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The curse of ill-conditioning

How to improve an optimal method?

Solvers I: Krylov subspace methods are all-duty solvers

I “Optimal” methods for any application

I Fast (i.e., short-recurrence) solvers for many applications

I Convergence dependent on conditioning of A, e.g.,
I Conjugate Gradients

‖e(k)‖A ≤ 2
(√

κ−1√
κ+1

)k
‖e(0)‖A, κ = λmax(A)

λmin(A)

How to improve convergence of Krylov subspace methods?

1. Preconditioning

2. Deflation
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The curse of ill-conditioning

Scaling issues in Numerical Simulations

Numerical simulations of partial differential equations (PDEs)

Lψ = ϕ

Discretization of L on mesh with spacing a yields

Lx = f

I Depending on PDE order and order of discretization

κ(L) ∼ a−σ, σ ∈ N+

I Increasing accuracy of discretization (a→ 0)

κ(L) −→∞ (a→ 0)

Performance of Krylov methods deteriorates when a→ 0!
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Preconditioning — Idea

Idea: Improve conditioning of A in Ax = b!

I Instead of solving Ax = b consider solving

S`ASry = S`b

x = Sry

with preconditioners S`, Sr s.t. κ(S`ASr)� κ(A)

Open questions

I What are the design goals for preconditioners?

I What are suitable choices of S`, Sr?
I How does the preconditioner fit in the iteration

I Ideally only A·, S`· and Sr· are required

For now consider only left-preconditioning with S = S`
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Preconditioning — Observations

Consider extreme cases

I S = I

⇒ SA = A original setting

I S = A−1

⇒ SA = I and κ(SA) = 1 (ideal)

I S = A†

⇒ SA = A†A hermitian, but κ(SA) = κ(A)2

In order to speed up convergence preconditioner S should

I approximate A−1

I be cheap to compute (S·)
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Preconditioning — CG

Recall: Conjugate Gradients requires A hermitian

Problem: SA in general no longer hpd even if S is hpd, but
then

〈SAx, y〉S−1 = 〈Ax, y〉2 = 〈x,Ay〉2 = 〈x, SAy〉S−1

Solution: Replace all 〈., .〉2 by 〈., .〉S−1

I Rewriting the algorithm one even gets rid of 〈., .〉S−1

I CG variants exist for any A hermitian in some 〈., .〉B

Changing the inner product also works when preconditioning
other methods which require a special relation between A and
its adjoint A†, e.g., MINRES, SUMR
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PCG — Algorithm

Preconditioned Conjugate Gradients

r(0) = b− Ax(0), z(0) = Sr(0), p(0) = z(0)

for k = 1, 2, . . . do

αk−1 =
〈r(k−1),z(k−1)〉2
〈Ap(k−1),p(k−1)〉2

x(k) = x(k−1) + αk−1p
(k−1)

r(k) = r(k−1) − αk−1Ap
(k−1)

z(k) = Sr(k)

βk−1 =
〈r(k),z(k)〉2

〈r(k−1),z(k−1)〉2
p(k) = z(k) + βk−1p

(k−1)

end for
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Preconditioned GMRES(m)

while not converged do
r(0) = S(b−Ax(0)), β = ‖r(0)‖2, v1 = β−1r(0)

for j = 1, . . . ,m do
w = SAvj
for i = 1, . . . , j do
hi,j = 〈w, vj〉2
w = w − hi,jvj

end for
hj+1,j = ‖w‖2
vj+1 = h−1j+1,jw

end for
Define Vm = [v1 | . . . | vm], Hm+1,m = {hi,j}1≤j≤m,1≤i≤j+1

Solve ym = argminy ‖βe1 −Hm+1,my‖2
x(0) = x(0) + Vmym

end while
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Preconditioned BiCGstab

r(0) = b, β0 = 0
r̂ = r shadow residual 〈r, r̂〉2 6= 0
for k = 0, 1, . . . do
ρk = 〈r(k), r̂〉2
βk = ρk

ρk−1
· αk−1

ωk−1

p(k) = r(k) + βk(p
k−1 − ωk−1v(k−1))

p̂(k) = Sp(k)

αk = ρk
〈Ap̂(k),r̂〉2

x(k+
1
2 ) = x(k) + αkp̂

(k)

s(k) = r(k) − αkAp̂(k) s(k) ≡ r(k+ 1
2 )

ŝ(k) = Ss(k)

ωk = 〈s(k),Aŝ(k)〉2
〈Aŝ(k),Aŝ(k)〉2

x(k+1) = x(k+
1
2 ) + ωkŝ

(k)

r(k+1) = s(k) − ωkAŝ(k)
end for
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Preconditioners

Aims for the construction of preconditioners S

1. S ≈ A−1 to get speed-up

2. S· should be cheap (1 application per iterate)

Classes of preconditioners to be discussed

I Structural preconditioners

I Splitting-based preconditioners

I Domain decomposition preconditioners

I Multigrid preconditioners

I Incomplete decomposition preconditioners
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Odd-even preconditioning

Discretizations on lattices with next neighbor coupling

I Nodes are odd or even

Ordering by odd-even

A =

[
Aoo Aoe
Aeo Aee

]
with diagonal Aoo and Aee

I A−1
oo , A

−1
ee trivial

I odd decoupled

I even decoupled

Solve first even then odd
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Odd-even preconditioning

With Âee = Aee − AeoA−1
oo Aoe solution of Ax = b given by

Odd-Even Reduction

yo = A−1
oo bo

Solve Âeexe = be − Aeoyo
xo = yo − A−1

oo Aoexe

I Iteratively solving Âeexe = be − Aeoyo
⇒ Odd-Even preconditioner

I If A has constant diagonal κ(Âee) < κ(A)

⇒ Solving Âee is easier than solving A

I Since A−1
oo is cheap (diagonal!)

⇒ Cost for Âee· ≈ Cost for A·
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Splitting methods

Splitting methods use the additive decomposition of A

A =
L

+
D

+
U

I Jacobi: x(k+1) = x(k) +D−1r(k)

I Gauss-Seidel: x(k+1) = x(k) + (D + L)−1r(k)

I SOR: x(k+1) = x(k) + ( 1
ω
D + L)−1r(k)

General splitting method: A =M +N

x(k+1) = x(k) +M−1r(k) =⇒ e(k+1 = e(k) −M−1Ae(k)

Convergent iff ‖I −M−1A‖ < 1 for some norm ‖ · ‖
‖I −M−1A‖ small ⇒ M−1A ≈ I ⇒ M−1 preconditioner
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Domain Decomposition∗

I Split the computational domain into subdomains Bi
I Solve system iteratively on each subdomain

B1 B2

B3 B4
I Canonical injection Ij

Ijei = e(Bj)i

I Restriction of x onto Bj
xBj = I

†
jx

I Restriction of A onto Bj
ABj = I

†
jAIj

∗Domain decomposition dates back to H. Schwarz (1870)
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Additive and Multiplicative Schwarz

Additive Schwarz
for k = 0, 1, . . . do
r(k) = b−Ax(k)
for j = 1, 2, . . . , nB do

x
(k+1)
Bj

= x
(k)
Bj

+A−1Bj
r
(k)
Bj

end for
end for

Multiplicative Schwarz

for k = 0, 1, . . . do
for j = 1, 2, . . . , nB do
r = b−Ax
xBj

= xBj
+A−1Bj

rBj

end for
end for

I Block-Jacobi

I Embarrassingly parallel

Schwarz methods in general

⊕ Data parallel

⊕ Computation parallel

I Block-Gauss-Seidel

I Sequential (→ coloring)

Andreas Frommer, Björn Leder based on a lecture by Karsten Kahl, Solvers II — Preconditioning and Deflation 15/34



Motivation
Preconditioning

Deflation
Summary

Preconditioning — Basics
Preconditioned Krylov subspace methods
Preconditioners

Multigrid

Fewer

First Coarse Grid

Finest Grid

Smooth
The Multigrid
    V−cycle

Restriction

Prolongation

Dofs
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(Algebraic) Multigrid

Given: I Ax = b
I Iterative method S (“smoother”)

Wanted: I Hierarchy of systems
A`x` = b`, ` = 0, . . . , L

I Intergrid transfer operators
P `
`+1 : Cn`+1 −→ Cn`

R`+1
` : Cn` −→ Cn`+1

Smoother

S` : Cn` −→ Cn`

“High modes”

Interpolation

P `
`+1 : Cn`+1 −→ Cn`

“Low modes”

Complementarity of Smoother and Interpolation
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Generic Multigrid Algorithm — MG`(A`, b`)

if ` = L then
xL = A−1

L bL
else
x` = 0
for i = 1, . . . , ν1 do
x` = S`(x`, b`) (x` ← x` +M−1

` r`, r` = b` − A`x`)
“Pre-smooothing”

end for
x`+1 = MG(A`+1, R

`
`+1(b` − Ax`))

x` = x` + P `
`+1x`+1 “Coarse-grid correction”

for i = 1, . . . , ν2 do
x` = S`(x`, b`) “Post-smoothing”

end for
end if
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Optimality of Multigrid

For certain classes of discretizations of certain types of PDEs
and appropriate variants of multigrid we have

I Multigrid can be used as a stand alone solver
(no wrapping as a preconditioner into a Krylov subspace
method)

I no. of iterations for given accuracy independent of no.
of variables.
“optimal method”

Even when not optimal as a stand alone solver, multigrid is
often a very efficient preconditioner.
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To be efficient, domain decomposition needs an additional
small system AC which couples the boundaries of the domains.

B1 B2

B3 B4

h

H −→

B1 B2

B3 B4

C

For certain classes of discretizations of certain types of PDEs
and appropriate variants of domain decomposition we have

I Domain decomp. can be used as a stand alone solver

I no. of iterations for given accuracy ∝ log(H/h)

Andreas Frommer, Björn Leder based on a lecture by Karsten Kahl, Solvers II — Preconditioning and Deflation 20/34



Motivation
Preconditioning

Deflation
Summary

Preconditioning — Basics
Preconditioned Krylov subspace methods
Preconditioners

Incomplete LU (ILU)

Recall: Direct methods are based on factorization of A

A =
L

· U

Drawback: Fill-In in L and U for sparse A

Idea: Incomplete factorizations with sparse L and U

1. Prescribe the non-zero pattern (e.g., non-zeroes of A)
I Minimize the error-matrix E in A = L̃Ũ + E

2. Use drop-tolerance θ to drop small entries in L and U
I Often:

(
A−1

)
i,j
∼ αdistG(i,j), α < 1

⇒ If i is “far” from j, Lij and Uij will be dropped

ILU is a black-box preconditioner
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Flexible Krylov subspace methods

The preconditioner may be an iterative process by itself

I choice 1: fixed no. of iterations or stopping criterion?

I choice 2: stationary or non-stationary iteration

I For red choices: S· changes in each iteration → S = Sk
I There is no longer a Krylov subspace defined by

Kk(SA, b) = {b, SAb, (SA)2b, . . . , (SA)k−1b}

⇒ Convergence theory does not hold anymore

I Algorithmic realizations have to be modified!

⇒ Flexible Krylov subspace methods
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Flexible CG — Algorithm

Flexible Conjugate Gradients

r(0) = b− Ax(0), z(0) = S0r
(0), p(0) = z(0)

for k = 1, 2, . . . do

αk−1 =
〈r(k−1),z(k−1)〉2
〈Ap(k−1),p(k−1)〉2

x(k) = x(k−1) + αk−1p
(k−1)

r(k) = r(k−1) − αk−1Ap
(k−1)

z(k) = Skr
(k)

βk−1 =
〈r(k)−r(k−1),z(k)〉2
〈r(k−1),z(k−1)〉2

p(k) = z(k) + βk−1p
(k−1)

end for

I If Sk = S for all k =⇒ z(k) ⊥ r(k−1)

I Flexible CG preserves local optimality
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Flexible GMRES(m)

while not converged do
r(0) = S0(b−Ax(0)), β = ‖r(0)‖2, v1 = β−1r(0)

for j = 1, . . . ,m do
zj = Sjvj
w = Azj
for i = 1, . . . , j do
hi,j = 〈w, vj〉2
w = w − hi,jvj

end for
hj+1,j = ‖w‖2
vj+1 = h−1j+1,jw

end for
Define Zm = [z1 | . . . | zm], Hm+1,m = {hi,j}1≤j≤m,1≤i≤j+1

Solve ym = argminy ‖βe1 −Hm+1,my‖2
x(0) = x(0) + Zmym

end while
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Preconditioners — Summary

Preconditioning improves convergence if κ(SA)� κ(A)

I There is a wide variety of preconditioners available
I Most of them require knowledge about A or its origins

I Goals when constructing preconditioners S are
I S ≈ A−1 and S· cheap

Preconditioning makes Krylov subspace methods more robust

I Reducing κ(A) helps controlling the error e(k), since

‖e‖2 ≤ cκ(A)−1‖r‖2

⇒ If κ(A)� 1 results based on ‖r‖2 should not be trusted!
⇒ If κ(A)� 1 a preconditioner is mandatory!
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Deflation — Idea (A hermitian and positive definite)

Assume A hermitian and positive definite
Then convergence is slowed down by small eigenmodes

I Given the “troublesome” modes v1, . . . , v`
⇒ deflate the subspace V = colspan([v1 | . . . | v`]︸ ︷︷ ︸

=V

)

Similar to preconditioning, instead of Ax = b solve

A (I − πA(V )) x̂ = (I − πA(V )) b

x = x̂+ V (V †AV )−1V †b

with πA(V ) = V (V †AV )−1V †A
I In case vi are eigenmodes, V †AV = diag(λ1, . . . , λ`)

⇒ (V †AV )−1 nothing to worry about
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Deflation — Conjugate Gradients Theory

The effective condition number κeff replaces κ in theory

κeff =
µ1

µ`

µ1 = max
x 6=0

〈A(I − πA(V ))x, x〉2
〈x, x〉2

µ` = min
x∈V⊥\{0}

〈A(I − πA(V ))x, x〉2
〈x, x〉2

I If vi are smallest ` eigenmodes

κeff =
λmax

λ`+1

where λ`+1 is the (`+ 1)st smallest eigenvalue
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Deflated CG — Algorithm

Deflated CG (Deflation space V = colspan(V ))

x(0) = x(0) + πA(V )b
r(0) = b− Ax(0)

p(0) = (I − πA(V ))r(0)

for k = 1, 2, . . . do

αk−1 =
〈r(k−1),r(k−1)〉2
〈Ap(k−1),p(k−1)〉2

x(k) = x(k−1) + αk−1p
(k−1)

r(k) = r(k−1) − αk−1Ap
(k−1)

βk−1 =
〈r(k),r(k)〉2

〈r(k−1),r(k−1)〉2
p(k) = (I − πA(V ))r(k) + βk−1p

(k−1)

end for
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GMRES(m)

On restart all information about Km(A, r(0)) is lost!

I Use deflation technique to transfer information

Note: Due to the Arnoldi relation V †mAVm = Hm,m we have

I Eigenmodes w1, . . . , wm of Hm,m give approximations
Vmw1, . . . , Vmwm for eigenmodes of A

Hmmwi = λiwi ⇒ V †m(AVmwi − λiVmwi) = 0

I Vectors Vmwi are called Ritz vectors (→ ARPACK)

Idea: Use smallest eigenmodes of Hm,m in deflation
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Deflated GMRES(m) — Sketch

Ṽ = ∅
for ` = 0, 1, . . . do
r(0) = b− Ax(0), β = ‖r(0)‖2, v1 = β−1r(0)

Compute Vm, Hm+1,m based on initial Ṽ (Arnoldi)
Compute smallest Ritz vectors Vmw1, . . . , Vmw`
ym = argminy ‖βe1 −Hm+1,my‖2

x(0) = x(0) + Vmym
Ṽ = [Vmw1 | . . . | Vmw`]

end for

I For a more detailed description see [4]
I Reusing information upon restart is also known as. . .

I . . .recycling
I . . .augmenting
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Deflation — Summary

Deflation “hides” most difficult part of the problem
I Computation of eigenmodes necessary

I possibly on-the-fly (Deflated GMRES(m))
I possibly a priori knowledge available
I approximations viable (→ ARPACK)

I Analysis of general deflation subspaces V (cf. [3])

Eigenmode deflation suffers from scaling (i.e., a→ 0)

I In order to have constant number of iterations for a→ 0

κeff = const ⇐⇒ λeff
min > σ

I Often number Nσ of eigvalues below threshold σ fulfills

Nσ ∼ system size n −→∞ (a→ 0)

⇒ More eigenmodes need to be computed as a→ 0
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Summary

To find an efficient solver is hard, but there are guidelines

I Use as much information about your system as possible
I In the choice of the Krylov subspace method

I Short recurrence method available?
I Optimal method available?

I In the choice of the preconditioner

I Adjust parameters of your method w.r.t. hardware, e.g.,
I Restart length in GMRES(m)
I Dimension of the deflation subspace
I Dimension of the subdomains in domain decomposition

Most often there is no obvious optimal choice for the solver!

Construction of optimal solvers is ongoing research!
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