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Basics
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Stochastic estimates
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Hopping parameter expansion
Truncated solver method, “AMA”
Partitioning
Truncated eigenmode approach

One-end-trick
Left-overs
“Distillation” methods
Outlook

Talk was written in a haste. So there may be omissions and typos.
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Definitions

Lattice spacing: a. Sometimes (not considered here): as 6= at (anisotropy).

Lattice sites x = na, n = (nµ), µ ∈ {1, 2, 3, 4}, nµ ∈ {0, 1, . . . ,Nµ − 1}.
Usually (zero temperature): Ns := N1 = N2 = N3 ≤ Nt = N4.
# of 3-volume sites: V3 = N3

s , # of 4-volume sites: V = VsNt .

Gauge links Ux ,µ = U†x+aµ̂,−µ ∈ SU(3) have toroidal boundary conditions:
Ux+Nνaν̂,µ = Ux ,µ.

Fermion fields qx are Grassmann variables and are antisymmetric in time:
qx+Nta4̂ = −qx , qx+Nsaı̂ = qx

Other boundaries are possible, e.g., open boundaries in time, Dirichlet in
time (Schrödinger functional), twist in space etc.
Lattice momenta (Nµ even): pµ = 2π

Nµa ×
{
−Nµ

2 + 1,−Nµ

2 + 2, . . . , Nµ

2

}
.

Largest momentum (in 3 + 1 dimensions): |pmax| =
√∑

µ p2
max,µ =

√
4π
a .
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Definitions II

(Lattice)-Dirac matrix M f = 1
2κf

(1− κf D): discretization of
a /D + amf

0. D[U] depends on the gauge configuration {Ux ,µ}.
Different M f = M(κf ) for each (non-degenerate) flavour f .
M has position index x , colour index a and spin index α at “source”
and “sink” (MXY = M(x |y)αβab , X = (x , a, α), Y = (y , b, β),
12V × 12V sparse (!) matrix).
lattice quark mass mf = 1

2a

(
1
κf
− 1

κcrit

)
= (ZSZA/ZP)mf

AWI.
mf

MS(µ) = Z−1
S (µa)mf (a) (all up to O(a)-terms.)

critical hopping parameter
κcrit = 1

8 +O(g2) , mf → 0 as κf → κcrit >
1
8 .

γ5-symmetry:
M† = γ5Mγ5, i.e. M∗(y |x)αβba = γαα

′
5 M(x |y)α

′β′

ab γβ
′β

5
Hermitian Dirac matrix Q = γ5M = Q†.
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Interpolators

Glueball: Ôp
G =

∑
x e−ipx∑

n vn · Tr(spatial loop n)x.
Meson: Ôp

M = a3∑
x e−ipx (q̄1ΓADΦq2)

x.
ΓA = γn1

1 γ
n2
2 γ

n3
3 γ

n4
4 acts on the Dirac spinor space. (n1 is the least

significant bit of A ∈ {0, · · · , 15}: Γ0 = 1, Γ8 = γ4, Γ15 = γ5 etc.)
D contains derivatives and other gauge covariant transporters.
Φ is a smearing function. (D and Φ do not act on the spin index.)
Baryon (example):
Ôp

N±,α = a9/2∑
x e−ipx

[
εabcP±Φ1uα,a

(
uT

b Cγ5Φ2dc
)]

x
This Fermion contains an open Dirac spin index α.
P± = 1

2 (1± γ4) is a parity projector (for p 6= 0 see F Lee,
D Leinweber, NPPS 73 (99) 258).
C = iγ2γ4 = iΓ10 is the charge conjugation matrix.
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Two point functions
Two point Green (correlation) function:

C(t) = 〈O(t + t0)O†(t0)〉
We will often exploit the translational invariance of expectation values:

〈Ox 〉U = 〈O0〉U =
1
V
∑

x
〈Ox 〉U .

From now on we choose t0 = 0 and assume Lt = Nta =∞.
Spectral decomposition (

∑
n

1
2En
|n〉〈n| = 1):

C(t) =
∑

n
〈Ω|Ô|n〉e

−Ent

2En
〈n|Ô†|Ω〉 =

∑
n

cne−Ent ,

where cn = |〈n|Ô|Ω〉|2/(2En) ≥ 0.
This holds for any t for actions with point and link reflection positivity
(e.g. Wilson) and for t ≥ tmin for less local actions (t/a ≥ 1 for clover).
For different interpolators at source and sink cn can be negative.
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Example: meson

Cp
M(t) = 〈Op

M(t)Op†
M (0)〉

= a6∑
x,y

e−ip(x−y)
〈(

q̄1Γq2
)

x

(
q̄1Γq2

)†
y

〉
,

where x = (x, t), y = (y, 0). For simplicity, derivatives D and smearing
functions Φ are omitted.
We compute (q̄1Γq2)† = −q2†Γ†γ4q1 = ±q̄2Γq1 (γ4Γ = ∓Γ†γ4), rename
xnew = x− y and set y = 0 (translational invariance):

Cp
M(t) = ±V3a6∑

x
e−ipx〈q̄1

x Γq2
x q̄2

0Γq1
0〉

= ∓V3a6∑
x

e−ipx
〈
Tr
[
Γ(q2

x q̄2
0)Γ(q1

0 q̄1
x )
]〉

,

where the trace is over spin and colour (Wick contraction).
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Propagator

Fermionic contribution to Lagrangian: a−1∑
f q̄f M f [U]qf .

This means a3〈qf
x q̄f

y 〉q = M f −1
(x |y) where the subscript q denotes the

Fermionic expectation value.
γ5-Hermiticity: a3〈q0q̄x 〉q = M−1(0|x) = γ5[M−1(x |0)]†γ5. Then:

Cp
M(t) = ∓V3

∑
x

e−ipx
〈
Tr
[
M2−1

(x |0)Γγ5[M1−1
(x |0)]†γ5Γ

]〉
U
,

where the remaining expectation value is over gauge configurations.
The above expression is particularly simple for the π (Γ = γ5, i.e. Γγ5 = 1).

For q = q1 = q2 (flavour-/iso-singlet) an additional term appears in the
Wick contraction and M−1(x |x) is needed.
Otherwise only the 12 columns of M−1 starting from y = 0 are required,
the “point-to-all” propagator S(x |0)αβab = M−1(x |0)αβab .
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The point-to-all propagator S(x |0) (12× 12 spin-colour matrices at all
spacetime points x) is obtained by solving∑

x ,α,a
M(z |x)γαcaS(x |0)αβab = δz0δcbδ

γβ

for all 12 β ∈ {1, 2, 3, 4} and b ∈ {1, 2, 3} δ-sources.
It can be smeared at the sink with a smearing function Φ that only
depends on the position and colour but commutes with Γ-matrices.
Each source smearing requires 12 new solves of:∑

x ,α,a
M(z |x)γαcaSΦ(x |0)αβab = (Φδ0,b)(z |0)cbδ

γβ ,

where δ0,b denotes a colour vector with only one entry, at position 0 and
colour b. Note that smearing does not need to be repeated for different
spin.
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Symmetries

Action, measure and boundary conditions adhere global symmetries, e.g.,
(approximate) H(4) hypercubic symmetry, charge symmetry and
translation symmetry.
We can decompose any observable A = Asing + Anonsing where
〈A〉U = 〈Asing〉U .
Above, due to translational invariance we got away with point-to-all
propagators for non-flavour-singlet spectroscopy, replacing

∑
y(q̄Γq)†yeipy

by V3(q̄Γq)†0 at the source. However, doing this we loose statistics
(self-averaging).
Likewise, with respect to local gauge transformations we can decompose
any observable into Asing + Anonsing where only 〈Asing〉U is non-vanishing.
Again, Anonsing = 0 is desirable to reduce noise (and in this case can be
achieved easily).
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Why all-to-all?

Often “all-to-all” is necessary:

nucleon structure:

〈N†(t)|Jµ(t/2)|N(0)〉:
(Example: Jµ = ψ†γµψ)
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decays/scattering:


√nf

√nf − nf
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HW Hamber, E Marinari, G Parisi, C Rebbi, NPB225 (83) 475
(Appendix B)
GP Lepage, http://inspirehep.net/record/287173
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∼ exp (−3mπt)

∆CN(t)

CN(t)
∼ exp

[(
mN −

3
2mπ

)
t
]

Self-averaging over many source points increases statistics.
Becomes increasingly important at small mπ.
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Low mode averaging
At light quark masses one may compute eigenvectors to deflate the solver.
Eigenvectors also offer the possibility of low mode averaging (LMA)
T DeGrand, S Schäfer CPC 159 (04) 185
L Giusti et al, JHEP 0404 (04) 013.

CLMA(t) = Clow(t) + [Cpa(t)− Cpa
low(t)] .

Clow: contribution from low eigenmodes of Q = γ5M (Q = Q†), all-to-all,
averaged over the lattice volume.
Cpa: standard point-to-all 2-point function.
Cpa

low: low mode contribution (point-to-all), needs to be subtracted since
this is already included into Cpa.
This does not affect the expectation value but may reduce the error, due
to the self-averaging of the low-mode contribution.
This works well for positive parity baryons and negative parity mesons
GB, L Castagnini, S Collins, PoS (LATTICE2010) 096
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Effective masses

N
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t
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Example: meson

Q|ui〉 = qi |ui〉 , 〈ui |uj〉 = δij , qi ∈ R , Q = γ5M .

This means that,

Q =
12V∑
i=1

1
qi
|ui〉〈ui | .

We need to truncate: i ∈ {1, 2, . . . ,m} where m ∝ V . So the number of
operations increases ∝ V 2.
The eigenvectors have position, spin and colour components:
ui (x)a

α = 〈x , a, α|ui〉.

Clow(t) = ±
∑
i ,j

〈
1

qiqj
t〈uj |γ5Γ|ui〉t 0〈ui |γ5Γ|uj〉0

〉
U
,

where the subscript t denotes a projection of the vector onto timeslice t.
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The point-to-all low mode contribution can be obtained using (Note that
ui (x) = 〈x |ui〉 is a spin-colour vector),

Cpa
low(t) = ±

∑
i ,j

〈
1

qiqj
t〈uj |γ5Γ|ui〉tui (0)†γ5Γuj(0)

〉
U
.

It is straight-forward to add momenta and smearing functions. The latter
cannot be factorized out of the inner product; the eigenvectors have a
colour component.
What about eigenmodes of M?
Left 〈`i | and right |r i〉 eigenvectors of an eigenvalue λi ∈ C need to be
distinguished. These fulfill the biorthonormality relations 〈`i |r i〉 = δij and
M−1 =

∑
i

1
λi
|r i〉〈`i |. Moreover, 〈ri |γ5 and γ5|`i〉 are left and right

eigenvectors, respectively, with eigenvalue λ∗i . It turns out that this
converges badly L Castagnini et al, PoS (LATTICE2010) 096: the
dynamics appears to be driven by eigenmodes of the Hermitian Dirac
operator Q.
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The singular value decomposition (SVD)
m × n Matrix (here m = n = 12V ) can be decomposed:

M = UΣV †

where U and V are m×m and n× n unitary matrices, respectively, and Σ
is an m × n matrix with non-negative real entries on its diagonal.
Singular values are uniquely determined, U and V are not.
Eigenvectors of Q = γ5M are EVs of Q2 = M†M. Right singular vectors of
M (i.e. columns of V ) are EVs of M†M:

γ5M|ui〉 = |ui〉qi

M (|u1〉, . . . , |u12V 〉)︸ ︷︷ ︸
V

= γ5(sign(q1)|u1〉, . . . , sign(q12V )|u12V 〉)︸ ︷︷ ︸
U

diag(|q1|, . . . , |q12V |)︸ ︷︷ ︸
Σ

Note that eigenvectors of M do not depend on κ while its singular vectors
(eigenvectors of Q) do.
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Stochastic methods K Bitar et al, NPB 313 (89) 348:
Generate a set of random noise vectors |η`〉, ` = 1, . . . , n where

1
n
∑
`

|η`〉〈η`| = |η〉〈η|n = |η〉〈η| = 1 +O(1/
√

n) ,

〈η| = O(1/
√

n) .

Often: η`(x)αa ∈ Z = Z2 ⊗ i Z2/
√
2 S Dong, K-F Liu, PLB 328 (94) 130.

Other choices: Z = Z2,Z3,U(1), SU(3).
By solving

M|s`〉 = |η`〉
for the |s`〉 one can construct an unbiased estimate:

M−1
E = |s〉〈η|

= M−1 + M−1 (|η〉〈η| − 1)︸ ︷︷ ︸
O(1/

√
n)

⇒ n� 12V solver applications only !
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On each configuration an estimate AE of A has a stochastic error
∆stochA = O(1/

√
n). We define:

σ2
A,stoch :=

〈(∆stochA)2〉U
N ∝ 1

Nn for n,N large ,

where N is the number of gauge configurations. The configuration average
〈AE 〉U carries the statistical error σA,gauge:

σ2
A,gauge ≥ σ2

A,stoch .

Both sides scale ∝ 1/N.
σA,gauge ' σA,stoch ⇒ increase n.
σA,gauge � σA,stoch ⇒ reduce n and increase N (or the source positions).
The optimal choice depends on the observable A.
Increasing n is usually not the smartest thing to do.
It is better to reduce the coefficient of the 1/

√
n term.
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The stochastic error

[
∆M−1

XZ

]2
:=
[
∆stochM−1

XZ

]2
=
∑
Y

[
M−1 −M−1

E

]
XY

[
M−1 −M−1

E

]†
YZ

,

[
∆M−1

]2
= M−1O

[
M−1O

]†
,

where
O = 1− |η〉〈η| = O

( 1√
n

)
is an off-diagonal 12V × 12V matrix. [X = (x , a, α)]. This means that,[

∆M−1
XZ

]2
∝ 1

n
∑

Y 6=X ,Z
M−1

XY M−1†
YZ

[
∆
(
Tr ΓM−1

)]2
∝ 1

n
∑
x ,y

q̄y Γγ5qy q̄x Γγ5qx minus diagonal terms

This is a sum over a mesonic two point function cM(y − x)!
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Hence

∆ Tr ΓM−1 ∝

(V /n)
∑
y 6=0

c(y) +
1
n ( non-diagonal terms at y = 0)

1/2

c(y) is the point-point correlation function of ÔM = q̄Γγ5q.
Biggest contributions are from the “neighbourhood”, where c(y) is large.
Intuitively this was already clear from M−1

E −M−1 = M−1(|η〉〈η| − 1) but
above derivation sketch is gauge invariant.

Exercise: repeat derivation for a mesonic two-point-function with and
without one-end-trick (see below).
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Hopping parameter expansion (HPE)
C Thron et al, PRD 57 (98) 1642;
C Michael et al, NPPS 83 (00) 185.
For static-light mesons: SESAM: GB et al, PRD 71 (05) 114513.

M−1 = 2κ (1− κD)−1 = 2κ
∑

j
(κD)j

= 2κ
n−1∑
j=0

(κD)j + (κD)nM−1

Convenient generalization for clover:
V Gülpers, G von Hippel, H Wittig, 1309.2104

D = DW + cSW
i
2σµνFµν , A := 1− κcSW

i
2σµνFµν

M =
1
2κ (A− κDW) =

A
2κ
(
1− A−1κDW

)
Gunnar Bali (Regensburg) All-to-all 22 / 55
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Then (A is local in spacetime but a matrix in spin and color)

M−1 = 2κ
n−1∑
j=0

(
A−1κDW

)j
A−1 +

(
A−1κDW

)n
M−1

The first terms of the HPE contribute most to the noise.
These may vanish identically:
example 1: for the Wilson action, Tr(ΓM−1) = Tr(ΓκnDnM−1),
n = 4, 8, depending on Γ 6= 1.
example 2: 2-point function at distances t > na.
These may be calculated explicitly. Trivial for first order of
Tr(1M−1). Usually contains plaquettes and more complicated loops.
See M Deka et al, PRD 79 (09) 094502. (coined “unbiased
subtraction method”).
First few terms are cheap to compute numerically and may be
estimated with a larger number of estimates (see TSM below).

HPE only works for ultra-local actions. No Neuberger Fermions!
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Heavy quarks (charm) C Ehmann, GB, PoS (LATTICE2008) 114

0 1 2 3 4 5 6 7 8
n

-80

-60

-40

-20

0

20

40
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80

Tr[γ
5
(κD)

n
M

-1
]

n=50

Obviously works best for heavy quarks.
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Truncated solver method (TSM)
Obtain approximate solutions |s`nt 〉 after nt solver iterations (before
convergence), and estimate the difference stochastically to obtain an
unbiased estimate of M−1 S Collins et al, PoS (LAT2007) 141:

M−1
E = |snt 〉〈η|n1

+ (|s〉 − |snt 〉)〈η|n2
with n2 � n1 .

n2/n1 can be optimized to minimize the cost for a given error.
Also studied in C Alexandrou et al,
CPC 183 (12) 1215, 1309.2256;
GB, S Collins, A Schäfer, CPC 181
(10) 1570.

Do ∃ other factorizations of M−1 into an
expensive part with a small error and a
cheap part with a larger error?
Iterative schemes to fight

√
V /n prob-

lem?
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“All mode averaging” (AMA)
“Covariant approximation averaging”. T Blum, T Izubuchi, E Shintani,
PRD 88(13) 094503; E Shintani et al 1402.0244
New words for combining 〈

1
V
∑

x
Ax

〉
= 〈A0〉

with other well-known methods like TSM or LMA. The idea again is to
decompose

C(t) = Capprox(t) + [Cpa
exact(t)− Cpa

approx(t)]

Capprox(t) may be computed for many source points. Using the CG solver
was found to reduce computational effort by factors 5–16, relative to
point-to-all method for hadron spectroscopy with domain wall fermions.
Problem (also with TSM): more efficient solver ⇒ less gain.
Attention has to be paid not to introduce a bias in non-linear applications
of such tricks.
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Partitioning
S Bernardson et al, CPC 78 (93) 256; J Viehoff et al, NPPS 63
(98) 269; W Wilcox, arXiv:hep-lat/9911013
(also known as the spin-explicit-method (SEM) or dilution)
Decompose R = volume⊗ colour⊗ spin into np subspaces:

R = ⊕np
j=1Rj .

Set |η`|j〉 to zero outside of the domain Rj .
Calculate restricted solutions (setting η(x)αa = 0 outside of domain),

M|s`|j〉 = |η`|j〉 .

Now: M−1
E =

∑
j |s|j〉〈η|j |

This can be used to black out large off-diagonal error terms.
It is sensible to choose the same random vector components within each
subspace (if they have the same dimension). This allows for hand-coding
of, e.g., the spin structure (SEM).
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Partitioning does not do any obvious harm but it may unnecessarily
increase the number of estimates per configuration:
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Comparison of partitioning patterns in mesonic three point functions
R Evans, S Collins, GB, PRD 82 (10) 094501.
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Often not all columns of M−1 are required (e.g. time partitioning for
3-point functions). Then the gain is obvious.

Spin partitioning often leads to an error reduction larger than the
additional cost (factor four, i.e. error has to be reduced by a factor bigger
than two).

The partitioning pattern can be adapted to the problem:
staggered spin dilution (SSD).
C Ehmann, GB, PoS (LATTICE2008) 114.

There is also the possibility of “recursive noise subtraction”.
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Truncated eigenmode approach (TEA)
H Neff et al, PRD 64 (01) 114509; GB et al, NPPS 140 (05) 609;
PRD 71 (05) 114513; A O’Cais et al, NPPS 140 (05) 844; CPC 172
(05) 145.
Calculate the m lowest eigenvalues and eigenvectors of Q = γ5M, qi and
|vi〉. Projection operator:

P =
m∑

i=1
|vi〉〈vi | .

With
M|s`⊥〉 = |η`⊥〉 = γ5 (1− P) γ5|η`〉

one obtains
M−1

E = |s⊥〉〈η⊥|+
m∑

i=1
|vi〉q−1

i 〈vi |γ5 .

Deflation is included for free and with the CG algorithm, the solution does
not need to be projected back.
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Reduction of the stochastic error at fixed cost
Same cost result for Tr(ΓM−1) (per configuration) S Collins, GB, A
Schäfer, PoS (LATTICE2008) 161; CPC 181 (10) 1570:
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(a) Partitioning, HPE, TSM (b) Partitioning, HPE, eigenmodes, TSM
Significant gain for all Γs.
Using different combinations of methods allows one to obtain similar
gains at different quark masses.
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Some one-end literature
One-end-trick
R Sommer, NPPS 42 (95) 186;
M Foster, C Michael, PRD 59 (99) 074503
Spin-explicit OET
C McNeile, C Michael, PRD 73 (06) 074506
Sequential use in 3-point functions
ETMC: S Simula et al, PoS (LAT2007) 371;
UKQCD: P Boyle et al, JHEP 0807 (08) 112;
R Evans et al, PRD 82 (10) 094501
Sequential use in 4-point functions
CP-PACS: S Aoki et al, PRD 76 (07) 094506
Twice applied in mesonic 4-point functions
C Alexandrou, G Koutsou, PRD 78 (08) 094506
OET in baryons
χQCD: A Li et al, PRD 82 (10) 114501;
L Castagnini et al, forgotten to write up

Gunnar Bali (Regensburg) All-to-all 32 / 55



Outline Basics LMA Stochastic estimates Variance reduction One-end-trick Left-overs Distillation Outlook

Define noise η`(x)αa ∈ Z that is zero for any t 6= t0.

1
n

n∑
`=1
|η`〉〈η`| = 1t0 +O

( 1√
n

)
≈
∑
x,α,a
|x , a, α〉〈x , a, α| ,

where x4 = t0. Consider the (not gauge averaged) pion two-point function
(t0 = 0, y = (y, t)),

c(t) =
∑
xy

TrM−1(y |x)[M−1(x |y)]† ≈ cE (t)

=
∑

y

1
n

n∑
`=1

Tr 〈y |M−1|η`〉〈η`|M−1†|y〉

=
∑

y

1
n

n∑
`=1

Tr 〈y |s`〉〈s`|y〉 =
∑
y,b,β

1
n

n∑
`=1
|s`(y)βb |

2,

where M|s`〉 = |η`〉. cE (t) differs from c(t) by terms of O(1/
√

n). Since
the noise is unbiased, C(t) = 〈c(t)〉U = 〈cE (t)〉U .
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Without the OET we would have needed two sets of sources |η`1〉 and |η`2〉:

ctrad
E (t) =

∑
y

1
n2

n∑
`,k=1

Tr 〈y |s`1〉〈η`1|ηk
2 〉〈sk

2 |y〉

=
∑

y

1
n2

n∑
`,k=1

Tr 〈y |M−1|η1〉〈η1| |η2〉〈η2|M−1†|y〉 .

Each product with |η〉〈η| involves a sum over 12V3 randomly oscillating
components of moduli O(1/

√
n).

This means that the OET error scales ∝
√

V3/n while the traditional error
is ∝

√
V 2

3 /n. Source self-averaging yields a factor ∝ 1/
√

V3.

For baryons the OET error is ∝
√

V 2
3 /n while without the OET (LHPC: R

Edwards et al, PoS (LAT2007) 108) it will scale ∝
√

V 3
3 /n.

This error can be reduced by a constant factor by recycling random
sources: 1

n2
∑n
`,k〈η`1|ηk

2 〉 7→ 1
n(n−1)

∑2n
6̀=k〈η`|ηk〉, {|η〉} = {|η1〉} ∪ {|η2〉}.

J Foley et al, CPC 172 (05)145
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The OET can be made spin-explicit, defining,

η`,α(x)βa = δαβ η̃`(x)a ,

where |η̃〉 is a (spin-independent) noise colour vector in the timeslice
t0 = x4. With solutions,

M|s`αΦ 〉 = Φ|η`α〉 and M|s`αΦ,p〉 = eipxΦ|η`α〉 ,

we can contract,

cp
Γ,Φ(y) =

∑
x

[M−1Φ](y |x)eipxΓ
[
[ΦM−1](x |y)

]†
≈ 1

n
∑
`,α,β

〈
y |s`αΦ,p

〉
Γαβ

〈
s`βΦ |y

〉
.

This can now be contracted with e−ipy, smearing and a Γ at the sink and
averaged over gauge configurations.
For each momentum p 6= 0 and each smearing function Φ four solves are
required.
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Remarks

The non-gauge invariant wall source method of A Billoire, E
Marinari, G Parisi, PL 162B (85) 160 is actually equivalent to the
spin-explicit (gauge invariant) OET with n = 1 SU(3) noise sources
per configuration.
OET can be combined with the sequential source technique (L
Maiani et al, PLB 176 (86) 445; NPB 293 (87) 420) for three-
and four-point functions as long as n can be kept small (for each n 12
sequential solves are necessary).
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The “thinning”/grid noise idea

The OET error scaling (ignoring the benefit of self-averaging) is ∝
√

V3/n
for mesons and ∝

√
V 2

3 /n for baryons. The V3 factors are due to the
number of non-zero entries of the stochastic noise vectors.

Reducing the number of non-zero entries to M points yields
√

M/n and√
M2/n behaviour, respectively, while self-averaging (for M not taken

overly small) largely remains unaffected, in particular at light quark masses.
R Sommer, NPPS 42 (95) 186; L Castagnini et al, in preparation.

This looks like partitioning, however only the number of points matters.
Their positions are only relevant with respect to self-averaging (and
autocorrelations in the time series).

Grid noise was combined with low mode substitution (rather than
averaging) in χQCD: A Li et al, PRD 82 (10) 114501.
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Nucleon effective masses on V = 32364 at equal cost
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Error ratios for the nucleon effective mass
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Connected 3-point functions

Stochastic methods have also successfully been applied to connected
3-point functions, replacing the sequential propagator.

More flexibility and cheaper, in particular if interested in different
sinks (e.g. baryons, smearing, momenta).
More statistics, due to averaging over polarizations and equivalent
momenta.
Can average over forward and backward propagation.
Can move source in space (statistics) and time (check ground state
saturation) with only 12 additional solves (1 propagator) per quark
mass.

See R Evans, GB, S Collins, PRD 82 (10) 094501; ETM: C Alexandrou
et al, 1302.2608; J Najjar et al, 1311.1718.
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Point-point propagator for (disconnected) spectroscopy?

Point-point correlation function of J = 0 meson (Nsa = Nta =∞):

C(x) =

∫ π

−π

d4k
(2π)4 eik.x

∑
j

cj

k̂2 + m2
j

 ,

where k̂µ ≈ 2
a sin

akµ

2 (This is the simplest latticized and not necessarily
correct ansatz.), k̂2 =

∑
µ k̂2

µ.
Masses were extracted from fits to C(x) in
M Chu, J Grandy, S Huang, PRD 48 (93) 3340;
D Leinweber, PRD 51 (95) 6369;
C Allton, S. Capitani, NPB 526 (98) 463;
L Levkova, C DeTar, PRD 83 (11) 074504.
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The momentum projected correlation function reads,

Cp(t) =

∫ d3x d4k
(2π)4

c1eikteix(k−p)

k̂2 + m2
1

+ · · · =

∫ dk4
2π

c1eik4t

k̂2
4 + p̂2 + m2

1
+ · · ·

=
∑

j

cj
2Ej

e−Ej t where sinh aEj
2 =

a
2

√
p̂2 + m2

j (E = −ik4) .

This dispersion relation agrees with the continuum relation up to O(a2)
terms.
Problems with these point-to-point correlators:
no smearing possible, no exponential suppression of excitations.
But: better signal over noise. The usual position sum includes
contributions from large Euclidean distances (little signal but noise).
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... is related to smearing

Ground state wavefunctions have no nodes and are smooth.
→ employ extended operators q̄1

x ΓΦx,zq2
z where the smearing function Φ

mimics a wavefunction to maximize c1.
This was done

1 Using Coulomb gauge fixing, e.g.: T DeGrand, RD Loft, CPC 65
(91) 84; T DeGrand, M Hecht, PLB 275 (92) 435;
T Draper, C McNeile, NPPS 34 (94) 453.

2 Employing gauge covariant iterative procedures.
Wuppertal=Gauss smearing: S Güsken et al, PLB 227 (89) 266;
S Güsken, NPPS 17 (90) 361.
Jacobi smearing: UKQCD: C Allton et al, PRD 47 (93) 5128.

3 Using more general gauge covariant basis vectors.
“free form smearing”: G von Hippel et al, JHEP 1309 (13) 014.
Distillation: HSP: M Peardon et al, PRD 80 (09) 054506.
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Wuppertal smearing
Define a covariant lattice Laplacian in d = 3 spatial dimensions, acting on
a scalar or vector field ψy:

a2
(
∇2ψ

)
x

= −2dψx +
±3∑

j=±1
Ux,jψx+â .

It is advisable (SESAM: GB et al, NPPS 140 (05) 609; S Güsken, NPPS
17 (90) 361) to use a smeared covariant transporter U instead of U.
Wuppertal smearing amounts to iteratively replacing:

ψ(n+1) = ψ(n) +
δ

1 + 2dδ a2∇2ψ(n) .

δ = 0.3 is a reasonable value for the free parameter. The (arbitrary)
normalization convention is chosen to avoid numerical overflows for large
iteration counts n. This can be employed checkerboard or “all-at-once”.
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We introduce a fictitious time t = n∆t. Now (ignoring Ux ,µ 6= 1):

∂ψ(t)

∂t ≈ ψ(t + ∆t)− ψ(t)

∆t = κ∇2ψ(t) with κ =
a2

∆t
δ

1 + 2dδ .

This diffusion equation is formally solved by,

ψ(t) ≈ eκt∇2
ψ(0) .

Starting from ψx(0) = δx0 this gives a Gauss packet with the rms width of
ψ†ψ:

∆r = d
√
κt = da

√
δ

1 + 2dδ n .

The diffusion speed is maximal for δ →∞ (κ→ a2/(2d∆t)) while the
resulting wavefunction is more continuum-like for δ → 0 (κ→ 0).
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The Wuppertal (and Jacobi) smearing operators
1 are gauge covariant and singlets under Oh, charge and parity

transformations,
2 are translationally invariant in space,
3 are Hermitian and commute with Γs,
4 Wuppertal has the property: Φ(n1)Φ(n2) = Φ(n1+n2).

Properties 1–2 mean that smearing can be added, without affecting the
irrep, gauge invariance or momentum projection.
Property 3 means that Wick-contractions remain the same.
Properties 3–4 mean that within mesons (not containing derivatives)
smearing can freely be distributed between the quarks: in the equal mass
case evenly, to minimize the computer time. Source smearing can be
performed on the heavier quark, whose propagator is cheaper to generate.
This is also statistically favourable. (At the (non-momentum-projected)
source things are not symmetric with respect to the quarks).
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The Gauss-Wuppertal smearing operator can be written as,

Φ(n) ≈
(
eκ∆t∇2)n

.

∇2 is a scalar, Hermitian, translationally invariant, gauge covariant
operator. It contains smeared transporters U.
Define eigenvectors of ∇2 at a fixed timeslice, |vi〉 ∈ CV3Nc :

∇2|vi〉 = ω2
i |vi〉 , 〈vi |vj〉 = δij , vi ,x,a = 〈x, a|vi〉 .

From this we can define a projector onto the “LapH” subspace
HSP: M Peardon et al, PRD 80 (09) 054506 of the timeslice,

4 =
∑

i
|vi〉〈vi | θ(σ2 − ω2

i ) , 4xy
ab =

∑
i

v †i ,x,avi ,y,b θ(σ2 − ω2
i ) ,

where (obviously) 42 = 4. σ cuts out all eigenvectors with eigenvalues
ωi > σ. The number of remaining eigenvalues M(σ)� V3Nc scales at
fixed σ2 ≈ 1/3 with V3 = N3

s .
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The “wavefunction”
Ψ(r) =

√
Tr (40r4r0)

(averaging the zero point over all lattice points) approaches the δ-function
for M → N3

s Nc (Distillation becomes a basis transformation).
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Mesonic two point functions
Destruction operator:

Ôp =
∑

x,y,z,w
e−ipxq̄1

x 4xy e−ipyΓDyz︸ ︷︷ ︸
Ayz

4zwq2
w

where we have suppressed colour and spin indices and A depends on p, Γ

and D. 4 depends on M. Correlation function (We allow for ˆ̃O 6= Ô):
C(t) = 〈Õ(t)O†(0)〉

= ±
〈
q̄2(t)4 (t)Ã(t)4 (t)q1(t)q̄1(0)4 (0)A†(0)4 (0)q2(0)

〉
= ±

∑
i ,j,k,`

〈
〈q̄2(t)|vi (t)〉Ãij(t)〈vj(t)|q1(t)〉

× 〈q̄1(0)|vk(0)〉Ã†k`(0)〈v`(0)|q2(t)〉
〉
,

where Ãij(t) = 〈vi (t)|Ã(t)|vj(t)〉 and A†k`(0) = 〈vk(0)|A†(0)|v`(0)〉 also
depend on (not displayed) spinor indices.
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This can now be factorized,

C(t) = ∓
〈
Ãαγij (t)A†βδk`(0)〈vj(t)|S1(t|0)αβ|vk(0)〉〈v`(0)|S2(0|t)γδ|vi (t)〉

〉
U

= ∓
〈
Ãαγij (t)A†βδk`(0) τ (1)(t|0)αβjk τ

(2)(0|t)γδ
`i

〉
U
,

where the generalized propagators for flavour f (“perambulators”),

τ (f )(t|0)αβij =
〈
vi (t)|S f (t|0)αβ|vj(0)

〉
,

are LapH ⊗ spin (4M × 4M) matrices that can be obtained by inverting
the Dirac operator on all |vj(0)〉 (times the four different source spin-δs),
and contracting the resulting propagators at the sink with 〈vi (t)|: the
colour times position indices are replaced by LapH indices i and j .
Note that the computation of the antiquark pram,

τ(0|t)ij = 〈vi (t)|γ5S(t|0)γ5|vj(0)〉 = γ5〈vi (t)|S(t|0)|vj(0)〉γ5

does not require any additional solves, due to the γ5-Hermiticity.
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Summary of Distillation

This has been generalized to baryons etc. (straight-forward).
This timesliceLapH-to-allLapH method is much more expensive than
the standard point-to-all method. The price for the inversions scales
like VV3 (rather than V ), and for mesonic contractions even like
(VV3)2.
The Aij can be exchanged a posteriori. This turns the method
competitive when many operators are involved, in particular with
derivatives at the source. Also some source “self-averaging” is built in.
All components within the

∑
ijk` have the quantum numbers of A and

are gauge invariant. So different truncations can be chosen for ij and
k` (corresponding to different sink/source smearings). See also
C Lang et al, PRD 84 (11) 054503.
The smearing profiles can in principle be varied by introducing weight
functions f (ωi ) in the contraction of a LapH index i , a possibility that
could be worth exploring.
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Stochastic estimates in the LapH basis
It seems possible to reduce the computational overhead of the distillation
method by stochastically estimating the perambulators within the LapH
space HSC: C Morningstar et al, PRD 83 (11) 114505.
Introduce spin-explicit noise vectors in LapH space:

|η`α〉 =
M∑

i=1
η`i eα|vi (0)〉 ,

where η`i ∈ Z , ` ∈ {1, . . . , n}, eα is a unit spin vector in direction α and
|vi (0)〉 are LapH basis vectors on timeslice 0.
Now solve,

M|s`α〉 = |η`α〉 .
Estimates of the prams are now given by,

τE (t|0)αβik =
1
n

n∑
`=1
〈vi (t)|s`α〉〈η`β|vk(0)〉 .
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In C Jost, B Knippschild, C Urbach, F Zimmermann, 1311.5469
it was reported that LapH did a bad job regarding the ground state
overlap of pseudoscalar mesons.

Moreover, the stochastic LapH method was found to be by a factor 20
more expensive for computations of the η-mass than standard stochastic
methods.

However, perambulators, once obtained, allow for a lot of flexibility: the
hadrons of interest (D, Γ and p) can be specified subsequently.
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Warnings

Best method depends on quark mass, volume, observable, solver and
ease of implementation.
As there are no one-size-fits-all solutions, and in the end all of us are
primarily interested in physics-output, there exist few systematic and
realistic cost comparisons.
Re-inventing and re-naming old methods can be confusing.
Honest assessments of pros and cons and real cost comparison would
be more beneficial to the field than pure advertizing.
For details on the particular methods please consult the references I
cited (and those that I may have forgotten).
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Summary & Questions

All-to-all methods are needed in particular at small mπ where many
hadrons become unstable. Also isosinglet contributions to hadronic
structure should become more important.
Note that OET is a timeslice-to-all, distillation a
timesliceLapH-to-allLapH method.
Combinations of (new?) methods can easily save large factors of
computer time.
Efficient method of obtaining first few SVD vectors of M (exact or
inexact) would be very welcome!
Scaling n ∝ V or n ∝ V3: can this be overcome?
The number of low eigenmodes of Q scales like V but 4/mphys

π is
almost 6 fm. Similarly the LapH space can become large for such
volumes. Is there any “inexact” eigen/domain method?
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