

Stability of Charge Multiplication in Silicon Strip Sensors

PETTL Workshop 7. March 2014

Christopher Betancourt¹, Alexander Dierlamm³, Karl Jakobs¹, <u>Susanne Kühn</u>¹, Kristin Lohwasser², Riccardo Mori^{1*}, Ulrich Parzefall¹, Martin Printz³, Maira Thomas¹, Marc Hauser¹

1: Albert-Ludwigs Universität Freiburg, Freiburg im Breisgau.

2: DESY, Zeuthen

3: KIT, Karlsruhe

Introduction

- Charge multiplication in silicon strip sensors
- Results from simulation
- Results of dedicated charge multiplication sensors
- Results of long-term measurements
- Summary

Most results from recent talk at 9th Trento Workshop 2014 in Genova by Riccardo Mori

Charge Multiplication in silicon sensors

Albert-Ludwigs-Universität Freiburg

07.03.14

Charge Collection (Beta source, Alibava readout)

3

N H

Charge Multiplication ctd'

IBURG

FREI

Albert-Ludwigs-Universität Freiburg

CM observed after long annealing times p80-w6

[L.Altan, RD50 WS, June 2013]

CM observed for high neutron irradiation and increasing annealing time depending on sensor geometry

- F= 5*10¹⁵ n_{eq}/cm²
- w/p= 0.075, p=80 μm
- Depth= 305 µm

Open questions: simulation of effect, long-term stability, behaviour of signal-to-noise **Problems:** high leakage currents, noise multiplication

07.03.14

Stability of Charge Multiplication in Silicon Strip Sensors - Susanne Kuehn

Edge-TCT measurements indicate where charge is generated and

multiplied

G. Casse M. Moll, LHCC Report, 2012 [M. Milovanović, 19th RD50 Workshop, Nov.2011]

• Increase of the electric field close to the strips causing impact ionization/carrier injection when high concentrations of effective acceptors are introduced at very high fluences

Approach: Simulation studies

Simulations show high electric field close

Albert-Ludwigs-Universität Freiburg

to strips

N N N

- CM effect of interface oxide charge? approach: simulation studies
 - high electric fields at pn-junction decrease with increasing oxide charge Q_Ox
 - charged hadrons introduce oxide damage
 - Q_Ox increases
 - CM suppressed in CMS due to significant part of ionising dose by charged hadrons

[M.Printz, CMS-CR-2013-267]

Approach: Tests of sensor with geometries to enhance charge multipl.

Production of sensors within RD50 Collaboration Geometry variations:

- Deeper junctions
- Altered doping gradient
- Ratio of strip implant and pitch

Measurements to determine collected charge, noise, signal-to-noise by using beta source set-up •Samples:

- Micron, p-type, strip with different pitches and widths, standard and double implantation energy
- Irradiation: neutrons to $[1,5]*10^{15} n_{eq}^{2}/cm^{2}$
- Set-up:

07.03.14

- Sr90 source, two scintillator in coincidence
- AliBaVa system (Beetle chip, 40 MHz) (daughter board calibrated in temperature with a standard 296 µm thick sensor)
- Freezer + cold nitrogen vapour flow (~ 40°C)

ALIBAVA daughter board with detector

Results after irradiation

Albert-Ludwigs-Universität Freiburg

Beneficial effect from decreasing width/pitch

Stability of Charge Multiplication in Silicon Strip Sensors - Susanne Kuehn

High bias voltage needed

07.03.14

BURG

ZW

Test of long-term stability of charge multiplication

Sensors: p-type sensors with (pitches, widths)=(100,10),(80, 25) µm

Measurements:

- Measure charge collection at three bias voltages
- Bias detector maximally: before breakdown, short term stable current
- Keep the detector biased for several days and measure charge collection twice per day
- Monitored operative conditions:
 - temperature around -42 °C, deviations during N refilling;
 - relative humidity <5%;
 - compliance sometimes reduces the bias for ~1h/day during N refilling.

Monitoring of the results and resulting actions

- Significant drop in charge collection?
 - Yes: remove the voltage for 1 h, then 24 h
 - Recovered charge?
 - Yes: continue
 - No: warm up for 24 h
 - Recovered charge?...
- I-V at every break

BURG

100 Standard (p,w)=(100,10) μ m, 5*10¹⁵ n_{eq}/cm² 20 Charge versus bias

Standard, $1*10^{15} n_{eq}/cm^2$: broke after 3 stable days at 1100 V Standard, 1*10¹⁵ n_{er}/cm²: immediate breakdown, irreversible damage

Standard, 5*10¹⁵ n_{ed}/cm²: stable for 3 days at 1500 V; breakdown, permanent

Long-term biasing behaviour

Albert-Ludwigs-Universität Freiburg

- Standard, $1*10^{15} n_{eq}^{2}$ cm²: broke in less than a day at 1000 V
- damage, moving to 1600 V
 - \rightarrow All failed: a relatively short-term stability, does not imply long-term stability

Results long-term tests II: Collected charge

Albert-Ludwigs-Universität Freiburg

- Decrease of collected charge after few days •
- Removing the voltage seem to (partially) recover the charge collection, but then drop again

07.03.14

Stability of Charge Multiplication in Silicon Strip Sensors - Susanne Kuehn

Results long-term tests III: spectra and current

Albert-Ludwigs-Universität Freiburg

 Charge distribution change from 600 V and 1300 V (broader): statistical fluctuation and broader shot noise (e.g. Lange et al., NIMA 622, 2010)

 \rightarrow charge multiplication take place

- Drop in most probable charge reflect the change in the distribution: broad and lower
- Observed a lower current immediately after resting periods but still persistent higher current in long-term

BURG

07.03.14

Stability of Charge Multiplication in Silicon Strip Sensors - Susanne Kuehn 11

Results long-term tests IV: ongoing

Albert-Ludwigs-Universität Freiburg

• Second sensor under test: standard, (p,w)=(80,25) μ m, dose 5*10¹⁵ n_{eq}/cm² (Compliance~200 µA) 1 day rest

- Again unstable behaviour at 1400 V => down to 1300 V (first 3 points at 600 V, 800 V, 1000 V)
- Lower charge than the previous sensor
- Test ongoing

07.03.14

Stability of Charge Multiplication in Silicon Strip Sensors - Susanne Kuehn

0

NH

Comparison to other results (first observation!)

Albert-Ludwigs-Universität Freiburg

An indication of a possible drop after several (~6) days.

From:

Sven Wonsak, private communication Chris Betancourt, RD50 workshop Nov. 2013

07.03.14

Stability of Charge Multiplication in Silicon Strip Sensors - Susanne Kuehn 13

Summary

Albert-Ludwigs-Universität Freiburg

BURG

- Charge multiplication is observed by relatively short-term measurements
- Multiplication due to high electric field close to strips, which causes impact ionization
- Simulations show reduction of electric field with increasing oxide charge
- Long-term tests show
 - Several sensor broken after significant time (several days): stress is long-term related
 - Collected charge reduces after few days: long-term change of sensor properties (electric field distribution)
 - Partial recover after a resting day
- Ideas for explanations:
 - Does the beta source increase the oxide charge? (Reduction of charge in longterm measurements of unirradiated sensors seen in CMS)
 - Is there some other effect changing the electric field?
 - Are trapping effects changing with time?
- More long-term measurements ongoing
 - More samples also unirradiated ones and with different fluences
 - Resting at higher temperature
 - Place source only for measurement of charge
 - UV stimulation at low temperature for some time (see effect of the oxide charge)

Albert-Ludwigs-Universität Freiburg

Sensors with geometries to enhance charge multiplication

Production of sensors within RD50 Collaboration SiO Geometry variations:

- Deeper junctions
- Altered doping gradient
- Ratio of strip implant and pitch

18 16 ł 14 Collected Charge (ke) 12 W2 A HAN WЗ 10 W5 ş TH HOL Č. W7 W16 W18 2 0 200 400 600 800 1000 1200 0 Bias Voltage (V)

Standard n-in-p sensor 300 µm thick, Trenches with 5 (W2), 10 (W7 std), 50 (W5) µm width, Deep diffusion 5 µm (W16), as implant (W18) after 5*10¹⁵ neg/cm²

G. Casse, NIM A (2012), http://dx.doi.org/10.1016/j.nima.2012.04.033

P. Fernández-Martínez, NIM A 658 (2011) 98-102

 \rightarrow Higher collected charge for 5 and 50 μ m trenches but higher noise to be avoided

07.03.14

Stability of Charge Multiplication in Silicon Strip Sensors - Susanne Kuehn

07.03.14

Stability of Charge Multiplication in Silicon Strip Sensors - Susanne Kuehn 17

Spares: results: long term, first (failed) tests

Albert-Ludwigs-Universität Freiburg

- •2935-8-1-14L: standard, (p,w)=(XXX,XXX), 1*10¹⁵ n_{eq}/cm²:
 - ~-18 °C, 1000 V: ~124 uA.
 - Broke over night.

•2935-8-1-13L: standard, (p,w)=(XXX,XXX), 1*10¹⁵ n_r/cm²:

- ~-15.5 °C, 1100 V.
 - Broke after 3 stable days.
- ~-40 °C.
 - Permanent high current (100 uA at 700 V).

•2935-8-3-4L: standard, (p,w)=(XXX,XXX), 1*10¹⁵ n_{er}/cm²:

- ~-17.5 °C.
 - Immediate breakdown at 1100 V.
- ~-40 °C.
 - Persistent high current.

•XXXXXXXXX: standard, (p,w)=(XXX,XXX), 5*10¹⁵ n_e/cm²:

- ~-40 °C, 1500 V.
 - Low charge collection over 3 days=> decided to increase the voltage.
- 1600 V.

07.03.14

• Breakdown, permanent damage.

BURG

Spares: results: long term, succesful test, monitoring

Albert-Ludwigs-Universität Freiburg

Voltage decreased during N refilling (~<1 h/day).

07.03.14

Spares: results: long term, succesful test

Albert-Ludwigs-Universität Freiburg

• The signal to noise ratio, scaling as 1/noise, increases for lower temperatures.

20

BURG

•Standard.

•(p,w)=(100,10) um.

•5*10¹⁵ n_{eq}/cm².

Results long-term tests: Current

Albert-Ludwigs-Universität Freiburg

- Increase of the current after long-term stress and with temperature stress (during N refilling).
- Observed a lower current immediately after resting periods but still persistent higher current in long-term

07.03.14

M

Spares: results: various

Albert-Ludwigs-Universität Freiburg

•Various: spectrum 600 V, 0 h

07.03.14

Stability of Charge Multiplication in Silicon Strip Sensors - Susanne Kuehn

Standard

•(p,w)=(100,10) um. **Z**

Spares: results: various

07.03.14

Stability of Charge Multiplication in Silicon Strip Sensors - Susanne Kuehn 2

Spares: results: various

Albert-Ludwigs-Universität Freiburg

•Various: spectrum 1300 V, 354 h (after drop)

•Standard. •(p,w)=(100,10) •5*10¹⁵ n /cm².

07.03.14

Stability of Charge Multiplication in Silicon Strip Sensors - Susanne Kuehn