Results of Diamond Characterisation

2nd ADAMAS workshop

Maria Hempel

Results of Diamond Characterisation Darmstadt, 15.12.2013

Brandenburgische Technische Universität Cottbus

Content

- The Fast Beam Condition Monitor BCM1F at CMS
- Possible Measurements at DESY Zeuthen
- Irradiated BCM1F Diamonds sCVD
- Irradiated BCM1L Diamonds pCVD
- > Upgrade of BCM1F and BCM1L
- Fresh BCM1F Diamonds sCVD
- Fresh BCM1L Diamonds pCVD

The Beam Condition Monitor BCM1F and BCM1L at CMS

sCVD

5x5 mm²

Front-end

- Particle detector with nanosecond time resolution
- Located inside CMS
 - 12.5ns away from CMS IP
 - ~5cm away from beam center
 - Irradiation of 24GeV proton equivalent $(3.5 * 10^{12} \text{ proton equivalent per } fb^{-1})$
- sCVD sensors BCM1F
 - Beam gas
 - Beam background
 - Collision products
 - Iuminosity
- pCVD sensors BCM1L
 - Signal current
 - Beam loss monioring
 - Beam dumping system

Possible Measurements at DESY Zeuthen

- > Thickness measurements with laser microscope
 - Reflection of laser light at the focus
 - Information about thickness (µm precision)
 - Requires information of refractive index (2.42 for diamond)
- Transient Current Measurements
 - Measurements of diamond signal
 - Information about charge carriers in diamond
 - Konstantin will present his results

Possible Measurements at DESY Zeuthen

- > Current Measurements
- Diamond in frame
 - Connection with bonds
- Current as a function of bias voltage
 - Information about leakage current
 - In the range of pA for good sCVD
- Current as a function of time
 - Pumping of diamond
 - Stability of signal current
 - Constant current is expected
 - Known for pCVD: erratic currents

Possible Measurements at DESY Zeuthen

- > HV is applied with table
- Signal readout with needle
- Source: Sr-90
- Measurements of CCE as a function of bias voltage
 - Comparison of CCE before and after irradiated
 - Pumping with Sr-90 possibile
- Measurements of CCE as a function of time
 - Studies of polarization effect
 - Degradation of CCE as a function of time
- Possibility of diode studies

Irradiated BCM1F Diamonds - sCVD

- IV measurement show low leakage current for irradiated BCM1F sCVD
 - In the range of µA

1.4x10⁻⁶ 1.2×10^{-6}

1.0x10⁻⁸

8.0x10⁻⁹

6.0x10⁻⁹

 ۲
 4.0x10°

 4.0x10°
 2.0x10°

 3
 0.0

 10
 -2.0x10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

 10
 10°

-6.0x10⁻⁹ -8.0x10⁻⁹ -1.0x10⁻⁸

-1.2x10

0 2

I(t) shows the signal behavior over long time

12 14 16 18 20

10 8

Time [h]

Polarization effect visible

0V 500 V

0 V

-500 V

Small decrease of signal current

8

Time [h]

6

Maria

Irradiated BCM1F Diamonds - sCVD

CCE after irradiation is at 500V ~70% for all irradiated BCM1F sCVD

- 30% smaller CCE
- > Polarization visible for CCE over time
 - Decrease of CCE by 8.3%
 - Halftime ~5min

Maria Hempel | Diamond Characterization | 16.12.2013 | Page 8

Irradiated BCM1F Diamonds - sCVD

- > First red diode studies were done
- Idea of diode measurements:
- Polarization is due to deep traps
 - Hypothesis: energy of traps at the range of red light (1.9eV)
 - Band witdth: $E_{G} = 5,4eV$
 - Deep traps at $\frac{1}{4}E_G = 1.35eV$
- Polarization develops during HV and Sr-90 irradiation
 - Charge carriers are trapped in deep traps
 - Decrease of CCE 8%
- Red diode light has enough energy to release charge carriers from deep traps
 - increase of CCE 8%

Irradiated BCM1L Diamonds - pCVD

- Leakage current in pA for one polarity
 - Operating polarity
 - Small increase of signal current over time
- Leakage current is up to µA for one polarity

5.0x10

4.0x10

3.0x10

2.0x10

1.0x10

-1.0x10

0.0

0 2

Signal Current [A]

BCM1L P30

10 12 14

Time [h]

Irradiated BCM1L Diamonds - pCVD

- CCE measurements are done after pumping (12h Sr-90 source)
 - Avoiding polarization
- > CCE before irradiation:
 - 55% at 400V
 - 230µm CCD at 400V
- > CCE after irradiation
 - 40% at 400V
 - 160µm CCD at 400V
- > Decrease of CCE of ~30%

Upgrade of BCM1F and BCM1L

- Upgrade of the diamond mounting around the beam (Jessica Leonard talk)
- Fresh BCM1L pCVD diamonds
- > Upgraded BCM1F amplifier
 - Peaking time of ~7ns
 - Amplification of 70mV/fC
 - Two MIP separation of 12.5ns

> BCM1F sCVD have a split electrode

- Increase of dynamic range of the BCM1F system
- > 24 sCVD diamonds on each side of the interaction point
 - 24 fresh sCVD diamonds
 - Maybe reuse irradiated BCM1F diamonds

Fresh BCM1F Diamonds sCVD

Fresh BCM1F Diamonds sCVD

- > Connection between pads
 - One pad measurement
- Measurements only possible up 400V
 - Breakthrough above 400V
 - Point of breakthrough depends on the voltage steps

Fresh BCM1L Diamonds - pCVD

- Low leakage current for one polarity
 - Possible operation polarity: negative bias voltage
- > Signal current is not stable over time
 - Erratic currents

Fresh BCM1L Diamonds - pCVD

- > CCE was done after 12h of pumping (Sr-90 source)
- No saturation up to 700V
- Low CCE of 25% at 400V
 - Smaller than the irradiated diamonds (40% smaller CCE)

Summary

- BCM1F and BCM1L diamonds were removed from CMS after irradiation
- Irradiated BCM1F diamonds show good performance
 - Still leakage current in the range of pA
 - Still 70% CCE
 - Decrease of CCE of about 30%
 - Reuse for BCM1F upgrade
- Irradiated BCM1L diamonds show good performance for one polarity
 - Leakage current in the range of pA
 - Still CCE of 40% at 400V
 - Decrease of CCE of about 30%
- Fresh BCM1F diamonds show worse performance than irradiated diamonds
 - Leakage current in the µA range
 - 90% of CCE
 - Future operation up to 400V maximum for one polarity
- Fresh BCM1L Diamonds show same performance as irradiated diamonds
 - Leakage current in the range of pA for one polarity
 - 25% of CCE at 400V
 - Future operation only for one polarity and with much smaller CCE

Outlook

- Characterisation of more than 24 sCVD and pCVD for the BCM1F and BCM1L upgrade
 - Installation of best 24 diamonds
- > Test beam in January for two pad characterization
- Information about:
 - Functionality of the upgraded amplifier
 - Two pad readout with separate channels
 - Edge effects
 - Cross talk
- Installation of BCM1F and BCM1L is planned in late Spring of 2014

Thank you for your attention!

Maria Hempel | Diamond Characterization | 16.12.2013 | Page 19