

Jets with large rapidity separation at CMS: dijet "K-factor" and azimuthal angle decorrelations

Victor T. Kim

St. Petersburg Nuclear Physics Institute, Gatchina St. Petersburg State Polytechnical University

in collaboration with V. Gavrilov, G. Safronov, I. Pozdnyakov (ITEP, Moscow) G. Pivovarov (INR, Moscow) V. Murzin, V. Oreshkin (PNPI, Gatchina) Nucl. Phys. B (Proc. Suppl.) 245 (2013) 153

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Victor Kim

- Motivation: why BFKL?
 - Dijets from QCD dynamics: GLAPD vs. BFKL
 - Forward dijets at LHC: dijet "K-factor" vs |y|
 - Forward dijets at LHC: azimuthal decorrelations vs |y|
- Summary

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Victor Kim

PNPI, Gatchina & SPBSPU

x-section asymptotics

Bjorken limit (GLAPD): s ~ Q² >> m² Q²/s = x ~ I Large-angle (large-x) scattering

Regge-Gribov limit (BFKL): s>>Q² >> m² Q²/s = x -> 0 Small-angle (small-x) scattering

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Victor Kim

High-energy QCD asymptotics: GLAPD and BFKL

 $s=(p_1+p_2)^2$ $t=(p_1-p_3)^2 \qquad Q^2=-t$ Scattering in the Standard Model (QCD) at high energies: Large logarithms: as log(s), as log(Q²)

```
Bjorken limit (large-angle scattering):

s \sim Q^2 >> m^2

Q^2/s = x \sim 1

Gribov-Lipatov-Altarelli-Parisi-Dokshitzer (GLAPD):

(as log(Q<sup>2</sup>))<sup>n</sup> resummation

Inclusive cross section ~ 1/Q<sup>4</sup>
```

```
Regge-Gribov limit (small-angle scattering):s >> Q^2 >> m^2Q^2/s = x \Rightarrow 0Balitsky-Fadin-Kuraev-Lipatov (BFKL):(as log(s))^n resummationTotal cross section ~ s^{(a_P-1)}a_P - Pomeron interceptsoft scattering data: a_P = 1.1
```

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Victor Kim PNPI, Gatchina & SPBSPU

LL BFKL: problems

LL BFKL: designed for infinite collision energies

Problems (at finite energies):

- fixed (non-running) coupling as
- energy-momentum conservation
- transverse momentum conservation

Total cross section in LL BFKL: $\sigma_0 (S/S_0)^{(aP-1)} a_P = I + C a_s \approx I.5 - I.6$ ruled out

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Victor Kim

Chronicles of BFKL: next-to-leading logs (NLL)

V.S. Fadin & L.N. Lipatov (89-98) C.Camici & M. Ciafaloni (96-98) next-to-leading log approximation (NLL) BFKL MSbar-renormalization scheme: large corrections

S.J. Brodsky, V.S. Fadin, VK, L.N. Lipatov, G.B. Pivovarov(98-99) BFKLP D. Colferai, M. Ciafaloni & G. Salam (99) ...
BFKLP: NLL BFKL + resummation of running coupling as BFKLP: Conformal BFKL kernel in NLL -> SUSY N=4 Pomeron intercept: a_P=1.2 - 1.3 Cross section: σ₀ (S/S₀) (a^{P-1}) a_P = 1 + C a_S

> L.N. Lipatov, A.V. Kotikov et al. (2000-06) SUSY N=4 BFKL-Pomeron Anomalous dimensions: test of AdS/CFT-conjecture

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Victor Kim

Asymptotics of QED cross sections

Asymptotics of QCD cross sections

LL BFKL J. Bartels et al (96), S.J. Brodsky & Hautmann (97)

NLL BFKL (with LO impact factors)

S.J. Brodsky, VK, L.N. Lipatov, V.S. Fadin & G.B. Pivovarov (2001-02)

NLO impact factors and full NLL BFKL:

I. Balitsky, J.Chirilli, J. Bartels et al.

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Victor Kim

Highly virtual photon scattering at LEP-2

S.J Brodsky, VK, L.N. Lipatov, V.S. Fadin & G.B. Pivovarov (2002) BFKLP: NLL BFKL + generalized BLM

LL BFKL: ruled out

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Victor Kim

БФКЛ: dijet processes

A. Mueller & H. Navelet, Nucl. Phys. (87) Most forward/backward (Mueller-Navelet) dijets: x-section ~ $exp(|\Delta|y)$

V.T. Kim & G.B. Pivovarov, Phys. Rev. (96) Inclusive dijets

J.C. Collins, R.K. Ellis (91), S. Catani et al (91) E.M.Levin, M.G.Ryskin, Yu.M.Shabelsky, A.G.Shuvaev (91) kT-factorization

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Victor Kim

Dijet K-factor

Mueller-Navelet (87)

K-factor = x-section / Born x-section

x-section $\rightarrow C_1 \alpha_s^2 + C_2 \alpha_s^3 + ...$ Born x-section $\rightarrow C_1 \alpha_s^2$

K-factor = (Born x-section)(1+ $C_2/C_1 \alpha_s + C_3/C_1 \alpha_s^3 + ...)$

 $\begin{array}{l} \textbf{BFKL} \rightarrow \textbf{ enhanced } (\alpha_{s} \ \Delta y) \textbf{-terms} \\ \textbf{x-section} \rightarrow \textbf{B}_{1} \ \alpha_{s}^{\ 2} \ \Delta y \textbf{+} \ \textbf{B}_{2} \ \alpha_{s}^{\ 3} \ \Delta y^{2} \textbf{+} \dots \textbf{=} \\ \textbf{(Born x-section)} \ \textbf{exp}(\alpha_{s} \Delta y \ \textbf{)} \end{array}$

 $\Delta \mathbf{y} = |\mathbf{y}_1 - \mathbf{y}_2|$

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Dijet K-factor: not measurable

only a theoretical quantity - > not measurable (!) Experiment: one cannot forbid virtual corrections by kinematical conditions

Exclusive dijet x-section: always contains virtual corrections

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Victor Kim

PNPI, Gatchina & SPBSPU

Dijet observables:

"K-factor" = inclusive dijet /"exclusive" dijet "K-factor" = MN dijet /"exclusive" dijet as a function of rapidity separation between jets

Inclusive dijet: $N_{jets} \ge 2$ $p_T \ge p_{Tmin}$ all jet pairs

Mueller-Navelet dijet: N_{jets} ≥ 2 p_T ≥ p_{Tmin} most forward & most backward jets

"exclusive" dijet (2-jet events) with extra jet veto: $N_{jets} = 2, p_T \ge p_{Tmin}$ veto for extra jets $p_T \ge p_{Tveto}$ $p_{Tveto} \le p_{Tmin}$

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Victor Kim

PNPI, Gatchina & SPBSPU

Forward dijets at Tevatron and LHC

Tevatron : D0 -> |Δy| < 6 p_{Tmin} = 20 GeV - azimuthal decorr. (1997) - 1800/630 GeV x-section ratio (2001)

LHC: ATLAS -> $|\Delta y| < 6$ 70 GeV < $p_T < 90$ GeV - (inverse) "K-factor" (2011)

LHC: CMS -> |Δy| < 9.4 p_{Tmin} = 35 GeV - "K-factor" (2012) - azimuthal angle decorr.

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Victor Kim

Dijet "K-factor" at 7 TeV

7 TeV

70 < pT < 90 GeV $|\Delta y| < 6$

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Victor Kim

6

PNPI, Gatchina & SPBSPU

Dijet "K-factor" at 7 TeV

Inclusive dijet K-factor = inclusive dijet / "exclusive" dijet

Victor Kim

Dijet "K-factor" at 7 TeV

MN dijet K-factor = MN dijet / "exclusive" dijet

CMS, EPJ C (2012) arXiv: 1204.0696

7 TeV pT_min = 35 GeV | Δy | < 9.2

Data: rise from 1 to 1.5

GLAPD ~ const ?

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Victor Kim

PNPI, Gatchina & SPBSPU

Color coherence and AO effects

Forward dijets at LHC:

GLAPD: strong kT-ordering & no rapidity ordering BFKL: strong rapidity ordering & no kT-ordering

Color coherence effects => rapidity ordering

Polar angle ordering (AO): jet cone veto for larger cone angles => rapidity ordering

Pythia 6 and 8: GLAPD + AO (AO cannot be fully switched off!) Herwig++: GLAPD + color coherence (CC cannot be swiched off)

No pure GLAPD MC generators (!) available at present: Pythia and Herwig generators contain |Δy|-effects

small CC and AO |Δy|-effects in GLAPD-regime can be large in BFKL-regime at large |Δy|

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Victor Kim

Forward dijets at LHC

GLAPD generators Pythia 6 and 8 (with AO) are consistent with CMS dijet "K-factor" data rather well:

1) no sizeable BFKL effects? 2) or BFKL effects cancels out in dijet ratio

in the latter case the "K-factor" with extra jet veto can be more sensitive BFKL effects 2-jet "exclusive" events: impose an extra jet veto p_{Tveto} < p_{Tmin}

18

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Victor Kim

Forward dijets:

azimuthal angle decorrelations

Cosines V. Del Duca & C. Schmidt (94) J. Stirling (94)

Cosine ratios -> more sensitive to BFKL (!) A. Sabio Vera et al (2011)

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Victor Kim

PNPI, Gatchina & SPBSPU

Dijets: <cos> vs NLL BFKL+BFKLP

CMS PAS-FSQ-12-002 7 TeV, pT_min = 35 GeV Δy = | | < 9.4

NLL BFKL + BFKLP (Sept. 2013) B. Ducloue, L. Szymanowski & S. Wallon

20

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Victor Kim

Dijets: <cos2/>/<cos>) vs NLL BFKL + BFKLP

CMS PAS-FSQ-12-002 7 TeV, pT_min = 35 GeV Δy < 9.4 NLL BFKL + BFKLP (Sept. 2013) B. Ducloue, L. Szymanowski & S. Wallon

21

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Victor Kim

MPI and hadronization for dijet ratios and azimuthal angle decorelations at 7 TeV: noticeable but not exceed CMS systematic and statistical uncertanties PYTHIA 6 and 8 HERWIG++

-> Direct comparison with parton level calculations

NLL BFKL B. Ducloue, S. Szymanowski & S. Wallon (2012-13): - parton level - no MPI still can be compared with the data

22

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Victor Kim

Summary:

- Forward dijet "K-factor" by CMS at 7 TeV : moderate rise with increasing |Δy|
 - Pythia describes the rise, Herwig overshoots the rise
 - however: pure GLAPD -> const ?
- Azimuthal angle decorrelations (AAD) of CMS dijets:
 - agreement with NLL BFKL improved by BFKLP
 - Herwig describes AAD (almost) reasonably, but Pythia doesn't
- -> first indication on BFKL at LHC ? No pure GLAPD predictions

Other observables:

- K-factor with extra jet veto, number of extra jets, ... ?

Low-x Mini-Workshop, DESY, Feb. 18, 2014

Victor Kim