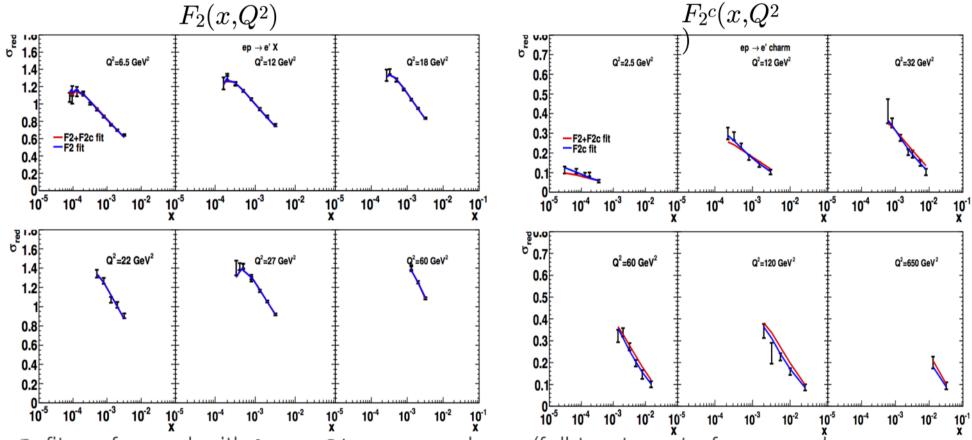
$$z_i$$
 z_i
 z_i

$$\tilde{P}_{g}(z,q,k_{t}) = \bar{\alpha}_{s} \left[\frac{1}{1-z} - 1 + \frac{z(1-z)}{2} + \left(\frac{1}{z} - 1 + \frac{z(1-z)}{2} \right) \Delta_{ns} \right]$$

$$\log \Delta_{ns} = -\bar{\alpha}_{s} \int_{0}^{1} \frac{dz'}{z'} \int \frac{dq^{2}}{q^{2}} \Theta(k_{t} - q) \Theta(q - z' p_{t})$$

-CataniCiafaloniFioraniMarchesini evolution forms a bridge between DGLAP and BFKL evolution

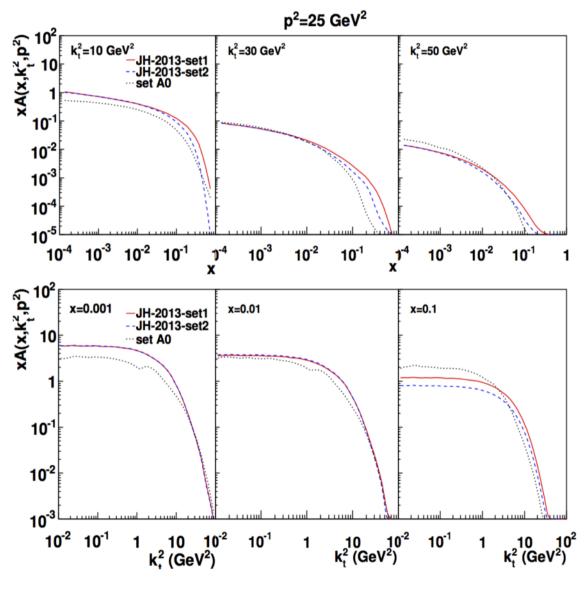
From HERA: small x improved gluon TMD



- fit performed with herafitter package (full treatment of corr. and uncorr. uncertianties)
 - $F_{2}^{c}(x,Q^{2})$: $Q^{2} \ge 2.5$ GeV
 - $F_2(x,Q^2)$: $x \le 0.005$, $Q^2 \ge 5$ GeV
- very good χ^2/ndf obtained (~ 1)

F. Hautmann and H. Jung. Transverse momentum dependent gluon density from DIS precision data. arXiv 1312.7875 Nuclear Physics B, 883:1, 2014.

CCFM gluon from F_2 and $F_2 \& F_2^c$ fit



Fit function:

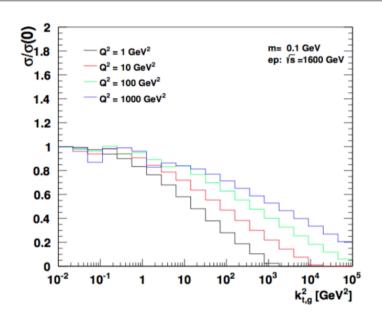
$$\mathcal{A}_0(x) = N_g x^{-B_g} (1-x)^{C_g} \times (1 - D_g x + E_g \sqrt{x} + F_g x^2)$$

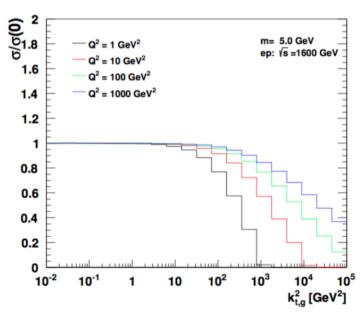
- only 3 params used in fit: no significant change for more params
- 2-loop α_s
- gluon splitting function with nonsingular terms
- fits:
 - set 1: F_2 : Q² > 5 GeV, $x \le 0.005$
 - set 2: $F_2 \& F_2$: Q² > 2.5 GeV
- new fit gives $\chi^2/ndf \sim 1.2$
- details are different from previous uPDF set A₀

Why off-shell matrix elements?

- Behavior of ME as function of k_t :
 - for small k_t converges to collinear result
 - for large k_t has suppression
 - * suppression appears at "standard factorization scale": $Q^2 + 4 \, m^2$
 - collinear factorization: $\mu^2 \sim Q^2 + 4 m^2$:

$$\int_0^{\mu^2} dk_\perp \hat{\sigma}(k_\perp, ...)$$





Application to W + jet production at LHC

