Solvers 11 - Preconditioning and Deflation Lattice Practices 2014

Andreas Frommer, Björn Leder based on a lecture by Karsten Kahl

Bergische Universität Wuppertal
March 7, 2014

Outline

Motivation

The curse of ill-conditioning

Preconditioning
Preconditioning — Basics
Preconditioned Krylov subspace methods
Preconditioners
Deflation
Summary

How to improve an optimal method?

Solvers I: Krylov subspace methods are all-duty solvers

- "Optimal" methods for any application
- Fast (i.e., short-recurrence) solvers for many applications
- Convergence dependent on conditioning of A, e.g.,
- Conjugate Gradients

$$
\left\|e^{(k)}\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k}\left\|e^{(0)}\right\|_{A}, \quad \kappa=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)}
$$

How to improve convergence of Krylov subspace methods?

1. Preconditioning
2. Deflation

Scaling issues in Numerical Simulations

Numerical simulations of partial differential equations (PDEs)

$$
\mathcal{L} \psi=\varphi
$$

Discretization of \mathcal{L} on mesh with spacing a yields

$$
\mathbf{L} x=f
$$

- Depending on PDE order and order of discretization

$$
\kappa(\mathbf{L}) \sim a^{-\sigma}, \quad \sigma \in \mathbb{N}^{+}
$$

- Increasing accuracy of discretization ($a \rightarrow 0$)

$$
\kappa(\mathbf{L}) \longrightarrow \infty \quad(a \rightarrow 0)
$$

Performance of Krylov methods deteriorates when $a \rightarrow 0$!

Preconditioning - Idea

Idea: Improve conditioning of A in $A x=b$!

- Instead of solving $A x=b$ consider solving

$$
\begin{aligned}
S_{\ell} A S_{r} y & =S_{\ell} b \\
x & =S_{r} y
\end{aligned}
$$

with preconditioners S_{ℓ}, S_{r} s.t. $\kappa\left(S_{\ell} A S_{r}\right) \ll \kappa(A)$
Open questions

- What are the design goals for preconditioners?
- What are suitable choices of S_{ℓ}, S_{r} ?
- How does the preconditioner fit in the iteration
- Ideally only $A \cdot, S_{\ell}$ and S_{r}. are required

For now consider only left-preconditioning with $S=S_{\ell}$

Preconditioning — Observations

Consider extreme cases

- $S=I$
$\Rightarrow S A=A$ original setting
- $S=A^{-1}$

$$
\Rightarrow S A=I \text { and } \kappa(S A)=1 \text { (ideal) }
$$

- $S=A^{\dagger}$

$$
\Rightarrow S A=A^{\dagger} A \text { hermitian, but } \kappa(S A)=\kappa(A)^{2}
$$

In order to speed up convergence preconditioner S should

- approximate A^{-1}
- be cheap to compute ($S \cdot$)

Preconditioning - CG

Recall: Conjugate Gradients requires A hermitian
Problem: $S A$ in general no longer hpd even if S is hpd, but then

$$
\langle S A x, y\rangle_{S^{-1}}=\langle A x, y\rangle_{2}=\langle x, A y\rangle_{2}=\langle x, S A y\rangle_{S^{-1}}
$$

Solution: Replace all $\langle., .\rangle_{2}$ by $\langle., .\rangle_{S^{-1}}$

- Rewriting the algorithm one even gets rid of $\langle., .\rangle_{S^{-1}}$
- CG variants exist for any A hermitian in some $\langle., .\rangle_{B}$

Changing the inner product also works when preconditioning other methods which require a special relation between A and its adjoint A^{\dagger}, e.g., MINRES, SUMR

PCG — Algorithm

Preconditioned Conjugate Gradients

$$
r^{(0)}=b-A x^{(0)}, z^{(0)}=S r^{(0)}, p^{(0)}=z^{(0)}
$$

for $k=1,2, \ldots$ do

$$
\begin{aligned}
& \alpha_{k-1}=\frac{\left\langle r^{(k-1)}, z^{(k-1)}\right\rangle_{2}}{\left\langle A p^{(k-1)}, p^{(k-1)}\right\rangle_{2}} \\
& x^{(k)}=x^{(k-1)}+\alpha_{k-1} p^{(k-1)} \\
& r^{(k)}=r^{(k-1)}-\alpha_{k-1} A p^{(k-1)} \\
& z^{(k)}=S r^{(k)} \\
& \beta_{k-1}=\frac{\left\langle r^{(k)}, z^{(k)}\right\rangle_{2}}{\left\langle r^{(k-1)}, z^{(k-1)}\right\rangle_{2}} \\
& p^{(k)}=z^{(k)}+\beta_{k-1} p^{(k-1)}
\end{aligned}
$$

end for

Preconditioned GMRES(m)

while not converged do

$$
\begin{aligned}
& r^{(0)}=S\left(b-A x^{(0)}\right), \beta=\left\|r^{(0)}\right\|_{2}, v_{1}=\beta^{-1} r^{(0)} \\
& \text { for } j=1, \ldots, m \text { do } \\
& \quad w=S A v_{j} \\
& \quad \text { for } i=1, \ldots, j \text { do } \\
& \quad h_{i, j}=\left\langle w, v_{j}\right\rangle_{2} \\
& \quad w=w-h_{i, j} v_{j} \\
& \text { end for } \\
& \quad h_{j+1, j}=\|w\|_{2} \\
& \quad v_{j+1}=h_{j+1, j}^{-1} w \\
& \text { end for } \\
& \text { Define } V_{m}=\left[v_{1}|\ldots| v_{m}\right], H_{m+1, m}=\left\{h_{i, j}\right\}_{1 \leq j \leq m, 1 \leq i \leq j+1} \\
& \text { Solve } y_{m}=\operatorname{argmin}_{y}\left\|\beta e_{1}-H_{m+1, m} y\right\|_{2} \\
& x^{(0)}=x^{(0)}+V_{m} y_{m}
\end{aligned}
$$

end while

Preconditioned BiCGstab

$$
\begin{aligned}
& r^{(0)}=b, \beta_{0}=0 \\
& \hat{r}=r \\
& \text { for } k=0,1, \ldots \text { do } \\
& \quad \rho_{k}=\left\langle r^{(k)}, \hat{r}\right\rangle_{2} \\
& \beta_{k}=\frac{\rho_{k}}{\rho_{k-1}} \cdot \frac{\alpha_{k-1}}{\omega_{k-1}} \\
& p^{(k)}=r^{(k)}+\beta_{k}\left(p^{k-1}-\omega_{k-1} v^{(k-1)}\right) \\
& \hat{p}^{(k)}=S p^{(k)} \\
& \alpha_{k}=\frac{\rho_{k}}{\left\langle A \hat{p}^{(k)}, \hat{r}^{k}\right\rangle_{2}} \\
& x^{\left(k+\frac{1}{2}\right)}=x^{(k)}+\alpha_{k} \hat{p}^{(k)} \\
& s^{(k)}=r^{(k)}-\alpha_{k} A \hat{p}^{(k)} \\
& \hat{s}^{(k)}=S s^{(k)} \\
& \omega_{k}=\frac{\left\langle s^{(k)}, A \hat{s}^{(k)}\right\rangle_{2}}{\left\langle A \hat{s}^{(k)}, A \hat{s}^{(k)}\right\rangle_{2}} \\
& \quad x^{(k+1)}=x^{\left(k+\frac{1}{2}\right)}+\omega_{k} \hat{s}^{(k)} \\
& r^{(k+1)}=s^{(k)}-\omega_{k} A \hat{s}^{(k)} \\
& \text { end for }
\end{aligned}
$$

-

Preconditioners

Aims for the construction of preconditioners S

1. $S \approx A^{-1}$ to get speed-up
2. S. should be cheap (1 application per iterate)

Classes of preconditioners to be discussed

- Structural preconditioners
- Splitting-based preconditioners
- Domain decomposition preconditioners
- Multigrid preconditioners
- Incomplete decomposition preconditioners

Odd-even preconditioning

Discretizations on lattices with next neighbor coupling

- Nodes are odd or even

Ordering by odd-even

$$
A=\left[\begin{array}{ll}
A_{o o} & A_{o e} \\
A_{e o} & A_{e e}
\end{array}\right]
$$

with diagonal $A_{o o}$ and $A_{e e}$

- $A_{o o}^{-1}, A_{e e}^{-1}$ trivial
- odd decoupled
- even decoupled

Solve first even then odd

Odd-even preconditioning

With $\hat{A}_{e e}=A_{e e}-A_{e o} A_{o o}^{-1} A_{o e}$ solution of $A x=b$ given by

Odd-Even Reduction

$$
\begin{aligned}
& y_{o}=A_{o}^{-1} b_{o} \\
& \text { Solve } \tilde{A}_{e e} x_{e}=b_{e}-A_{e o} y_{o} \\
& x_{o}=y_{o}-A_{o o}^{-1} A_{o e} x_{e}
\end{aligned}
$$

- Iteratively solving $\hat{A}_{e e} x_{e}=b_{e}-A_{e o} y_{o}$
\Rightarrow Odd-Even preconditioner
- If A has constant diagonal $\kappa\left(\hat{A}_{e e}\right)<\kappa(A)$
\Rightarrow Solving $\hat{A}_{e e}$ is easier than solving A
- Since $A_{o o}^{-1}$ is cheap (diagonal!)

$$
\Rightarrow \text { Cost for } \hat{A}_{e e^{\cdot}} \approx \text { Cost for } A \text {. }
$$

Splitting methods

Splitting methods use the additive decomposition of A

- Jacobi: $\quad x^{(k+1)}=x^{(k)}+D^{-1} r^{(k)}$
- Gauss-Seidel: $x^{(k+1)}=x^{(k)}+(D+L)^{-1} r^{(k)}$
- SOR: $\quad x^{(k+1)}=x^{(k)}+\left(\frac{1}{\omega} D+L\right)^{-1} r^{(k)}$

General splitting method: $A=M+N$

$$
x^{(k+1)}=x^{(k)}+M^{-1} r^{(k)} \Longrightarrow e^{(k+1}=e^{(k)}-M^{-1} A e^{(k)}
$$

Convergent iff $\left\|I-M^{-1} A\right\|<1$ for some norm $\|\cdot\|$
$\left\|I-M^{-1} A\right\|$ small $\Rightarrow M^{-1} A \approx I \Rightarrow M^{-1}$ preconditioner

Domain Decomposition

- Split the computational domain into subdomains \mathcal{B}_{i}
- Solve system iteratively on each subdomain

- Canonical injection \mathcal{I}_{j}

$$
\mathcal{I}_{j} e_{i}=e_{\left(B_{j}\right)_{i}}
$$

- Restriction of x onto \mathcal{B}_{j}

$$
x_{\mathcal{B}_{j}}=\mathcal{I}_{j}^{\dagger} x
$$

- Restriction of A onto \mathcal{B}_{j}

$$
A_{\mathcal{B}_{j}}=\mathcal{I}_{j}^{\dagger} A \mathcal{I}_{j}
$$

[^0]
Additive and Multiplicative Schwarz

Additive Schwarz

for $k=0,1, \ldots$ do
$r^{(k)}=b-A x^{(k)}$
for $j=1,2, \ldots, n_{B}$ do $x_{\mathcal{B}_{j}}^{(k+1)}=x_{\mathcal{B}_{j}}^{(k)}+A_{\mathcal{B}_{j}}^{-1} r_{\mathcal{B}_{j}}^{(k)}$
end for
end for

- Block-Jacobi
- Embarrassingly parallel

Schwarz methods in general
\oplus Data parallel
\oplus Computation parallel

Multiplicative Schwarz

$$
\begin{aligned}
& \text { for } k=0,1, \ldots \text { do } \\
& \quad \text { for } j=1,2, \ldots, n_{B} \text { do } \\
& \quad r=b-A x \\
& \quad x_{\mathcal{B}_{j}}=x_{\mathcal{B}_{j}}+A_{\mathcal{B}_{j}}^{-1} r_{\mathcal{B}_{j}} \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

- Block-Gauss-Seidel
- Sequential (\rightarrow coloring)

Multigrid

Andreas Frommer, Björn Leder based on a lecture by Karsten Kahl, Solvers II - Preconditioning and Deflation
(Algebraic) Multigrid

Given: $\quad A x=b$

- Iterative method S ("smoother")

Wanted: Hierarchy of systems

$$
A_{\ell} x_{\ell}=b_{\ell}, \quad \ell=0, \ldots, L
$$

- Intergrid transfer operators
$P_{\ell+1}^{\ell}: \mathbb{C}^{n_{\ell+1}} \longrightarrow \mathbb{C}^{n_{\ell}}$
$R_{\ell}^{\ell+1}: \mathbb{C}^{n_{\ell}} \longrightarrow \mathbb{C}^{n_{\ell+1}}$

Smoother

$$
\begin{gathered}
S_{\ell}: \mathbb{C}^{n_{\ell}} \longrightarrow \mathbb{C}^{n_{\ell}} \\
\text { "High modes" }
\end{gathered}
$$

Interpolation

$$
\begin{gathered}
P_{\ell+1}^{\ell}: \mathbb{C}^{n_{\ell+1}} \longrightarrow \mathbb{C}^{n_{\ell}} \\
\text { "Low modes" }
\end{gathered}
$$

Complementarity of Smoother and Interpolation

Generic Multigrid Algorithm - $\mathrm{MG}_{\ell}\left(A_{\ell}, b_{\ell}\right)$

if $\ell=L$ then

$$
x_{L}=A_{L}^{-1} b_{L}
$$

else

$$
x_{\ell}=0
$$

for $i=1, \ldots, \nu_{1}$ do

$$
\begin{array}{r}
x_{\ell}=S_{\ell}\left(x_{\ell}, b_{\ell}\right) \quad\left(x_{\ell} \leftarrow x_{\ell}+M_{\ell}^{-1} r_{\ell}, r_{\ell}=b_{\ell}-A_{\ell} x_{\ell}\right) \\
\text { "Pre-smooothing" }
\end{array}
$$

end for

$x_{\ell+1}=\operatorname{MG}\left(A_{\ell+1}, R_{\ell+1}^{\ell}\left(b_{\ell}-A x_{\ell}\right)\right)$
$x_{\ell}=x_{\ell}+P_{\ell+1}^{\ell} x_{\ell+1} \quad$ "Coarse-grid correction"
for $i=1, \ldots, \nu_{2}$ do

$$
x_{\ell}=S_{\ell}\left(x_{\ell}, b_{\ell}\right) \quad \text { "Post-smoothing" }
$$

end for
end if

Optimality of Multigrid

For certain classes of discretizations of certain types of PDEs and appropriate variants of multigrid we have

- Multigrid can be used as a stand alone solver (no wrapping as a preconditioner into a Krylov subspace method)
- no. of iterations for given accuracy independent of no. of variables. "optimal method"
Even when not optimal as a stand alone solver, multigrid is often a very efficient preconditioner.

To be efficient, domain decomposition needs an additional small system $A_{\mathcal{C}}$ which couples the boundaries of the domains.

For certain classes of discretizations of certain types of PDEs and appropriate variants of domain decomposition we have

- Domain decomp. can be used as a stand alone solver
- no. of iterations for given accuracy $\propto \log (H / h)$

Incomplete LU (ILU)

Recall: Direct methods are based on factorization of A

Drawback: Fill-In in L and U for sparse A
Idea: Incomplete factorizations with sparse L and U

1. Prescribe the non-zero pattern (e.g., non-zeroes of A)

- Minimize the error-matrix E in $A=\tilde{L} \tilde{U}+E$

2. Use drop-tolerance θ to drop small entries in L and U

- Often: $\left(A^{-1}\right)_{i, j} \sim \alpha^{\operatorname{dist}_{G}(i, j)}, \quad \alpha<1$
\Rightarrow If i is "far" from $j, L_{i j}$ and $U_{i j}$ will be dropped
ILU is a black-box preconditioner

Flexible Krylov subspace methods

The preconditioner may be an iterative process by itself

- choice 1: fixed no. of iterations or stopping criterion?
- choice 2: stationary or non-stationary iteration
- For red choices: S. changes in each iteration $\rightarrow S=S_{k}$
- There is no longer a Krylov subspace defined by

$$
\mathcal{K}_{k}(S A, b)=\left\{b, S A b,(S A)^{2} b, \ldots,(S A)^{k-1} b\right\}
$$

\Rightarrow Convergence theory does not hold anymore

- Algorithmic realizations have to be modified!
\Rightarrow Flexible Krylov subspace methods

Flexible CG — Algorithm

Flexible Conjugate Gradients

$$
\begin{aligned}
& r^{(0)}=b-A x^{(0)}, z^{(0)}=S_{0} r^{(0)}, p^{(0)}=z^{(0)} \\
& \text { for } k=1,2, \ldots \text { do } \\
& \quad \alpha_{k-1}=\frac{\left\langle r^{(k-1)}, z^{(k-1)}\right\rangle_{2}}{\left\langle A p^{(k-1)}, p^{(k-1)}\right\rangle_{2}} \\
& \quad x^{(k)}=x^{(k-1)}+\alpha_{k-1} p^{(k-1)} \\
& \quad r^{(k)}=r^{(k-1)}-\alpha_{k-1} A p^{(k-1)} \\
& \quad z^{(k)}=S_{k} r^{(k)} \\
& \quad \beta_{k-1}=\frac{\left\langle r^{(k)}-r^{(k-1)}, z^{(k)}\right\rangle_{2}}{\left\langle r^{(k-1)}, z^{(k-1)}\right\rangle_{2}} \\
& \quad p^{(k)}=z^{(k)}+\beta_{k-1} p^{(k-1)} \\
& \text { end for }
\end{aligned}
$$

- If $S_{k}=S$ for all $k \quad \Longrightarrow \quad z^{(k)} \perp r^{(k-1)}$
- Flexible CG preserves local optimality

Flexible GMRES (m)

while not converged do

$$
\begin{aligned}
& r^{(0)}=S_{0}\left(b-A x^{(0)}\right), \beta=\left\|r^{(0)}\right\|_{2}, v_{1}=\beta^{-1} r^{(0)} \\
& \text { for } j=1, \ldots, m \text { do } \\
& \quad z_{j}=S_{j} v_{j} \\
& w=A z_{j} \\
& \quad \text { for } i=1, \ldots, j \text { do } \\
& \quad h_{i, j}=\left\langle w, v_{j}\right\rangle_{2} \\
& \quad w=w-h_{i, j} v_{j}
\end{aligned}
$$

end for
$h_{j+1, j}=\|w\|_{2}$
$v_{j+1}=h_{j+1, j}^{-1} w$
end for
Define $Z_{m}=\left[z_{1}|\ldots| z_{m}\right], H_{m+1, m}=\left\{h_{i, j}\right\}_{1 \leq j \leq m, 1 \leq i \leq j+1}$
Solve $y_{m}=\operatorname{argmin}_{y}\left\|\beta e_{1}-H_{m+1, m} y\right\|_{2}$

$$
x^{(0)}=x^{(0)}+Z_{m} y_{m}
$$

end while

Preconditioners - Summary

Preconditioning improves convergence if $\kappa(S A) \ll \kappa(A)$

- There is a wide variety of preconditioners available
- Most of them require knowledge about A or its origins
- Goals when constructing preconditioners S are
- $S \approx A^{-1}$ and S. cheap

Preconditioning makes Krylov subspace methods more robust

- Reducing $\kappa(A)$ helps controlling the error $e^{(k)}$, since

$$
\|e\|_{2} \leq c \kappa(A)^{-1}\|r\|_{2}
$$

\Rightarrow If $\kappa(A) \gg 1$ results based on $\|r\|_{2}$ should not be trusted!
\Rightarrow If $\kappa(A) \gg 1$ a preconditioner is mandatory!

Deflation - Idea (A hermitian and positive definite)

Assume A hermitian and positive definite
Then convergence is slowed down by small eigenmodes

- Given the "troublesome" modes v_{1}, \ldots, v_{ℓ}

Similar to preconditioning, instead of $A x=b$ solve

$$
\begin{aligned}
A\left(I-\pi_{A}(V)\right) \hat{x} & =\left(I-\pi_{A}(V)\right) b \\
x & =\hat{x}+V\left(V^{\dagger} A V\right)^{-1} V^{\dagger} b
\end{aligned}
$$

with $\pi_{A}(V)=V\left(V^{\dagger} A V\right)^{-1} V^{\dagger} A$

- In case v_{i} are eigenmodes, $V^{\dagger} A V=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$
$\Rightarrow\left(V^{\dagger} A V\right)^{-1}$ nothing to worry about

Deflation - Conjugate Gradients Theory

The effective condition number $\kappa_{\text {eff }}$ replaces κ in theory

$$
\begin{aligned}
\kappa_{\mathrm{eff}} & =\frac{\mu_{1}}{\mu_{\ell}} \\
\mu_{1} & =\max _{x \neq 0} \frac{\left\langle A\left(I-\pi_{A}(V)\right) x, x\right\rangle_{2}}{\langle x, x\rangle_{2}} \\
\mu_{\ell} & =\min _{x \in \mathcal{V}^{\perp} \backslash\{0\}} \frac{\left\langle A\left(I-\pi_{A}(V)\right) x, x\right\rangle_{2}}{\langle x, x\rangle_{2}}
\end{aligned}
$$

- If v_{i} are smallest ℓ eigenmodes

$$
\kappa_{\mathrm{eff}}=\frac{\lambda_{\max }}{\lambda_{\ell+1}}
$$

where $\lambda_{\ell+1}$ is the $(\ell+1)^{\text {st }}$ smallest eigenvalue

Deflated CG - Algorithm

Deflated CG (Deflation space $\mathcal{V}=\operatorname{colspan}(V)$)

$$
\begin{aligned}
& x^{(0)}=x^{(0)}+\pi_{A}(V) b \\
& r^{(0)}=b-A x^{(0)} \\
& p^{(0)}=\left(I-\pi_{A}(V)\right) r^{(0)} \\
& \text { for } k=1,2, \ldots \mathbf{d o} \\
& \quad \alpha_{k-1}=\frac{\left\langle r^{(k-1)}, r^{(k-1)}\right\rangle_{2}}{\left\langle A p^{(k-1)}, p^{(k-1)}\right\rangle_{2}} \\
& x^{(k)}=x^{(k-1)}+\alpha_{k-1} p^{(k-1)} \\
& r^{(k)}=r^{(k-1)}-\alpha_{k-1} A p^{(k-1)} \\
& \beta_{k-1}=\frac{\left\langle r^{(k)}, r^{(k)}\right\rangle_{2}}{\left\langle r^{(k-1)}, r^{(k-1)}\right\rangle_{2}} \\
& p^{(k)}=\left(I-\pi_{A}(V)\right) r^{(k)}+\beta_{k-1} p^{(k-1)}
\end{aligned}
$$

end for

GMRES (m)

On restart all information about $\mathcal{K}_{m}\left(A, r^{(0)}\right)$ is lost!

- Use deflation technique to transfer information

Note: Due to the Arnoldi relation $V_{m}^{\dagger} A V_{m}=H_{m, m}$ we have

- Eigenmodes w_{1}, \ldots, w_{m} of $H_{m, m}$ give approximations $V_{m} w_{1}, \ldots, V_{m} w_{m}$ for eigenmodes of A

$$
H_{m m} w_{i}=\lambda_{i} w_{i} \Rightarrow V_{m}^{\dagger}\left(A V_{m} w_{i}-\lambda_{i} V_{m} w_{i}\right)=0
$$

- Vectors $V_{m} w_{i}$ are called Ritz vectors $(\rightarrow$ ARPACK $)$

Idea: Use smallest eigenmodes of $H_{m, m}$ in deflation

Deflated GMRES (m) - Sketch

$$
\tilde{V}=\emptyset
$$

$$
\text { for } \ell=0,1, \ldots \text { do }
$$

$$
r^{(0)}=b-A x^{(0)}, \beta=\left\|r^{(0)}\right\|_{2}, v_{1}=\beta^{-1}{\underset{\sim}{r}}^{(0)}
$$

Compute $V_{m}, H_{m+1, m}$ based on initial $\tilde{V} \quad$ (Arnoldi)
Compute smallest Ritz vectors $V_{m} w_{1}, \ldots, V_{m} w_{\ell}$
$y_{m}=\operatorname{argmin}_{y}\left\|\beta e_{1}-H_{m+1, m} y\right\|_{2}$
$x^{(0)}=x^{(0)}+V_{m} y_{m}$
$\tilde{V}=\left[V_{m} w_{1}|\ldots| V_{m} w_{\ell}\right]$

end for

- For a more detailed description see [4]
- Reusing information upon restart is also known as...
- ...recycling
- ...augmenting

Deflation - Summary

Deflation "hides" most difficult part of the problem

- Computation of eigenmodes necessary
- possibly on-the-fly (Deflated GMRES (m))
- possibly a priori knowledge available
- approximations viable (\rightarrow ARPACK)
- Analysis of general deflation subspaces \mathcal{V} (cf. [3])

Eigenmode deflation suffers from scaling (i.e., $a \rightarrow 0$)

- In order to have constant number of iterations for $a \rightarrow 0$

$$
\kappa_{\mathrm{eff}}=\mathrm{const} \quad \Longleftrightarrow \quad \lambda_{\min }^{\mathrm{eff}}>\sigma
$$

- Often number N_{σ} of eigvalues below threshold σ fulfills

$$
N_{\sigma} \sim \text { system size } n \longrightarrow \infty \quad(a \rightarrow 0)
$$

\Rightarrow More eigenmodes need to be computed as $a \rightarrow 0$

Summary

To find an efficient solver is hard, but there are guidelines

- Use as much information about your system as possible
- In the choice of the Krylov subspace method
- Short recurrence method available?
- Optimal method available?
- In the choice of the preconditioner
- Adjust parameters of your method w.r.t. hardware, e.g.,
- Restart length in GMRES(m)
- Dimension of the deflation subspace
- Dimension of the subdomains in domain decomposition

Most often there is no obvious optimal choice for the solv/k
Construction of optimal solvers is ongoing research!
A. Frommer, K. Kahl, S. Krieg, B. Leder and M. Rottmann. Aggregation-based multilevel methods for lattice QCD.
arXiv:1202.2462 [hep-lat], 2012

A. Greenbaum.

Iterative Methods for Solving Linear Systems, volume 17 of Frontiers in Applied Mathematics.
Society for Industrial and Applied Mathematics, 1997.
家
K. Kahl and H. Rittich.

Analysis of the deflated conjugate gradient method based on symmetric multigrid theory.
Submitted (pre-print: http://arxiv.org/abs/1209.1963), 2012.

R. Morgan.

Gmres with deflated restarting.
SIAM J. Sci. Comput., 24, 2002.
五
R. A. Nicolaides.

Deflation of conjugate gradients with applications to boundary value problems.
SIAM J. Numer. Anal., 24, 1987.
Y. Notay.

Flexible conjugate gradients.
SIAM J. Sci. Comput., 22:1444-1460, 2000.

U. Trottenberg, C. Oosterlee, and A. Schüller.

Multigrid.
Academic Press, San Diego (CA), 2001.
Y. Saad.

Iterative Methods for Sparse Linear Systems.
Society for Industrial and Applied Mathematics, 2nd edition, 2003.

B. Smith, P. Bjørstadt, and W. Gropp.

Domain Decomposition: Parallel Methods for Elliptic Partial Differential Equations.
Cambridge University Press, New York, 1996.

[^0]: * Domain decomposition dates back to H. Schwarz (1870)

