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Motivation
Notations

Linear systems of equations in Lattice QCD

In Lattice QCD codes roughly 85% of time is spent solving
linear systems of equations of the type

Dψ = ϕ (?)

Hence it is of utmost importance to find efficient solvers!

Solving (?) is required in many situations, e.g.,
I in the calculation of Propagators
I in the hybrid Monte-Carlo process

Depending on the discretization and situation
I D is sparse (e.g., Wilson) or dense (e.g., Overlap)
I One has to solve only for one rhs or for many rhs’

All this information should influence the choice of solver!
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Motivation
Notations

Discretizations of the Dirac operator

Discretizations by covariant finite-differences

dµψx = a−1(Uµ
x−aµψx−aµ − (Uµ

x )† ψx+aµ)

I Wilson discretization (stabilizing 2nd order term)

DW =
4∑

µ=1

(γµ ⊗ dµ + a−1d2
µ) ∈ C12L3

sLt×12L3
sLt

Non-hermitian, sparse (next-neighbor), (γ5D)† = γ5D

I Overlap discretization (Ginsparg-Wilson)

DO = I + γ5 sign(γ5(DW −m)) ∈ C12L3
sLt×12L3

sLt
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Motivation
Notations

Properties of linear systems in Lattice QCD

Typical discretizations yield linear systems Dψ = ϕ where

I D is non-hermitian, yet (γ5D)† = γ5D

I spec(D) lies in the right half-plane

I D is very large (on a 323 × 64 lattice ≈ 25M unknowns)

I D is sparse, i.e., contains only next-neighbor couplings

≈ 100 non-zeroes per row

Matrix-Vector operations are cheap O(L3
sLt) = O(V )

In implementations D · x is often highly optimized

→ use this in solvers for Dψ = ϕ

Andreas Frommer, Björn Leder based on a lecture by Karsten Kahl, Solvers I — Basics 4/32



Motivation and Notation
Direct methods
Iterative solvers
The Krylov Zoo

Motivation
Notations

Notations

I Linear system of equations∑n
j=1 aijxj = bi, i = 1, . . . , n

Ax = b, A ∈ Cn×n, x ∈ Cn, b ∈ Cn

I Euclidean inner product

〈x, y〉2 = y†x =
n∑
i=1

ȳixi

I Adjoint A† of A w.r.t. 〈., .〉2
〈Ax, y〉2 = 〈x,A†y〉2

I A hermitian ⇐⇒ A† = A
I A hermitian positive definite

A† = A and x†Ax > 0, x 6= 0
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Direct methods

Idea: Solve Ax = b by row-/column-manipulations

I Usually based on factorizing the system matrix A
I Methods based on Gaussian elimination

I A = LU : LU factorization

A =
L

· U

I A = LDL∗: Cholesky factorization (A hermitian)

⊕ No restrictions on applications

	 Expensive methods (O(n3) for dense matrices)
I Methods exploiting sparsity exist, reducing complexity

Other “direct” methods (limited to certain applications)
I Fast-Fourier-Transform (O(nlog(n)))
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Iterative solvers

Given: Ax = b with solution x̂, A sparse

Find: Approximations x(k), k = 1, 2, . . . s.t. x(k) → x̂

1. How do we measure convergence x(k) → x̂?
I “Computable” measures (→ stopping criteria)?
I Monotone convergence in suitable norm possible?

2. How do we find iterates x(k) such that
I the iterative process converges, i.e., x(k) → x̂?
I there is a “simple” update formula for x(k+1)?
I each iteration only requires the action of A on vector?
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How do we measure convergence?

Given: Iterate x(k) in the kth iteration

I Using the error e(k) = x̂− x(k)

x(k) → x̂ =⇒ ||e(k)|| → 0

In most cases the error is not readily computable!

I Using the residual r(k) = b− Ax(k)

x(k) → x̂ =⇒ ||r(k)|| → 0

The residual is a computable quantity! Note that

r(k) = b− Ax(k) = Ax̂− Ax(k) = Ae(k)

In what follows we assume that x(0) = 0
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How do we find iterates x(k)?

Task: Given b find x s.t. Ax = b or
n∑
j=1

aijxj = bi, i = 1, . . . , n (∗)

Idea: Solve for xi in (∗) for each i
I Jacobi iteration for i = 1, . . . , n

x
(k+1)
i = x

(k)
i +

1

aii

(
bi −

n∑
j=1

aijx
(k)
j

)
I Gauss-Seidel iteration for i = 1, . . . , n

x
(k+1)
i = x

(k)
i +

1

aii

(
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i

aijx
(k)
j

)
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Splitting methods

Splitting methods use the additive decomposition of A

A =
L

+
D

+
U

I Jacobi: x(k+1) = x(k) +D−1r(k)

I Gauss-Seidel: x(k+1) = x(k) + (D + L)−1r(k)

I SOR: x(k+1) = x(k) + ( 1
ω
D + L)−1r(k)

General splitting method: A = M +N

x(k+1) = x(k) +M−1r(k) =⇒ e(k+1) = e(k) −M−1Ae(k)

Convergent iff ‖I −M−1A‖ < 1 for some norm ‖ · ‖
Often used as preconditioners (→ Solvers II)
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Linear Algebra (Minimal polynomial)

Let p?m be the polynomial of smallest degree m s.t.

p?m(A) = 0 with p?(0) = 1 ⇔ p?m(t) = 1− tq?m−1(t).

Consequence: A−1 = q?m−1(A), a polynomial in A!

⇒ Solution x̂ of Ax = b given by q?m−1(A)b

Idea: Polynomial approximations x(k) of x̂ by

x(k) = qk(A)b, qk(t) ∈ Πk = {p(t) =
k∑
`=0

α`t
`}

Requirements: Computation of x(k+1) needs
I multiplication by A
I update of coefficients α1, . . . , αk+1
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Krylov subspace methods

Krylov subspace methods

Approximation x(k) of the solution x̂ in Krylov subspace

Kk(A, b) = {p(A)b : p ∈ Πk−1} = span{b, Ab, . . . , Ak−1b}

Polynomial connection:
I x(k) = qk−1(A)b, deg qk−1 ≤ k − 1
I r(k) = pk(A)b, e(k) = pk(A)e(0), pk = 1− tqk−1

One-to-one correspondence: Any sequence pk with
pk(0) = 1 defines r(k) = pk(A)b, x(k) = qk−1(A)b.

Categories:
I stationary (e.g. Richardson, Chebyshev): pk indept of b
I non-stationary (e.g. CG, GMRES, . . . ): pk adapts to b
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Example: Richardson iteration

For A hermitian positive definite, i.e., spec(A) ⊆ R+

Richardson Iteration

b given, x(0) = 0, α > ‖A‖2/2
for k = 0, 1, 2, . . . do
x(k+1) = (I − α−1A)x(k) + α−1b

end for x

y

‖A‖2

1
pk(t)

We have

r(k) = pk(A)b ∈ Kk+1(A, b) with pk(t) = (1− α−1t)k

e(k) = pk(A)e(0)

x(k) = qk−1(A)b ∈ Kk(A, b) with pk(t) = 1− tqk−1(t)

a stationary Krylov subspace method!
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Krylov subspace methods — Theory

Does Richardson iteration converge? We have

‖r(k)‖2 = ‖(I − α−1A)kb‖2 ≤ ‖(I − α−1A)‖2︸ ︷︷ ︸
<1

k‖b‖2 −→ 0

Best choice for α :

α =
λmax + λmin

2
⇒ ‖(I − α−1A)‖2 =

κ− 1

κ+ 1
, κ =

λmax

λmin

.

x

y

λmin λmax

1

−1
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Krylov subspace methods — Theory

r(k) = pk(A)b, e(k) = pk(A)e(0)

=⇒ ‖r(k)‖ ≤ ‖pk(A)‖‖b‖, ‖e(k)‖ ≤ ‖pk(A)‖‖e(0)‖

Notation: Πk = {p ∈ Πk, p(0) = 1}

Better than Richardson:

I ‖pk(A)‖2 = maxλ∈spec(A) |pk(λ)|
I “best”: pk = argmin

{
‖p̃k(A)‖2, p̃k ∈ Πk

}
I ‖pk‖[λmin,λmax] = maxλ∈[λmin,λmax] |pk(λ)| ≥ ‖pk(A)‖2

I “second best”:
pk = argmin

{
‖p̃k(A)‖[λmin,λmax], p̃k ∈ Πk

}
I Solution for “second best” is known:

Chebyshev polynomials ⇒ Chebyshev iteration
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Krylov subspace methods — Theory

r(k) = pk(A)b, e(k) = pk(A)e(0)

Even better:
I Minimize ‖pk(A)e(0)‖ = ‖e(k)‖ over all pk
I Without knowing e(0) ????
I Works for the A-norm

‖x‖A = 〈x, x〉
1
2
A with 〈x, y〉A = 〈Ax, y〉

I Method of conjugate gradients (CG)

x

y

λmin λmax

1

−1
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Conjugate Gradients — Algorithm

Conjugate Gradients

r(0) = b, p(0) = r(0)

for k = 1, 2, . . . do

αk−1 = 〈r(k−1),r(k−1)〉2
〈Ap(k−1),p(k−1)〉2

x(k) = x(k−1) + αk−1p
(k−1)

r(k) = r(k−1) − αk−1Ap
(k−1)

βk−1 = 〈r(k),r(k)〉2
〈r(k−1),r(k−1)〉2

p(k) = r(k) + βk−1p
(k−1)

end for

Minimization of the functional
L(x) = 1

2
〈x, x〉A − 〈x, b〉2 = 1

2

(
‖e‖2

A − ‖x̂‖2
A

)
I p(k) conjugate gradients of L
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Conjugate Gradients — Properties

1. A must be hermitian and positive definite

2. Minimal error in ‖.‖A for x(k) ∈ Kk(A, b)
‖e(k)‖ = min

pk∈Πk

‖pk(A)e(0)‖A ≤ 1

cosh
(
k ln

√
κ−1√
κ+1

)‖e(0)‖A

≤ 2
(√

κ−1√
κ+1

)k
‖e(0)‖A

3. Variational property r(k) ⊥ Kk(A, b)
4. Minimization of the functional

L(x) =
1

2
〈x, x〉A − 〈x, b〉2, x ∈ Kk(A, b)

5. Short recurrence, i.e., x(k+1) requires only x(k)
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Optimal Krylov subspace methods II — CR and MINRES

For A hermitian find the Krylov subspace method with

min
x(k)∈Kk(A,b)

‖b− Ax(k)‖2 = min
x(k)∈Kk(A,b)

‖r(k)‖2

The optimal method w.r.t. ‖.‖2 is known as conjugate
residuals (CR)

Similar to CG, CR introduces search directions p(k)

I The residuals are conjugate, i.e. 〈r(k), Ar(`)〉 = 0 for k 6= `

I The Ap(k) are mutually orthogonal

I Short recurrence: x(k+1) requires only x(k)
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Conjugate Residuals (CR)

r(0) = b, p(0) = r(0)

for k = 1, 2, . . . do

αk−1 = 〈r(k−1),Ar(k−1)〉2
〈Ap(k−1),Ap(k−1)〉2

x(k) = x(k−1) + αk−1p
(k−1)

r(k) = r(k−1) − αk−1Ap
(k−1)

βk−1 = 〈r(k),Ar(k)〉2
〈r(k−1),Ar(k−1)〉2

p(k) = r(k) + βk−1p
(k−1)

Compute Apk = Ark + βk−1Apk−1

end for

I CR can break down (division by 0) if A is indefinite
I MINRES is a break-down free, short-recurrence realization

of CR (works for any hermitian A)
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Optimal Krylov subspace methods II — GMRES

What if A is not hermitian? Optimality w.r.t. ‖.‖2 possible

min
x(k)∈Kk(A,b)

‖b− Ax(k)‖2 = min
x(k)∈Kk(A,b)

‖r(k)‖2

Idea: For orthonormal basis v1, . . . , vk of Kk(A, b)

x ∈ Kk(A, b) =⇒ x =
k∑
`=1

v`y` = [v1 | . . . | vk]y = Vky

Hence we find

min
x(k)∈Kk(A,b)

‖b− Ax(k)‖2 = min
y
‖b− AVky‖2 (?)
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The Arnoldi Iteration

Compute orthonormal basis {v1, . . . , vk} of Kk(A, b)

Arnoldi Iteration

β = ‖b‖2, v1 = β−1b
for k = 1, 2, . . . do
q = Avk
for j = 1, . . . , k do
hj,k = 〈vj, q〉2
q = q − hj,kvj

end for
hk+1,k = ‖q‖2

vk+1 = h−1
k+1,kq

end for

With Vk = [v1 | . . . | vk] and

Hk+1,k =

we have the Arnoldi relation

AVk = Vk+1Hk+1,k

with V †k Vk = I
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Optimal Krylov subspace methods III — GMRES

Using the Arnoldi relation in (?) we find

min
y
‖b− AVky‖2 = min

y
‖b− Vk+1Hk+1,ky‖2

Since Vk+1 has orthonormal columns and v1 = ‖b‖−1
2 b

min
y
‖b− Vk+1Hk+1,kVky‖2 = min

y
‖‖b‖2e1 −Hk+1,ky‖2

Näıve GMRES

for k = 1, 2, . . . do
Compute vk, Hk+1,k (Arnoldi)
Solve argminy ‖‖b‖2e1 −Hk+1,ky‖2

x(k) = Vky
end for
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Restarted GMRES

Although an optimal method, GMRES has severe drawbacks:

I The computation of x(k) requires Vk = [v1 | . . . | vk]
⇒ Storage requirements grow with k
⇒ Computation time in Arnoldi grows with k

I Least-Squares solution requires O(k3) operations

Idea: Restart GMRES every m-iterations (⇒ GMRES(m))

GMRES(m)

for ` = 0, 1, . . . do
r(0) = b− Ax(0), β = ‖r(0)‖2, v1 = β−1r(0)

Compute Vm, Hm+1,m (Arnoldi)
ym = argminy ‖βe1 −Hm+1,my‖2

x(0) = x(0) + Vmym
end for
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Optimal Krylov subspace methods — Summary

requirements optimality recurrence

CG
A = A† ‖.‖A short〈x, x〉A > 0, x 6= 0

MINRES∗ A = A† ‖.‖2 short

GMRES† none ‖.‖2 long

I What are the requirements for short recurrence?

I Do non-optimal methods exists with short recurrence?

∗mathematically equivalent, but possibly unstabe: CR
†mathematically equivalent, but possibly unstabe: GCR
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Faber-Manteuffel Theorem

The Faber-Manteuffel Theorem

There exists an optimal method with (s + 2)-term recurrence
iff A is s-normal, i.e., A† = p(A), p ∈ Πs

I A normal =⇒ A† = p(A), p ∈ Πn−1

I A hermitian, A† = A −→ (3-term recurrence)

I A anti-hermitian A† = −A −→ (3-term recurrence)

I Chiral operator γ5D = −Dγ5 =⇒ D† = −D
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Barth-Manteuffel Theorem — Ginsparg-Wilson relation

The Barth-Manteuffel Theorem

There exists an optimal method with (s+ 2, t)-term recurrence
iff A is (s, t)-normal, i.e.,

A† =
p(A)

q(A)
, p ∈ Πs, q ∈ Πt

I Methods have multiple recursions

I Occurrence in Lattice QCD: Ginsparg-Wilson relation

Dγ5 + γ5D = aDγ5D ⇐⇒ γ5(I − aD)D† = −γ5D

⇐⇒ D† = (I − aD)−1D

I D fulfills Ginsparg-Wilson ⇐⇒ D is (1, 1)-normal
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Non-optimal Krylov subspace methods — BCG

What if no optimal short recurrence method exists for A?

Ansatz: Throw optimality over board!
I Instead of building one Krylov subspace build two

Kk(A, r(0)) and Kk(A†, r̃(0))

I bi-orthogonalization

I Similar to CG, the residuals of BCG fulfill

r(k) ⊥ Kk(A†, r̃(0))

I Not optimal in any norm
I erratic convergence behaviour (→ excercises)
I breakdowns can occur, i.e., convergence not guaranteed

I BiCGstab is a stabilized variant of BCG
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BiCGstab

r(0) = b, β0 = 0
r̂ = r shadow residual 〈r, r̂〉2 6= 0
for k = 0, 1, . . . do
ρk = 〈r(k), r̂〉2
βk = ρk

ρk−1
· αk−1

ωk−1

p(k) = r(k) + βk(pk−1 − ωk−1v(k−1))
αk = ρk

〈Ap(k),r̂〉2
x(k+

1
2 ) = x(k) + αkp

(k)

s(k) = r(k) − αkAp(k) s(k) ≡ r(k+ 1
2 )

ωk = 〈s(k),As(k)〉2
〈As(k),As(k)〉2

x(k+1) = x(k+
1
2 ) + ωks

(k)

r(k+1) = s(k) − ωkAs(k)
end for
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List of Methods

requirements optimal recurrence

CG hpd ‖.‖A short
MINRES hermitian ‖.‖2 short

GMRES none ‖.‖2 long → restarts

CGN none ‖.‖A†A short A†Ax = A†b

BCG none no short
similar to CG
unstable

QMR none no short similar to GMRES
BiCGstab none no short breakdowns

SUMR
shifted ‖.‖2 short

multiple
unitary recursion

More on Krylov subspace methods: [3, 6].
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Krylov subspace methods are all-duty solvers

I require only multiplication by A· and inner products
I easy to implement (especially if A· is already done)
I easy to parallelize (log(p)-scaling due to inner products)

I Whenever short-term recurrence is possible
I constant cost per iteration
I constant memory consumption

I If only long-term recurrence is possible
I restarts limit amount of work
I deflated-restarts are even more efficient (→ Solvers II)

I Convergence speed depends on the spectrum of A
I separation from the origin important (since pk ∈ Πk)
I preconditioning improves performance (→ Solvers II)

Andreas Frommer, Björn Leder based on a lecture by Karsten Kahl, Solvers I — Basics 31/32



Motivation and Notation
Direct methods
Iterative solvers
The Krylov Zoo

The Zoo
Summary

T. Barth and T. Manteuffel.
Multiple recursion conjugate gradient algorithms. I. sufficient conditions.
SIAM J. Matrix Anal. Appl., 21, 2000.

V. Faber and T. Manteuffel.
Necessary and sufficient conditions for the existence of a conjugate gradient
method.
SIAM J. Numer. Anal., 21, 1984.

A. Greenbaum.
Iterative Methods for Solving Linear Systems, volume 17 of Frontiers in Applied
Mathematics.
Society for Industrial and Applied Mathematics, 1997.

M. Hestenes and E. Stiefels.
Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards, Section B, 49, 1952.

C. Jagels and L. Reichel.
A fast minimal residual algorithm for shifted unitary matrices.
Numer. Linear Algebra Appl., 1, 1994.

Y. Saad.
Iterative Methods for Sparse Linear Systems.
Society for Industrial and Applied Mathematics, 2nd edition, 2003.

Andreas Frommer, Björn Leder based on a lecture by Karsten Kahl, Solvers I — Basics 32/32


	Motivation and Notation
	Motivation
	Notations

	Direct methods
	Iterative solvers
	Introduction
	Optimal Krylov subspace methods
	Non-Optimal Krylov subspace methods

	The Krylov Zoo
	The Zoo
	Summary


