Solvers I — Basics

Lattice Practices 2014

Andreas Frommer, Björn Leder based on a lecture by Karsten Kahl

Bergische Universität Wuppertal

March 6, 2014

Outline

Motivation and Notation Motivation Notations

Direct methods

Iterative solvers

Introduction Optimal Krylov subspace methods Non-Optimal Krylov subspace methods

The Krylov Zoo The Zoo Summary

BERGISCHE

Linear systems of equations in Lattice QCD

In Lattice QCD codes roughly 85% of time is spent solving linear systems of equations of the type

$$\mathbf{D}\psi = \varphi$$
 (*

Hence it is of utmost importance to find efficient solvers!

Solving (\star) is required in many situations, e.g.,

- ▶ in the calculation of Propagators
- in the hybrid Monte-Carlo process

Depending on the discretization and situation

- ► D is sparse (e.g., Wilson) or dense (e.g., Overlap)
- One has to solve only for one rhs or for many rhs'

All this information should influence the choice of solver!

Motivation Notations

Discretizations of the Dirac operator

Discretizations by covariant finite-differences

$$\mathbf{d}_{\mu}\psi_{x} = a^{-1} (U_{x-a\mu}^{\mu}\psi_{x-a\mu} - (U_{x}^{\mu})^{\dagger}\psi_{x+a\mu})$$

▶ Wilson discretization (stabilizing 2nd order term)

$$\mathbf{D}_W = \sum_{\mu=1}^4 (\gamma_\mu \otimes \mathbf{d}_\mu + a^{-1} \mathbf{d}_\mu^2) \quad \in \mathbb{C}^{12L_s^3 L_t \times 12L_s^3 L_t}$$

Non-hermitian, sparse (next-neighbor), $(\gamma_5 \mathbf{D})^{\dagger} = \gamma_5 \mathbf{D}$

Overlap discretization (Ginsparg-Wilson)

$$\mathbf{D}_O = I + \gamma_5 \operatorname{sign}(\gamma_5(D_W - m)) \quad \in \mathbb{C}^{12L_s^3 L_t \times 12L_s^3 L}$$

BERGISCHE

Motivation and Notation Direct methods Iterative solvers The Krylov Zoo Motivation Notations

Properties of linear systems in Lattice QCD

Typical discretizations yield linear systems $\mathbf{D}\psi=\varphi$ where

- **D** is non-hermitian, yet $(\gamma_5 \mathbf{D})^{\dagger} = \gamma_5 \mathbf{D}$
- $\blacktriangleright \ \operatorname{spec}(\mathbf{D})$ lies in the right half-plane
- D is very large (on a $32^3 \times 64$ lattice \approx 25M unknowns)
- ▶ D is sparse, i.e., contains only next-neighbor couplings

pprox 100 non-zeroes per row

Matrix-Vector operations are cheap $\mathcal{O}(L_s^3L_t) = \mathcal{O}(V)$

In implementations $\mathbf{D} \cdot x$ is often highly optimized \rightarrow use this in solvers for $\mathbf{D}\psi = \varphi$

Notations

- ► Linear system of equations $\sum_{j=1}^{n} a_{ij} x_j = b_i, \quad i = 1, \dots, n$ $Ax = b, \quad A \in \mathbb{C}^{n \times n}, x \in \mathbb{C}^n, b \in \mathbb{C}^n$
- Euclidean inner product

$$\langle x, y \rangle_2 = y^{\dagger} x = \sum_{i=1}^n \bar{y}_i x_i$$

• Adjoint A^{\dagger} of A w.r.t. $\langle ., . \rangle_2$

$$\langle Ax, y \rangle_2 = \langle x, A^{\dagger}y \rangle_2$$

- A hermitian $\iff A^{\dagger} = A$
- A hermitian positive definite

 $A^{\dagger} = A \quad \text{and} \quad x^{\dagger}Ax > 0, \quad x \neq 0$

Direct methods

Idea: Solve Ax = b by row-/column-manipulations

- Usually based on factorizing the system matrix A
- Methods based on Gaussian elimination
 - A = LU: LU factorization

• $A = LDL^*$: Cholesky factorization (A hermitian)

- $\oplus~$ No restrictions on applications
- \ominus Expensive methods ($\mathcal{O}(n^3)$ for dense matrices)
 - Methods exploiting sparsity exist, reducing complexity

Other "direct" methods (limited to certain applications)

► Fast-Fourier-Transform (*O*(*n*log(*n*)))

Introduction Optimal Krylov subspace methods Non-Optimal Krylov subspace methods

Iterative solvers

- **Given:** Ax = b with solution \hat{x} , A sparse
 - Find: Approximations $x^{(k)}, k = 1, 2, \dots$ s.t. $x^{(k)} \rightarrow \hat{x}$
- 1. How do we measure convergence $x^{(k)} \rightarrow \hat{x}$?
 - ► "Computable" measures (→ stopping criteria)?
 - Monotone convergence in suitable norm possible?
- 2. How do we find iterates $x^{(k)}$ such that
 - the iterative process converges, i.e., $x^{(k)}
 ightarrow \hat{x}$?
 - there is a "simple" update formula for $x^{(k+1)}$?
 - each iteration only requires the action of A on vector?

Introduction Optimal Krylov subspace methods Non-Optimal Krylov subspace methods

How do we measure convergence?

Given: Iterate $x^{(k)}$ in the k^{th} iteration

• Using the error $e^{(k)} = \hat{x} - x^{(k)}$

$$x^{(k)} \to \hat{x} \Longrightarrow ||e^{(k)}|| \to 0$$

In most cases the error is not readily computable!

• Using the residual $r^{(k)} = b - Ax^{(k)}$

$$x^{(k)} \to \hat{x} \Longrightarrow ||r^{(k)}|| \to 0$$

The residual is a computable quantity! Note that

$$r^{(k)} = b - Ax^{(k)} = A\hat{x} - Ax^{(k)} = Ae^{(k)}$$

In what follows we assume that
$$x^{(0)} = 0$$

I**ntroduction** Optimal Krylov subspace methods Non-Optimal Krylov subspace methods

How do we find iterates $x^{(k)}$?

Task: Given b find x s.t. Ax = b or

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, \quad i = 1, \dots, n$$
 (*)

Idea: Solve for x_i in (*) for each i

• Jacobi iteration for $i = 1, \ldots, n$

$$x_i^{(k+1)} = x_i^{(k)} + \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^n a_{ij} x_j^{(k)} \right)$$

• Gauss-Seidel iteration for $i = 1, \ldots, n$

$$x_i^{(k+1)} = x_i^{(k)} + \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i}^n a_{ij} x_j^{(k)} \right)$$

Introduction Optimal Krylov subspace methods Non-Optimal Krylov subspace methods

Splitting methods

Splitting methods use the additive decomposition of \boldsymbol{A}

$$A = L + D + U$$

- ► Jacobi: $x^{(k+1)} = x^{(k)} + D^{-1}r^{(k)}$
- Gauss-Seidel: $x^{(k+1)} = x^{(k)} + (D+L)^{-1}r^{(k)}$
- ► SOR: $x^{(k+1)} = x^{(k)} + (\frac{1}{\omega}D + L)^{-1}r^{(k)}$

General splitting method: A = M + N

 $x^{(k+1)} = x^{(k)} + M^{-1}r^{(k)} \Longrightarrow e^{(k+1)} = e^{(k)} - M^{-1}Ae^{(k)}$

Convergent iff $||I - M^{-1}A|| < 1$ for some norm $||\cdot||$

Often used as preconditioners (\rightarrow Solvers II)

Introduction Optimal Krylov subspace methods Non-Optimal Krylov subspace methods

Linear Algebra (Minimal polynomial)

Let p_m^\star be the polynomial of smallest degree m s.t.

 $p_m^\star(A)=0 \quad \text{with} \quad p^\star(0)=1 \ \Leftrightarrow \ p_m^\star(t)=1-tq_{m-1}^\star(t).$

Consequence: $A^{-1} = q_{m-1}^{\star}(A)$, a polynomial in A!

 \Rightarrow Solution \hat{x} of Ax = b given by $q_{m-1}^{\star}(A)b$

Idea: Polynomial approximations $x^{(k)}$ of \hat{x} by

$$x^{(k)} = q_k(A)b, \quad q_k(t) \in \Pi_k = \{p(t) = \sum_{\ell=0}^k \alpha_\ell t^\ell\}$$

Requirements: Computation of $x^{(k+1)}$ needs

- multiplication by A
- update of coefficients $\alpha_1, \ldots, \alpha_{k+1}$

BERGISCHE

Motivation and Notation Direct methods Iterative solvers The Krylov Zoo Introduction **Optimal Krylov subspace methods** Non-Optimal Krylov subspace methods

Krylov subspace methods

Krylov subspace methods

Approximation $x^{(k)}$ of the solution \hat{x} in Krylov subspace

$$\mathcal{K}_k(A,b) = \{p(A)b : p \in \Pi_{k-1}\} = \operatorname{span}\{b, Ab, \dots, A^{k-1}b\}$$

Polynomial connection:

▶
$$x^{(k)} = q_{k-1}(A)b$$
, deg $q_{k-1} \le k-1$
▶ $r^{(k)} = p_k(A)b$, $e^{(k)} = p_k(A)e^{(0)}$, $p_k = 1 - tq_{k-1}$

One-to-one correspondence: Any sequence p_k with $p_k(0) = 1$ defines $r^{(k)} = p_k(A)b$, $x^{(k)} = q_{k-1}(A)b$.

Categories:

- ▶ stationary (e.g. Richardson, Chebyshev): p_k indept of b
- non-stationary (e.g. CG, GMRES, ...): p_k adapts to b

BERGISCHE

Motivation and Notation Direct methods Iterative solvers The Krylov Zoo Introduction **Optimal Krylov subspace methods** Non-Optimal Krylov subspace methods

Example: Richardson iteration

For A hermitian positive definite, i.e., $\operatorname{spec}(A) \subseteq \mathbb{R}^+$

Richardson Iteration *b* given, $x^{(0)} = 0$, $\alpha > ||A||_2/2$ for k = 0, 1, 2, ... do $x^{(k+1)} = (I - \alpha^{-1}A)x^{(k)} + \alpha^{-1}b$ end for $||A||_2$

We have

 $\begin{array}{lll} r^{(k)} &=& p_k(A)b &\in \mathcal{K}_{k+1}(A,b) \text{ with } p_k(t) = (1-\alpha^{-1}t)^k \\ e^{(k)} &=& p_k(A)e^{(0)} \\ x^{(k)} &=& q_{k-1}(A)b &\in \mathcal{K}_k(A,b) & \text{ with } p_k(t) = 1-tq_{k-1}(t) \end{array}$ a stationary Krylov subspace method!

Introduction **Optimal Krylov subspace methods** Non-Optimal Krylov subspace methods

14/32

Krylov subspace methods — Theory

Does Richardson iteration converge? We have

$$\|r^{(k)}\|_{2} = \|(I - \alpha^{-1}A)^{k}b\|_{2} \le \underbrace{\|(I - \alpha^{-1}A)\|_{2}}_{<1}^{k}\|b\|_{2} \longrightarrow 0$$

Introduction **Optimal Krylov subspace methods** Non-Optimal Krylov subspace methods

Krylov subspace methods — Theory

$$r^{(k)} = p_k(A)b, \quad e^{(k)} = p_k(A)e^{(0)}$$

$$\implies ||r^{(k)}|| \le ||p_k(A)|| ||b||, \quad ||e^{(k)}|| \le ||p_k(A)|| ||e^{(0)}||$$

Notation:
$$\overline{\Pi}_k = \{p \in \Pi_k, p(0) = 1\}$$

Better than Richardson:

- $\blacktriangleright ||p_k(A)||_2 = \max_{\lambda \in \operatorname{spec}(A)} |p_k(\lambda)|$
- "best": $p_k = \operatorname{argmin} \{ \| \tilde{p}_k(A) \|_2, \ \tilde{p}_k \in \overline{\Pi}_k \}$
- $\blacktriangleright \|p_k\|_{[\lambda_{\min},\lambda_{\max}]} = \max_{\lambda \in [\lambda_{\min},\lambda_{\max}]} |p_k(\lambda)| \ge \|p_k(A)\|_2$
- "second best":

 $p_k = \operatorname{argmin} \left\{ \| \tilde{p}_k(A) \|_{[\lambda_{\min}, \lambda_{\max}]}, \, \tilde{p}_k \in \overline{\Pi}_k \right\}$

► Solution for "second best" is known: Chebyshev polynomials ⇒ Chebyshev iteration

Introduction **Optimal Krylov subspace methods** Non-Optimal Krylov subspace methods

Krylov subspace methods — Theory

$$r^{(k)} = p_k(A)b, \quad e^{(k)} = p_k(A)e^{(0)}$$

Even better:

- Minimize $||p_k(A)e^{(0)}|| = ||e^{(k)}||$ over all p_k
- Without knowing $e^{(0)}$????
- Works for the A-norm

$$\|x\|_A = \langle x, x \rangle_A^{\frac{1}{2}}$$
 with $\langle x, y \rangle_A = \langle Ax, y \rangle$

Method of conjugate gradients (CG)

BERGISCHE UNIVERSITÄT <u>WUPPER</u>TAL Motivation and Notation Direct methods Iterative solvers The Kryloy Zoo

Introduction **Optimal Krylov subspace methods** Non-Optimal Krylov subspace methods

Conjugate Gradients — Algorithm

Conjugate Gradients

$$r^{(0)} = b, p^{(0)} = r^{(0)}$$

for $k = 1, 2, \dots$ do

$$\begin{aligned} \alpha_{k-1} &= \frac{\langle r^{(k-1)}, r^{(k-1)} \rangle_2}{\langle Ap^{(k-1)}, p^{(k-1)} \rangle_2} \\ x^{(k)} &= x^{(k-1)} + \alpha_{k-1} p^{(k-1)} \\ r^{(k)} &= r^{(k-1)} - \alpha_{k-1} A p^{(k-1)} \\ \beta_{k-1} &= \frac{\langle r^{(k)}, r^{(k)} \rangle_2}{\langle r^{(k-1)}, r^{(k-1)} \rangle_2} \\ p^{(k)} &= r^{(k)} + \beta_{k-1} p^{(k-1)} \end{aligned}$$
end for

Minimization of the functional

$$\mathcal{L}(x) = \frac{1}{2} \langle x, x \rangle_A - \langle x, b \rangle_2 = \frac{1}{2} \left(\|e\|_A^2 - \|\hat{x}\|_A^2 \right)$$

$$\blacktriangleright p^{(k)} \text{ conjugate gradients of } \mathcal{L}$$

BERGISCHE

Motivation and Notation Direct methods **Iterative solvers** The Krylov Zoo Introduction Optimal Krylov subspace methods Non-Optimal Krylov subspace methods

Conjugate Gradients — Properties

- $1. \ A$ must be hermitian and positive definite
- 2. Minimal error in $\|.\|_A$ for $x^{(k)} \in \mathcal{K}_k(A, b)$

$$\|e^{(k)}\| = \min_{p_k \in \overline{\Pi}_k} \|p_k(A)e^{(0)}\|_A \leq \frac{1}{\cosh\left(k\ln\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)} \|e^{(0)}\|_A$$
$$\leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^k \|e^{(0)}\|_A$$

- 3. Variational property $r^{(k)} \perp \mathcal{K}_k(A, b)$
- 4. Minimization of the functional

$$\mathcal{L}(x) = \frac{1}{2} \langle x, x \rangle_A - \langle x, b \rangle_2, \quad x \in \mathcal{K}_k(A, b)$$

5. Short recurrence, i.e., $\boldsymbol{x}^{(k+1)}$ requires only $\boldsymbol{x}^{(k)}$

Optimal Krylov subspace methods II — CR and MINRES

For A hermitian find the Krylov subspace method with

$$\min_{x^{(k)} \in \mathcal{K}_k(A,b)} \|b - Ax^{(k)}\|_2 = \min_{x^{(k)} \in \mathcal{K}_k(A,b)} \|r^{(k)}\|_2$$

The optimal method w.r.t. $\|.\|_2$ is known as conjugate residuals (CR)

Similar to CG, CR introduces search directions $p^{(k)}$

- ▶ The residuals are conjugate, i.e. $\langle r^{(k)}, Ar^{(\ell)} \rangle = 0$ for $k \neq \ell$
- The $Ap^{(k)}$ are mutually orthogonal
- Short recurrence: $x^{(k+1)}$ requires only $x^{(k)}$

BERGISCHE UNIVERSITÄT WUPPERTAL tivation and Notation Direct methods Iterative solvers The Krylov Zoo Introduction **Optimal Krylov subspace methods** Non-Optimal Krylov subspace methods

-1

Conjugate Residuals (CR)

$$\begin{split} r^{(0)} &= b, p^{(0)} = r^{(0)} \\ \text{for } k &= 1, 2, \dots \text{ do} \\ \alpha_{k-1} &= \frac{\langle r^{(k-1)}, Ar^{(k-1)} \rangle_2}{\langle Ap^{(k-1)}, Ap^{(k-1)} \rangle_2} \\ x^{(k)} &= x^{(k-1)} + \alpha_{k-1} p^{(k-1)} \\ r^{(k)} &= r^{(k-1)} - \alpha_{k-1} A p^{(k-1)} \\ \beta_{k-1} &= \frac{\langle r^{(k)}, Ar^{(k)} \rangle_2}{\langle r^{(k-1)}, Ar^{(k-1)} \rangle_2} \\ p^{(k)} &= r^{(k)} + \beta_{k-1} p^{(k-1)} \\ \text{Compute } Ap_k &= Ar_k + \beta_{k-1} A p_k \\ \text{end for} \end{split}$$

- ► CR can break down (division by 0) if A is indefinite
- MINRES is a break-down free, short-recurrence realization of CR (works for any hermitian A)

Introduction **Optimal Krylov subspace methods** Non-Optimal Krylov subspace methods

Optimal Krylov subspace methods II — GMRES

What if A is not hermitian? Optimality w.r.t. $\|.\|_2$ possible

$$\min_{x^{(k)} \in \mathcal{K}_k(A,b)} \|b - Ax^{(k)}\|_2 = \min_{x^{(k)} \in \mathcal{K}_k(A,b)} \|r^{(k)}\|_2$$

Idea: For orthonormal basis v_1, \ldots, v_k of $\mathcal{K}_k(A, b)$

$$x \in \mathcal{K}_k(A, b) \Longrightarrow x = \sum_{\ell=1}^k v_\ell y_\ell = [v_1 \mid \ldots \mid v_k] y = V_k y$$

Hence we find

$$\min_{x^{(k)} \in \mathcal{K}_k(A,b)} \|b - Ax^{(k)}\|_2 = \min_{y} \|b - AV_ky\|_2$$

Introduction **Optimal Krylov subspace methods** Non-Optimal Krylov subspace methods

The Arnoldi Iteration

Compute orthonormal basis $\{v_1, \ldots, v_k\}$ of $\mathcal{K}_k(A, b)$

Arnoldi Iteration

$$\beta = ||b||_{2}, v_{1} = \beta^{-1}b$$
for $k = 1, 2, ...$ do
 $q = Av_{k}$
for $j = 1, ..., k$ do
 $h_{j,k} = \langle v_{j}, q \rangle_{2}$
 $q = q - h_{j,k}v_{j}$
end for
 $h_{k+1,k} = ||q||_{2}$
 $v_{k+1} = h_{k+1,k}^{-1}q$
end for

With $V_k = [v_1 \mid \ldots \mid v_k]$ and

$$H_{k+1,k} =$$

we have the Arnoldi relation

$$AV_k = V_{k+1}H_{k+1,k}$$

with
$$V_k^\dagger V_k = I$$

Introduction **Optimal Krylov subspace methods** Non-Optimal Krylov subspace methods

Optimal Krylov subspace methods III — GMRES

Using the Arnoldi relation in (\star) we find

$$\min_{y} \|b - AV_{k}y\|_{2} = \min_{y} \|b - V_{k+1}H_{k+1,k}y\|_{2}$$

Since V_{k+1} has orthonormal columns and $v_1 = \|b\|_2^{-1}b$

$$\min_{y} \|b - V_{k+1}H_{k+1,k}V_{k}y\|_{2} = \min_{y} \|\|b\|_{2}e_{1} - H_{k+1,k}y\|_{2}$$

Naïve GMRES
for
$$k = 1, 2, ...$$
 do
Compute $v_k, H_{k+1,k}$ (Arnoldi)
Solve $\operatorname{argmin}_y |||b||_2 e_1 - H_{k+1,k} y||_2$
 $x^{(k)} = V_k y$
end for

Introduction **Optimal Krylov subspace methods** Non-Optimal Krylov subspace methods

Restarted GMRES

Although an optimal method, GMRES has severe drawbacks:

- The computation of $x^{(k)}$ requires $V_k = [v_1 \mid \ldots \mid v_k]$
 - \Rightarrow Storage requirements grow with k
 - \Rightarrow Computation time in Arnoldi grows with k
- Least-Squares solution requires $\mathcal{O}(k^3)$ operations
- **Idea:** Restart GMRES every *m*-iterations (\Rightarrow GMRES(*m*))

$\mathsf{GMRES}(m)$

for
$$\ell = 0, 1, ...$$
 do
 $r^{(0)} = b - Ax^{(0)}, \beta = ||r^{(0)}||_2, v_1 = \beta^{-1}r^{(0)}$
Compute $V_m, H_{m+1,m}$ (Arnoldi)
 $y_m = \operatorname{argmin}_y ||\beta e_1 - H_{m+1,m}y||_2$
 $x^{(0)} = x^{(0)} + V_m y_m$
end for

BERGISCHE

Motivation and Notation Direct methods Iterative solvers The Krylov Zoo Introduction <mark>Optimal Krylov subspace methods</mark> Non-Optimal Krylov subspace methods

Optimal Krylov subspace methods — Summary

	requirements	optimality	recurrence
CG	$A = A^{\dagger} \\ \langle x, x \rangle_A > 0, x \neq 0$	$\ \cdot\ _A$	short
MINRES*	$A = A^{\dagger}$	$\ .\ _2$	short
GMRES [†]	GMRES [†] none		long

- What are the requirements for short recurrence?
- Do non-optimal methods exists with short recurrence?

 * mathematically equivalent, but possibly unstabe: CR † mathematically equivalent, but possibly unstabe: GCR

Iterative solvers

Faber-Manteuffel Theorem

The Faber-Manteuffel Theorem

There exists an optimal method with (s + 2)-term recurrence iff A is s-normal, i.e., $A^{\dagger} = p(A), \quad p \in \Pi_s$

- A normal $\Longrightarrow A^{\dagger} = p(A), \quad p \in \Pi_{n-1}$
- A hermitian, $A^{\dagger} = A \longrightarrow (3\text{-term recurrence})$
- A anti-hermitian $A^{\dagger} = -A \longrightarrow (3\text{-term recurrence})$
 - Chiral operator $\gamma_5 D = -D\gamma_5 \Longrightarrow D^{\dagger} = -D$

Introduction Optimal Krylov subspace methods Non-Optimal Krylov subspace methods

Barth-Manteuffel Theorem — Ginsparg-Wilson relation

The Barth-Manteuffel Theorem

There exists an optimal method with (s+2,t)-term recurrence iff A is (s,t)-normal, i.e.,

$$A^{\dagger} = \frac{p(A)}{q(A)}, \quad p \in \Pi_s, q \in \Pi_t$$

- Methods have multiple recursions
- Occurrence in Lattice QCD: Ginsparg-Wilson relation

$$D\gamma_5 + \gamma_5 D = aD\gamma_5 D \iff \gamma_5 (I - aD)D^{\dagger} = -\gamma_5 D$$
$$\iff D^{\dagger} = (I - aD)^{-1}D$$

Non-optimal Krylov subspace methods — BCG

What if no optimal short recurrence method exists for A?

Ansatz: Throw optimality over board!

Instead of building one Krylov subspace build two

 $\mathcal{K}_k(A, r^{(0)})$ and $\mathcal{K}_k(A^{\dagger}, \tilde{r}^{(0)})$

- bi-orthogonalization
- Similar to CG, the residuals of BCG fulfill

 $r^{(k)} \perp \mathcal{K}_k(A^{\dagger}, \tilde{r}^{(0)})$

- Not optimal in any norm
 - erratic convergence behaviour (ightarrow excercises)
 - breakdowns can occur, i.e., convergence not guaranteed
- BiCGstab is a stabilized variant of BCG

BERGISCHE UNIVERSITÄT WUPPERTAL Notivation and Notation Direct methods Iterative solvers The Krylov Zoo Introduction Optimal Krylov subspace methods Non-Optimal Krylov subspace methods

BiCGstab

$$\begin{array}{l} r^{(0)} = b, \beta_0 = 0 \\ \hat{r} = r & \text{shadow residual } \langle r, \hat{r} \rangle_2 \neq 0 \\ \text{for } k = 0, 1, \dots \text{ do} \\ \rho_k = \langle r^{(k)}, \hat{r} \rangle_2 \\ \beta_k = \frac{\rho_k}{\rho_{k-1}} \cdot \frac{\alpha_{k-1}}{\omega_{k-1}} \\ p^{(k)} = r^{(k)} + \beta_k (p^{k-1} - \omega_{k-1} v^{(k-1)}) \\ \alpha_k = \frac{\rho_k}{\langle Ap^{(k)}, \hat{r} \rangle_2} \\ x^{(k+\frac{1}{2})} = x^{(k)} + \alpha_k p^{(k)} \\ s^{(k)} = r^{(k)} - \alpha_k Ap^{(k)} \\ \omega_k = \frac{\langle s^{(k)}, As^{(k)} \rangle_2}{\langle As^{(k)}, As^{(k)} \rangle_2} \\ x^{(k+1)} = x^{(k+\frac{1}{2})} + \omega_k s^{(k)} \\ r^{(k+1)} = s^{(k)} - \omega_k As^{(k)} \\ \text{end for} \end{array}$$

The Zoo Summary

List of Methods

	requirements	optimal	recurrence	
CG	hpd	$\ \cdot\ _A$	short	
MINRES	hermitian	$\ \cdot \ _2$	short	
GMRES	none	$\ \cdot\ _2$	long	ightarrow restarts
CGN	none	$\ \cdot\ _{A^{\dagger}A}$	short	$A^{\dagger}Ax = A^{\dagger}b$
BCG	none	no	short	similar to CG unstable
QMR	none	no	short	similar to GMRES
BiCGstab	none	no	short	breakdowns
SUMR	shifted unitary	$\ .\ _{2}$	short	multiple recursion

More on Krylov subspace methods: [3, 6].

RERGISCHE

Krylov subspace methods are all-duty solvers

- \blacktriangleright require only multiplication by $A\cdot$ and inner products
 - easy to implement (especially if A is already done)
 - easy to parallelize $(\log(p)$ -scaling due to inner products)
- ► Whenever short-term recurrence is possible
 - constant cost per iteration
 - constant memory consumption
- If only long-term recurrence is possible
 - restarts limit amount of work
 - deflated-restarts are even more efficient (\rightarrow Solvers II)
- \blacktriangleright Convergence speed depends on the spectrum of A
 - ▶ separation from the origin important (since $p_k \in \overline{\Pi}_k$)
 - ▶ preconditioning improves performance (→ Solvers II)

BERGISCHE Motiva UNIVERSITÄT WUPPERTAL

tivation and Notation Direct methods Iterative solvers The Krylov Zoo The Zoo Summary

T. Barth and T. Manteuffel.

Multiple recursion conjugate gradient algorithms. I. sufficient conditions. *SIAM J. Matrix Anal. Appl.*, 21, 2000.

V. Faber and T. Manteuffel.

Necessary and sufficient conditions for the existence of a conjugate gradient method.

SIAM J. Numer. Anal., 21, 1984.

A. Greenbaum.

Iterative Methods for Solving Linear Systems, volume 17 of Frontiers in Applied Mathematics.

Society for Industrial and Applied Mathematics, 1997.

M. Hestenes and E. Stiefels. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, Section B, 49, 1952.

C. Jagels and L. Reichel. A fast minimal residual algorithm for shifted unitary matrices. *Numer. Linear Algebra Appl.*, 1, 1994.

Y. Saad.

Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics, 2nd edition, 2003.

