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Reweighting PDFs
Including new data in global PDF fits is usually a job for a restricted set of 
people who have access to complicated, massive and (mostly) private 
codes!

This is especially true when considering hadronic processes, for which the 
computations of higher order corrections is computationally very intensive!

Wouldn’t it be nice to have a method to quickly assess the impact of new 
data on a PDF determination, which is based only on public tools and is as 
fast as producing a theory-experiment comparison plot for the dataset under 
study?!

Bayesian reweighting provides such a method ... so let’s have a closer look!  



Bayesian Reweighting

First implementation suggested by Giele and Keller, who thought of it as 
method for producing new PDF fits!

[W. Giele & S. Keller, hep-ph/9803393]!

Reformulated in the context of the NNPDF fits (based on Monte Carlo 
methodology for uncertainties estimation) and applied for the first time to 
include data in a global PDF fit (NNPDF2.2)!

[R.D. Ball et al., arXiv:1012.0836]!
[R.D. Ball et al., arXiv:1108.1758]!

Recently extended by G. Watt and R. Thorne to PDF based on the Hessian 
method for estimation of uncertainties!

[G. Watt & R.S. Thorne, arXiv:1205.4024]!
[LHCb, De Lorenzi et. al, arXiv:1011.4260]



Bayesian Reweighting

The replicas of a Monte Carlo PDF set provide a sampling of the probability 
density in the space of Parton Distribution Functions!

Expectation values for observables which depend on PDFs are obtained by 
taking the average for a given observable over the replica set 
 
 
 
 
... with corresponding expressions for variances, correlations, etc.!

The central idea of Bayesian reweighting is to assess the impact of including 
new data in a PDF determination by updating the probability density of PDFs 
without performing a complete refit

Reweighting (NN)PDFs
Assessing the impact of new data on PDF fits

[R. D. Ball et al., arXiv:1012.0836]

[R. D. Ball et al., arXiv:1108.1758]

The Nrep replicas of a NNPDF fit give the probability density in the
space of PDFs

Expectation values for observables computed as

hF [fi(x , Q2)]i =
1

Nrep

NrepX

k=1

F
⇣

f (net)(k)
i (x , Q2)

⌘

(... the same is true for errors, correlations, etc.)

We can assess the impact of including new data in the fit updating
the probability density distribution without refitting.

A. Guffanti (NBIA & Discovery Center) PDFs@LHC 54 / 69



Bayesian Reweighting
We can apply Bayes Theorem to determine the conditional probability of the 
PDF upon inclusion of the new data  
 
 

Averages over the sample are no weighted sums 
 
 
 

… and the weights are given by

Reweighting (NN)PDFs
Assessing the impact of new data on PDF fits

[R. D. Ball et al., arXiv:1012.0836]

[R. D. Ball et al., arXiv:1108.1758]

According to Bayes Theorem we have

Pnew({f}) = N�P(�2|{f})Pinit({f}) , P(�2|{f}) = [�2(y , {f})]
ndat�1

2 e��2(y,{f})
2

Averages over the sample are now weighted sums

hF [fi(x , Q2)]i =
NrepX

k=1

wkF
⇣

f (net)(k)
i (x , Q2)

⌘

where the weights are

wk =
[�2(y , fk )]

ndat�1
2 e��2(y,fk )

2

PNrep
i=1 [�2(y , fi)]

ndat�1
2 e��2(y,fi )

2
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Bayesian Reweighting
The original sample of replica was constructed through importance sampling of 
the old probability distribution and it is thus maximally efficient (i.e. all replicas 
are equiprobabile and it gives the best representation of the probability density 
for a given number replicas)!

After reweighting the new replicas set will not give anymore a maximally 
efficient representation of the new probability distribution!

This loss of efficiency can be quantified using the Shannon Entropy  
 
 
 
 
 
to estimate the effective number of replicas after reweighting!

The smaller the Shannon entropy the more constraining the new data are

We can quantify this loss of efficiency by using the Shannon entropy to compute the
effective number of replicas left after reweighting:

Neff ≡ exp

{

1
N

N
∑

k=1

wk ln(N/wk)

}

. (10)

Clearly 0 < Neff < N : the reweighted fit has the same accuracy as a refit with Neff replicas.
Thus if Neff becomes too low, the reweighting procedure will no longer be reliable, either
because the new data contain a lot of information on the PDFs, necessitating a full refitting
with more replicas, or because the new data are inconsistent with the old.

These two cases can be distinguished by examining the χ2 profile of the new data: if
in the reweighted fit there are very few replicas with a χ2 per data point of order unity,
the errors in the new dataset have probably been underestimated. This profile may be
easily evaluated:

P(χ2) = 1
N

∑

k

wk, (11)

where the sum is over all replicas k such that χ2
k ∈ [χ2,χ2 + dχ2].

Alternatively, we consider inconsistent data as data whose errors have been underes-
timated. If we rescale the uncertainties of the data by a factor α, we can use inverse
probability to calculate the probability density for the rescaling parameter α:

P(α) ∝ 1
α

N
∑

k=1

wk(α). (12)

Here wk(α) are the weights Eq. (8) evaluated by replacing χ2
k with χ2

k/α
2 (and are thus

proportional to the probability of fk given the new data with rescaled errors): averaging
them in the reweighted fit thus gives the probability density for α. If this probability
density peaks close to one the new data are consistent, while if it peaks far above one,
then it is likely that the errors in the data have been underestimated.

If the new data are reasonably consistent, we can assess whether they should be in-
cluded in a new fit by calculating the χ2 distribution of the dataset that would be used in
the new fit (i.e. all the old data plus the new data), using the reweighting procedure as in
Eq. (11). Comparison to the old χ2 distribution then tells us whether the new data would
improve the fit: if so the peak should shift a little towards one, with a slight narrowing due
to the increase in the total number of data points. This may be quantified by comparing
the area under the curves in a given range.



Bayesian Reweighting
If the value of the Shannon entropy obtained after reweighting a prior set with a 
given dataset becomes too small the reweighting procedure becomes 
unreliable!

There are two reasons why that can happen!
• the new data contain a lot of information on PDFs not present in the prior fit 

(⇒ refit)!
• the new data are incompatible with data included in the prior PDF set!

We can distinguish the two cases by looking at the probability density of the 
nuisance parameter (α), defined as a rescaling factor for the uncertainties on 
the new data

We can quantify this loss of efficiency by using the Shannon entropy to compute the
effective number of replicas left after reweighting:
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improve the fit: if so the peak should shift a little towards one, with a slight narrowing due
to the increase in the total number of data points. This may be quantified by comparing
the area under the curves in a given range.



Bayesian Reweighting
If the probability density peaks close to one (or below one) the new data are 
compatible with the data included in the prior fit !
If the probability density peaks far above one the uncertainties on the new 
data are probably underestimated and these data are thus incompatible 
with the data included in the prior fit
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Unweighting PDFs
We want to define a procedure to 
generate an unweighted PDF set 
(i.e. a set in which all replicas are 
equiprobable) starting from one we 
constructed via reweighting!

To do that we define the probability 
cumulants of the original fit as 
 
 
!

The weights in the new, unweighted, 
set are the defined as 

3.1 The unweighting method

The basic idea for constructing the unweighted set consists of selecting replicas from the
weighted set of Nrep replicas in such a way that replicas carrying a relatively high weight
are chosen repeatedly, while those with vanishingly small weight disappear from the final
unweighted set. The method is depicted graphically in Fig. 1. We start by subdividing
a line of unit length into Nrep segments, in such a way that for each replica the length
of the corresponding segment is proportional to the weight of the replica, and thus to
its probability. The ordering of the segments is random. In order to extract a set of
N ′

rep replicas that faithfully represents this distribution, we draw another unit interval
directly below the first, and subdivide it into N ′

rep segments all of equal length 1/N ′
rep. We

then select replicas from the original weighted set by taking a number of copies of each
replica equal to the number of lower segments whose right edge is contained in the upper
segment corresponding to that specific replica. A little thought shows that the (all equally
probable) N ′

rep replicas in the lower set are then chosen according to the probabilities of
the Nrep replicas in the upper set.

To see this, note that, if the number of N ′
rep replicas is large enough, (top plot in

Fig. 1) then at least one lower segment (width 1/N ′
rep) will be contained in each upper

segment, and the original probability distribution is reproduced. This case is however
unrealistic, as it would require N ′

rep to be as large as the ratio between the highest and
lowest weight, which can be very large indeed. It is also unnecessary, because the amount
of information carried by the weighted set is measured by its Shannon entropy, which can
be used to determine the effective number of unweighted replicas Neff which carry the same
information [?]. Hence, it is pointless to include a number of replicas N ′

rep significantly
larger than Neff , as no information is then gained. Because by construction Neff ≤ Nrep

the more realistic situation is depicted in the bottom plot of Fig. 1: for the larger weights
several unweighted segments are contained in a weighted one, but for the smaller weights
there are often none at all, since we only select a replica if the edge of a lower segment
is contained in the upper segment corresponding to that replica. Which replica is chosen
among many all with equally small weight is of course entirely random, since the ordering
of the replicas is random.

We can now formulate the unweighting algorithm quantitatively. We start with a set
of Nrep replicas, each carrying a weight wk Eq. 11; as in Ref. [?], we normalize the weights
according to

Nrep
∑

k=1

wk = Nrep. (21)

The probability of each replica is determined given its weight as

pk =
wk

Nrep
. (22)

We then define probability cumulants

Pk ≡ Pk−1 + pk =
k

∑

j=0

pj , (23)

where in the last step we take P0 = 0. By construction, 0 ≤ Pk ≤ 1 and Pk−1 ≤ Pk.
Indeed, the cumulants provide the co-ordinate of the edge of the k-th upper segment in
the plot of Fig. 1, with origin at the left edge of the unit interval.

10

The unweighted set is then constructed as follows. We start with Nrep weights wk, and
we determine Nrep new weights

w′
k =

N ′
rep

∑

j=1

θ
( j

N ′
rep

− Pk−1

)

θ
(

Pk −
j

N ′
rep

)

. (24)

The weights w′
k are either zero or positive integers, and they satisfy the normalization

condition

N ′
rep ≡

Nrep
∑

k=1

w′
k : (25)

in fact, they correspond to the graphical counting procedure described previously. The
unweighted set is then simply constructed by taking w′

k copies of the k-th replica, for all
k = 1, . . . , Nrep. The probability of replica k in the new unweighted set is then given by

p′k =
w′
k

N ′
rep

. (26)

As a consequence we have
lim

N ′
rep→∞

p′k = pk, (27)

i.e. the unweighted set reproduces the probabilities of the weighted set in the limit of large
sample size, as it ought to.

As already mentioned, even though exact identity of the reweighted and unweighted
probability distribution holds in the limit Eq. (27), the amount of information contained
in the weighted set corresponds to Neff ≤ Nrep unweighted replicas, with Neff determined
as in Eq. (10) of Ref. [?] from the Shannon entropy. Therefore for practical applications it
is advisable to take N ′

rep < Neff — though there is nothing in principle wrong with taking
N ′

rep > Neff , this would just lead to a highly redundant replica set. We will study the
dependence of unweighted results on N ′

rep in an explicit example below.
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This is equivalent to the graphical 
procedure of picking a number of 

replicas from the original reweighted 
set which is equal to the number of 
lower segments whose right edge is 

contained in the upper segment 
corresponding to the specific replica  



Validating Bayesian 
reweighting

We now validate the reweighting procedure checking that the methodology 
yields results which satisfy a number of consistency tests !

Including a given dataset in a prior fit by reweighting or refitting should yield 
statistically equivalent results!

If we include two or more datasets we can choose to include them in a 
single step (as a single dataset) or in successive steos: the two procedures 
should yield statistically equivalent results!

When including sets in successive steps results should not depend on the 
order in which the reweighting is performed



Validating Bayesian 
reweighting

Start from NNPDF2.0 DIS+DY fit as a 
prior fit!
Add CDF and D0 inclusive jet data 
through refitting (NNPDF2.0)!
Add CDF & D0 jet data via reweighting 
as a single dataset!
Add CDF data then unweight and then 
add D0 data!
Add D0 data then unweight and then add 
CDF data!
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Validating Bayesian 
reweighting

Start from NNPDF2.1 DIS fit as a prior fit!
Add E605 Drell-Yan & Tevatron jet data 
via reweighting as a single dataset!
Add Tevatron jet data then unweight and 
then add E605 Drell-Yan data!
Add E605 Drell-Yan data, unweight and 
then add Tevatron jet data!
All procedures yield statistically 
equivalent results
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Reweighting for Hessian 
sets

[G. Watt & R.S. Thorne, arXiv:1205.4024]!

For Hessian sets (assuming symmetric uncertainties) the uncertainties on a 
given observables can be computed as 
 
 
 

A set of Monte Carlo replicas can then be generated according to 
 
 
 
 
 
where S0 is the “central set” and Rjk are normally distributed random numbers 

expanded in a basis of rescaled eigenvectors eik ≡
√
λkvik, that is,

ai − a0i =
n
∑

k=1

eikzk. (2.4)

Then it can be shown, using the orthonormality of v⃗k, that eq. (2.1) reduces to

χ2
global = χ2

min +
n
∑

k=1

z2k, (2.5)

that is,
∑n

k=1 z
2
k ≤ T 2 is the interior of a hypersphere of radius T . Pairs of eigenvector

PDF sets S±
k can then be produced to span this hypersphere, with parameters given by

ai(S
±
k ) = a0i ± t eik. (2.6)

In the quadratic approximation, t = T ≡ (∆χ2
global)

1/2, but particularly for the larger

eigenvalues λk there are significant deviations from the ideal quadratic behaviour, so in

general t is adjusted iteratively to give the desired value of T . Then asymmetric PDF

uncertainties on a quantity F , which may be an individual PDF at particular values of x

and Q2, or a derived quantity such as a cross section, can be calculated with the following

“master equations”:

(∆F )+ =

√

√

√

√

n
∑

k=1

{

max
[

F (S+
k )− F (S0), F (S−

k )− F (S0), 0
]}2

, (2.7)

(∆F )− =

√

√

√

√

n
∑

k=1

{

max
[

F (S0)− F (S+
k ), F (S0)− F (S−

k ), 0
]}2

, (2.8)

where S0 is the central PDF set. Symmetric PDF uncertainties can be calculated with

∆F =
1

2

√

√

√

√

n
∑

k=1

[

F (S+
k )− F (S−

k )
]2
. (2.9)

Ideally, with the standard “parameter-fitting” criterion [12], we would expect the errors

to be given by the choice of tolerance T = 1 for the 68% (one-sigma) confidence-level

(C.L.) limit or T = 1.64 for the 90% C.L. limit [13]. This criterion is appropriate if fitting

consistent data sets with ideal Gaussian errors to a well-defined theory. However, in prac-

tice, there are some inconsistencies between the independent fitted data sets, and unknown

experimental and theoretical uncertainties, so the parameter-fitting criterion is not appro-

priate for global PDF analyses. Historically, the CTEQ [10] and MRST [11] groups defined

90% C.L. uncertainties using T =
√
100 and T =

√
50, respectively. Instead, the “MSTW

2008” analysis [6] introduced a new “dynamic” determination of the tolerance, chosen sep-

arately for each eigenvector direction according to a “hypothesis-testing” criterion [12] to

maintain an adequate description of each individual data set in the global fit. Therefore,

the distance t in eq. (2.6) was replaced by t±k , adjusted to give the desired T±
k , with an

average value of ⟨t±k ⟩ ≈ ⟨T±
k ⟩ ≈ 3 for 68% C.L. uncertainties, and ⟨t±k ⟩ ≈ ⟨T±

k ⟩ ≈ 6 for 90%

C.L. uncertainties; see figure 10 of ref. [6] for the individual T±
k values in the MSTW 2008

NLO fit.
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Figure 10. Npdf = 40 random sets generated with eq. (6.3) as a ratio to the best-fit PDF set.

symmetrised version of eq. (6.4) could be obtained using

F (Sk) = F (S0) +
1

2

n
∑

j=1

∣

∣

∣
F (S+

j )− F (S−
j )
∣

∣

∣
Rjk (k = 1, . . . , Npdf), (6.5)

analogous to the symmetric formula for PDF uncertainties given in eq. (2.9).

We note that an unsuccessful attempt to generate random PDFs directly in the space

of fit parameters was made in section 6.5 of ref. [30]. This attempt was flawed in that all

random PDF sets were constructed with the unnecessary constraint of a fixed ∆χ2 = 100,
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Reweighting for Hessian 
sets

[G. Watt & R.S. Thorne, arXiv:1205.4024]!

How well does the Monte Carlo PDF ensemble we generated reproduce the 
original probability distribution of PDFs given by the Hessian eigenvectors?  
 
 
 
 
 
 
... and what about observables?  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Figure 11. Comparison of best-fit and Hessian uncertainty to the average and standard deviation
of two sets of Npdf = 40 PDFs generated with different random parameters given by eq. (6.3) and
one set of Npdf = 1000 random PDFs generated with eq. (6.4).

with the n parameters distributed on the surface of an n-dimensional hypersphere using

the eigenvectors as basis vectors, leading to an envelope of the random PDF sets covering

a much smaller range than the usual Hessian uncertainty. By contrast, if we generate

random PDF sets according to eq. (6.3), then the ∆χ2, or equivalently t±j , is only used to

define the distance along a particular eigenvector direction. At a general point in parameter

space, given by stepping along all eigenvector directions by a random amount, the ∆χ2

– 22 –

(a)

x
-510 -410 -310 -210 -110

Pe
rc

en
ta

ge
 u

nc
er

ta
in

ty

-10

-8

-6

-4

-2

0

2

4

6

8

10
2 GeV4 = 102Up valence distribution at Q

MSTW 2008 NLO (68% C.L.)
Random params. (40)
Random params. (40)
Random PDFs (1000)

x
-510 -410 -310 -210 -110

Pe
rc

en
ta

ge
 u

nc
er

ta
in

ty

-10

-8

-6

-4

-2

0

2

4

6

8

10

(b)

x
-510 -410 -310 -210 -110

Pe
rc

en
ta

ge
 u

nc
er

ta
in

ty

-20

-15

-10

-5

0

5

10

15

20
2 GeV4 = 102Down valence distribution at Q

MSTW 2008 NLO (68% C.L.)
Random params. (40)
Random params. (40)
Random PDFs (1000)

x
-510 -410 -310 -210 -110

Pe
rc

en
ta

ge
 u

nc
er

ta
in

ty

-20

-15

-10

-5

0

5

10

15

20

(c)

x
-510 -410 -310 -210 -110

Pe
rc

en
ta

ge
 u

nc
er

ta
in

ty
-10

-8

-6

-4

-2

0

2

4

6

8

10
2 GeV4 = 102Up antiquark distribution at Q

MSTW 2008 NLO (68% C.L.)
Random params. (40)
Random params. (40)
Random PDFs (1000)

x
-510 -410 -310 -210 -110

Pe
rc

en
ta

ge
 u

nc
er

ta
in

ty
-10

-8

-6

-4

-2

0

2

4

6

8

10

(d)

x
-510 -410 -310 -210 -110

Pe
rc

en
ta

ge
 u

nc
er

ta
in

ty

-10

-8

-6

-4

-2

0

2

4

6

8

10
2 GeV4 = 102Down antiquark distribution at Q

MSTW 2008 NLO (68% C.L.)
Random params. (40)
Random params. (40)
Random PDFs (1000)

x
-510 -410 -310 -210 -110

Pe
rc

en
ta

ge
 u

nc
er

ta
in

ty

-10

-8

-6

-4

-2

0

2

4

6

8

10

(e)

x
-510 -410 -310 -210 -110

Pe
rc

en
ta

ge
 u

nc
er

ta
in

ty

-10

-8

-6

-4

-2

0

2

4

6

8

10
2 GeV4 = 102Strange quark distribution at Q

MSTW 2008 NLO (68% C.L.)
Random params. (40)
Random params. (40)
Random PDFs (1000)

x
-510 -410 -310 -210 -110

Pe
rc

en
ta

ge
 u

nc
er

ta
in

ty

-10

-8

-6

-4

-2

0

2

4

6

8

10

(f)

x
-510 -410 -310 -210 -110

Pe
rc

en
ta

ge
 u

nc
er

ta
in

ty

-5

-4

-3

-2

-1

0

1

2

3

4

5
2 GeV4 = 102Gluon distribution at Q

MSTW 2008 NLO (68% C.L.)
Random params. (40)
Random params. (40)
Random PDFs (1000)

x
-510 -410 -310 -210 -110

Pe
rc

en
ta

ge
 u

nc
er

ta
in

ty

-5

-4

-3

-2

-1

0

1

2

3

4

5

Figure 12. Similar to figure 11 but percentage uncertainties rather than the ratio to the best-fit.

is irrelevant and it can be very large. It is not necessary or desirable that each random

PDF set should have ∆χ2 below a certain value. A fixed ∆χ2 will only be recovered in the

specific (and very unlikely) case that |Rjk| = δjk, then eq. (6.3) reduces to eq. (6.2).

Another argument that a Monte Carlo approach in the space of fit parameters involves

exploring a space too wide to be sampled efficiently with a small number of random PDFs

was made in section 3.2.1 of ref. [31]. There it was argued that if the probability distribution

for each parameter is given as a histogram with three bins, say the one-sigma region

around the central value and the two outer regions, then näıvely one might expect the
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Figure 13. Convergence of average and standard deviation of Npdf random predictions as a
function of Npdf , each time adding one more random prediction to the Npdf − 1 previous random
predictions, normalised to the best-fit prediction and compared to the Hessian uncertainty.

need to randomly sample 3n ! 3 × 109 PDF sets for n = 20 free parameters. However,

the n parameters are certainly not independent, and the complete correlation information

is provided by the covariance matrix obtained from the global fit. Working in the basis

of eigenvectors then provides an optimally efficient way to sample the parameter space

randomly along each eigenvector direction.

Nevertheless, it is instructive to perform a numerical exercise in order to explicitly

demonstrate roughly how many random predictions are necessary to adequately sample the

parameter space. We consider the 7 TeV LHC total cross sections for four typical processes

corresponding to inclusive production of (a) Z0 bosons, (b) W+ relative to W− bosons,

(c) top-pairs and (d) Standard Model Higgs bosons with MH = 120 GeV from gluon–

gluon fusion. These four processes are chosen to sample a variety of parton flavours and

momentum fractions x. We use the existing NLO calculations from ref. [1] with the MSTW

2008 NLO best-fit and Hessian eigenvector PDF sets at 68% C.L. For each of the four

processes, we generate the minimal Npdf = 2 random predictions computed using eq. (6.5)

for F = {σZ0 ,σW+/σW− ,σtt̄,σH} and calculate the average and standard deviation. Then

the number of random predictions, Npdf , is incremented by one, and the average and

standard deviation recomputed, until Npdf = 1000. The results are shown in figure 13
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Figure 13. Convergence of average and standard deviation of Npdf random predictions as a
function of Npdf , each time adding one more random prediction to the Npdf − 1 previous random
predictions, normalised to the best-fit prediction and compared to the Hessian uncertainty.

need to randomly sample 3n ! 3 × 109 PDF sets for n = 20 free parameters. However,

the n parameters are certainly not independent, and the complete correlation information

is provided by the covariance matrix obtained from the global fit. Working in the basis

of eigenvectors then provides an optimally efficient way to sample the parameter space

randomly along each eigenvector direction.

Nevertheless, it is instructive to perform a numerical exercise in order to explicitly

demonstrate roughly how many random predictions are necessary to adequately sample the

parameter space. We consider the 7 TeV LHC total cross sections for four typical processes

corresponding to inclusive production of (a) Z0 bosons, (b) W+ relative to W− bosons,

(c) top-pairs and (d) Standard Model Higgs bosons with MH = 120 GeV from gluon–

gluon fusion. These four processes are chosen to sample a variety of parton flavours and

momentum fractions x. We use the existing NLO calculations from ref. [1] with the MSTW

2008 NLO best-fit and Hessian eigenvector PDF sets at 68% C.L. For each of the four

processes, we generate the minimal Npdf = 2 random predictions computed using eq. (6.5)

for F = {σZ0 ,σW+/σW− ,σtt̄,σH} and calculate the average and standard deviation. Then

the number of random predictions, Npdf , is incremented by one, and the average and

standard deviation recomputed, until Npdf = 1000. The results are shown in figure 13
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Reweighting for Hessian 
sets

[G. Watt & R.S. Thorne, arXiv:1205.4024]!

Once replicas are generated according to the recipe given, the very same 
Bayesian reweighting methodology described for NNPDF can be used to 
compute weights and generate a reweighted PDF set including new data
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Figure 16. Lepton charge asymmetry Aℓ(ηℓ) predictions compared to (a) CMS [7] and (b) AT-
LAS [8] data, then change in uv − dv after reweighting using (c) CMS and (d) ATLAS data.

uv − dv is largest at x ∼ 0.01, and the average value after reweighting using the ATLAS

data even lies outside the original uncertainty band. There is also a distinct reduction in

the size of the uncertainty band after reweighting.

The procedure just described is not completely unambiguous. Alternative prescriptions

could be formulated which are equivalent in a linear approximation, but which might differ

due to some degree of non-linearity. For example, rather than starting by generating

random predictions for the asymmetry by taking F = Aℓ(ηℓ) in eq. (6.4), we could instead

generate Npdf = 1000 random PDF sets by taking F = xf(x,M2
W ) in eq. (6.4), where f =

{g, d, u, s, c, b, d̄, ū, s̄, c̄, b̄}, then calculate Aℓ(ηℓ) for each of these Npdf random PDF sets,

before calculating weights according to eq. (7.2) as before. This alternative method will

give slightly different results since Aℓ(ηℓ) depends on xf(x,M2
W ) in a non-linear manner. In

figure 17(a,b) we compare the distribution of weights wk computed using the two different

methods, using the same random numbers Rjk to allow a direct comparison of individual

weights with the same label k. The distribution of weights is very similar using the two

methods. The individual weights typically agree to within a few percent and differ by only

a few tens of percent in the worst cases. The values of Neff agree to the nearest integer and

the values of χ2/Npts. agree to two decimal places. The plots of figure 16 produced using

the alternative method are indistinguishable. We conclude that the degree of non-linearity
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Used to assess the impact 
of LHC W lepton asymm. 
on MSTW08 PDFs!
Valence quark distribution 
mostly affected in the 
medium-/small-x region



Conclusions & Outlook

Inclusion of new data in global PDF fits is usually performed by PDF fitting 
collaborations using complicated, massive and (mostly) private codes!

Bayesian reweighting provides a method to quickly assess the impact of 
new data on a PDF determination and is based on the use of public tools!

Bayesian reweighting was initially developed for Monte Carlo sets but the 
same techniques have recently been extended to use with Hessian sets!

Available as a module of the HERAfitter package … so let us play around with 
it a bit!


