Solvers I-Basics

Lattice Practices 2014

Andreas Frommer, Björn Leder based on a lecture by Karsten Kahl

Bergische Universität Wuppertal
March 6, 2014

Outline

Motivation and Notation
Motivation
Notations
Direct methods
Iterative solvers
Introduction
Optimal Krylov subspace methods
Non-Optimal Krylov subspace methods
The Krylov Zoo
The Zoo
Summary

Linear systems of equations in Lattice QCD

In Lattice QCD codes roughly 85% of time is spent solving linear systems of equations of the type

$$
\mathbf{D} \psi=\varphi
$$

Hence it is of utmost importance to find efficient solvers!
Solving (\star) is required in many situations, e.g.,

- in the calculation of Propagators
- in the hybrid Monte-Carlo process

Depending on the discretization and situation

- D is sparse (e.g., Wilson) or dense (e.g., Overlap)
- One has to solve only for one rhs or for many rhs'

All this information should influence the choice of solver!

Discretizations of the Dirac operator

Discretizations by covariant finite-differences

$$
\mathbf{d}_{\mu} \psi_{x}=a^{-1}\left(U_{x-a \mu}^{\mu} \psi_{x-a \mu}-\left(U_{x}^{\mu}\right)^{\dagger} \psi_{x+a \mu}\right)
$$

- Wilson discretization (stabilizing $2^{\text {nd }}$ order term)

$$
\mathbf{D}_{W}=\sum_{\mu=1}^{4}\left(\gamma_{\mu} \otimes \mathbf{d}_{\mu}+a^{-1} \mathbf{d}_{\mu}^{2}\right) \quad \in \mathbb{C}^{12 L_{s}^{3} L_{t} \times 12 L_{s}^{3} L_{t}}
$$

Non-hermitian, sparse (next-neighbor), $\left(\gamma_{5} \mathbf{D}\right)^{\dagger}=\gamma_{5} \mathbf{D}$

- Overlap discretization (Ginsparg-Wilson)

$$
\mathbf{D}_{O}=I+\gamma_{5} \operatorname{sign}\left(\gamma_{5}\left(D_{W}-m\right)\right) \quad \in \mathbb{C}^{12 L_{s}^{3} L_{t} \times 12 L_{s}^{3} L_{t}}
$$

Properties of linear systems in Lattice QCD

Typical discretizations yield linear systems $\mathbf{D} \psi=\varphi$ where

- \mathbf{D} is non-hermitian, yet $\left(\gamma_{5} \mathbf{D}\right)^{\dagger}=\gamma_{5} \mathbf{D}$
- $\operatorname{spec}(\mathbf{D})$ lies in the right half-plane
- D is very large (on a $32^{3} \times 64$ lattice $\approx 25 \mathrm{M}$ unknowns)
- D is sparse, i.e., contains only next-neighbor couplings

$$
\approx 100 \text { non-zeroes per row }
$$

Matrix-Vector operations are cheap $\mathcal{O}\left(L_{s}^{3} L_{t}\right)=\mathcal{O}(V)$
In implementations $\mathbf{D} \cdot x$ is often highly optimized
\rightarrow use this in solvers for $\mathbf{D} \psi=\varphi$

Notations

- Linear system of equations

$$
\begin{aligned}
& \sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad i=1, \ldots, n \\
& \quad A x=b, \quad A \in \mathbb{C}^{n \times n}, x \in \mathbb{C}^{n}, b \in \mathbb{C}^{n}
\end{aligned}
$$

- Euclidean inner product

$$
\langle x, y\rangle_{2}=y^{\dagger} x=\sum_{i=1}^{n} \bar{y}_{i} x_{i}
$$

- Adjoint A^{\dagger} of A w.r.t. $\langle., .\rangle_{2}$

$$
\langle A x, y\rangle_{2}=\left\langle x, A^{\dagger} y\right\rangle_{2}
$$

- A hermitian $\Longleftrightarrow \quad A^{\dagger}=A$
- A hermitian positive definite

$$
A^{\dagger}=A \quad \text { and } \quad x^{\dagger} A x>0, \quad x \neq 0
$$

Direct methods

Idea: Solve $A x=b$ by row-/column-manipulations

- Usually based on factorizing the system matrix A
- Methods based on Gaussian elimination
- $A=L U$: LU factorization

- $A=L D L^{*}$: Cholesky factorization (A hermitian)
\oplus No restrictions on applications
\ominus Expensive methods ($\mathcal{O}\left(n^{3}\right)$ for dense matrices)
- Methods exploiting sparsity exist, reducing complexity

Other "direct" methods (limited to certain applications)

- Fast-Fourier-Transform $(\mathcal{O}(n \log (n)))$

Iterative solvers

Given: $A x=b$ with solution \hat{x}, A sparse
Find: Approximations $x^{(k)}, k=1,2, \ldots$ s.t. $x^{(k)} \rightarrow \hat{x}$

1. How do we measure convergence $x^{(k)} \rightarrow \hat{x}$?

- "Computable" measures (\rightarrow stopping criteria)?
- Monotone convergence in suitable norm possible?

2. How do we find iterates $x^{(k)}$ such that

- the iterative process converges, i.e., $x^{(k)} \rightarrow \hat{x}$?
- there is a "simple" update formula for $x^{(k+1)}$?
- each iteration only requires the action of A on vector?

How do we measure convergence?

Given: Iterate $x^{(k)}$ in the $k^{\text {th }}$ iteration

- Using the error $e^{(k)}=\hat{x}-x^{(k)}$

$$
x^{(k)} \rightarrow \hat{x} \Longrightarrow\left\|e^{(k)}\right\| \rightarrow 0
$$

In most cases the error is not readily computable!

- Using the residual $r^{(k)}=b-A x^{(k)}$

$$
x^{(k)} \rightarrow \hat{x} \Longrightarrow\left\|r^{(k)}\right\| \rightarrow 0
$$

The residual is a computable quantity! Note that

$$
r^{(k)}=b-A x^{(k)}=A \hat{x}-A x^{(k)}=A e^{(k)}
$$

In what follows we assume that $x^{(0)}=0$

How do we find iterates $x^{(k)}$?

Task: Given b find x s.t. $A x=b$ or

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad i=1, \ldots, n \tag{*}
\end{equation*}
$$

Idea: Solve for x_{i} in (*) for each i

- Jacobi iteration for $i=1, \ldots, n$

$$
x_{i}^{(k+1)}=x_{i}^{(k)}+\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}^{(k)}\right)
$$

- Gauss-Seidel iteration for $i=1, \ldots, n$

$$
x_{i}^{(k+1)}=x_{i}^{(k)}+\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k+1)}-\sum_{j=i}^{n} a_{i j} x_{j}^{(k)}\right)
$$

Splitting methods

Splitting methods use the additive decomposition of A

- Jacobi: $\quad x^{(k+1)}=x^{(k)}+D^{-1} r^{(k)}$
- Gauss-Seidel: $x^{(k+1)}=x^{(k)}+(D+L)^{-1} r^{(k)}$
- SOR: $\quad x^{(k+1)}=x^{(k)}+\left(\frac{1}{\omega} D+L\right)^{-1} r^{(k)}$

General splitting method: $A=M+N$

$$
x^{(k+1)}=x^{(k)}+M^{-1} r^{(k)} \Longrightarrow e^{(k+1)}=e^{(k)}-M^{-1} A e^{(k)}
$$

Convergent iff $\left\|I-M^{-1} A\right\|<1$ for some norm $\|\cdot\|$
Often used as preconditioners (\rightarrow Solvers II)

Linear Algebra (Minimal polynomial)

Let p_{m}^{\star} be the polynomial of smallest degree m s.t.

$$
p_{m}^{\star}(A)=0 \quad \text { with } \quad p^{\star}(0)=1 \Leftrightarrow p_{m}^{\star}(t)=1-t q_{m-1}^{\star}(t)
$$

Consequence: $A^{-1}=q_{m-1}^{\star}(A)$, a polynomial in A !
\Rightarrow Solution \hat{x} of $A x=b$ given by $q_{m-1}^{\star}(A) b$
Idea: Polynomial approximations $x^{(k)}$ of \hat{x} by

$$
x^{(k)}=q_{k}(A) b, \quad q_{k}(t) \in \Pi_{k}=\left\{p(t)=\sum_{\ell=0}^{k} \alpha_{\ell} t^{\ell}\right\}
$$

Requirements: Computation of $x^{(k+1)}$ needs

- multiplication by A
- update of coefficients $\alpha_{1}, \ldots, \alpha_{k+1}$

Krylov subspace methods

Krylov subspace methods

Approximation $x^{(k)}$ of the solution \hat{x} in Krylov subspace

$$
\mathcal{K}_{k}(A, b)=\left\{p(A) b: p \in \Pi_{k-1}\right\}=\operatorname{span}\left\{b, A b, \ldots, A^{k-1} b\right\}
$$

Polynomial connection:

- $x^{(k)}=q_{k-1}(A) b, \quad \operatorname{deg} q_{k-1} \leq k-1$
- $r^{(k)}=p_{k}(A) b, \quad e^{(k)}=p_{k}(A) e^{(0)}, \quad p_{k}=1-t q_{k-1}$

One-to-one correspondence: Any sequence p_{k} with $p_{k}(0)=1$ defines $r^{(k)}=p_{k}(A) b, x^{(k)}=q_{k-1}(A) b$.

Categories:

- stationary (e.g. Richardson, Chebyshev): p_{k} indept of b
- non-stationary (e.g. CG, GMRES, ...): p_{k} adapts to b

Example: Richardson iteration

For A hermitian positive definite, i.e., $\operatorname{spec}(A) \subseteq \mathbb{R}^{+}$

Richardson Iteration

$$
\begin{aligned}
& b \text { given, } x^{(0)}=0, \alpha>\|A\|_{2} / 2 \\
& \text { for } k=0,1,2, \ldots \text { do } \\
& \quad x^{(k+1)}=\left(I-\alpha^{-1} A\right) x^{(k)}+\alpha^{-1} b \\
& \text { end for }
\end{aligned}
$$

We have

$$
\begin{aligned}
& r^{(k)}=p_{k}(A) b \quad \in \mathcal{K}_{k+1}(A, b) \text { with } p_{k}(t)=\left(1-\alpha^{-1} t\right)^{k} \\
& e^{(k)}=p_{k}(A) e^{(0)} \\
& x^{(k)}=q_{k-1}(A) b \quad \in \mathcal{K}_{k}(A, b) \quad \text { with } p_{k}(t)=1-t q_{k-1}(t)^{2}
\end{aligned}
$$

a stationary Krylov subspace method!

Krylov subspace methods - Theory

Does Richardson iteration converge? We have

$$
\left\|r^{(k)}\right\|_{2}=\left\|\left(I-\alpha^{-1} A\right)^{k} b\right\|_{2} \leq \underbrace{\left\|\left(I-\alpha^{-1} A\right)\right\|_{2}^{k}}_{<1}{ }^{k}\|b\|_{2} \longrightarrow 0
$$

Best choice for α :

$$
\alpha=\frac{\lambda_{\max }+\lambda_{\min }}{2} \Rightarrow\left\|\left(I-\alpha^{-1} A\right)\right\|_{2}=\frac{\kappa-1}{\kappa+1}, \quad \kappa=\frac{\lambda_{\max }}{\lambda_{\min }} .
$$

Krylov subspace methods - Theory

$$
\begin{aligned}
& r^{(k)}=p_{k}(A) b, \quad e^{(k)}=p_{k}(A) e^{(0)} \\
\Longrightarrow \quad & \left\|r^{(k)}\right\| \leq\left\|p_{k}(A)\right\|\|b\|, \quad\left\|e^{(k)}\right\| \leq\left\|p_{k}(A)\right\|\left\|e^{(0)}\right\|
\end{aligned}
$$

Notation: $\bar{\Pi}_{k}=\left\{p \in \Pi_{k}, p(0)=1\right\}$
Better than Richardson:

- $\left\|p_{k}(A)\right\|_{2}=\max _{\lambda \in \operatorname{spec}(A)}\left|p_{k}(\lambda)\right|$
- "best": $p_{k}=\operatorname{argmin}\left\{\left\|\tilde{p}_{k}(A)\right\|_{2}, \tilde{p}_{k} \in \bar{\Pi}_{k}\right\}$
- $\left\|p_{k}\right\|_{\left[\lambda_{\text {min }}, \lambda_{\text {max }}\right]}=\max _{\lambda \in\left[\lambda_{\text {min }}, \lambda_{\text {max }}\right]}\left|p_{k}(\lambda)\right| \geq\left\|p_{k}(A)\right\|_{2}$
- "second best":
$p_{k}=\operatorname{argmin}\left\{\left\|\tilde{p}_{k}(A)\right\|_{\left.\lambda_{\min }, \lambda_{\max }\right]}, \tilde{p}_{k} \in \bar{\Pi}_{k}\right\}$
- Solution for "second best" is known:

Chebyshev polynomials \Rightarrow Chebyshev iteration

Krylov subspace methods - Theory

$$
r^{(k)}=p_{k}(A) b, \quad e^{(k)}=p_{k}(A) e^{(0)}
$$

Even better:

- Minimize $\left\|p_{k}(A) e^{(0)}\right\|=\left\|e^{(k)}\right\|$ over all p_{k}
- Without knowing $e^{(0)}$????
- Works for the A-norm

$$
\|x\|_{A}=\langle x, x\rangle_{A}^{\frac{1}{2}} \text { with }\langle x, y\rangle_{A}=\langle A x, y\rangle
$$

- Method of conjugate gradients (CG)

Conjugate Gradients - Algorithm

Conjugate Gradients

$$
\begin{aligned}
& r^{(0)}=b, p^{(0)}=r^{(0)} \\
& \text { for } k=1,2, \ldots \mathbf{d o} \\
& \alpha_{k-1}=\frac{\left\langle r^{\left.(k-1), r^{(k-1)}\right\rangle_{2}}\right.}{\left\langle A^{\left.(k-1), p^{(k-1)}\right\rangle_{2}}\right.} \\
& x^{(k)}=x^{(k-1)}+\alpha_{k-1} p^{(k-1)} \\
& r^{(k)}=r^{(k-1)}-\alpha_{k-1} A p^{(k-1)} \\
& \beta_{k-1}=\frac{\left\langle^{(k)}\left(r^{(k)}\right\rangle_{2}\right.}{\left\langle r^{\left.(k-1), r^{(k-1)}\right\rangle_{2}}\right.} \\
& p^{(k)}=r^{(k)}+\beta_{k-1} p^{(k-1)}
\end{aligned}
$$

end for

Minimization of the functional

$$
\mathcal{L}(x)=\frac{1}{2}\langle x, x\rangle_{A}-\langle x, b\rangle_{2}=\frac{1}{2}\left(\|e\|_{A}^{2}-\|\hat{x}\|_{A}^{2}\right)
$$

- $p^{(k)}$ conjugate gradients of \mathcal{L}

Conjugate Gradients - Properties

1. A must be hermitian and positive definite
2. Minimal error in $\|.\|_{A}$ for $x^{(k)} \in \mathcal{K}_{k}(A, b)$

$$
\begin{aligned}
\left\|e^{(k)}\right\|=\min _{p_{k} \in \bar{\Pi}_{k}}\left\|p_{k}(A) e^{(0)}\right\|_{A} & \leq \frac{1}{\cosh \left(k \ln \frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)}\left\|e^{(0)}\right\|_{A} \\
& \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k}\left\|e^{(0)}\right\|_{A}
\end{aligned}
$$

3. Variational property $\quad r^{(k)} \perp \mathcal{K}_{k}(A, b)$
4. Minimization of the functional

$$
\mathcal{L}(x)=\frac{1}{2}\langle x, x\rangle_{A}-\langle x, b\rangle_{2}, \quad x \in \mathcal{K}_{k}(A, b)
$$

5. Short recurrence, i.e., $x^{(k+1)}$ requires only $x^{(k)}$

Optimal Krylov subspace methods II — CR and MINRES

For A hermitian find the Krylov subspace method with

$$
\min _{x^{(k)} \in \mathcal{K}_{k}(A, b)}\left\|b-A x^{(k)}\right\|_{2}=\min _{x^{(k)} \in \mathcal{K}_{k}(A, b)}\left\|r^{(k)}\right\|_{2}
$$

The optimal method w.r.t. $\|.\|_{2}$ is known as conjugate residuals (CR)

Similar to CG, CR introduces search directions $p^{(k)}$

- The residuals are conjugate, i.e. $\left\langle r^{(k)}, A r^{(\ell)}\right\rangle=0$ for $k \neq \ell$
- The $A p^{(k)}$ are mutually orthogonal
- Short recurrence: $x^{(k+1)}$ requires only $x^{(k)}$

Conjugate Residuals (CR)

$$
r^{(0)}=b, p^{(0)}=r^{(0)}
$$

for $k=1,2, \ldots$ do

$$
\begin{aligned}
& \quad \begin{array}{l}
\alpha_{k-1}=\frac{\left\langle r^{(k-1)}, A r^{(k-1)}\right\rangle_{2}}{\left\langle A p^{(k-1)}, A p^{(k-1)}\right\rangle_{2}} \\
\quad x^{(k)}=x^{(k-1)}+\alpha_{k-1} p^{(k-1)} \\
r^{(k)}=r^{(k-1)}-\alpha_{k-1} A p^{(k-1)} \\
\beta_{k-1}=\frac{\left\langle r^{(k)}, A r^{(k)}\right\rangle_{2}}{\left\langle r^{(k-1)}, A r^{(k-1)}\right\rangle_{2}} \\
p^{(k)}=r^{(k)}+\beta_{k-1} p^{(k-1)} \\
\text { Compute } A p_{k}=A r_{k}+\beta_{k-1} A p_{k-1} \\
\text { end for }
\end{array} \text { ent }
\end{aligned}
$$

- CR can break down (division by 0) if A is indefinite
- MINRES is a break-down free, short-recurrence realization of CR (works for any hermitian A)

Optimal Krylov subspace methods II - GMRES

What if A is not hermitian? Optimality w.r.t. $\|.\|_{2}$ possible

$$
\min _{x^{(k)} \in \mathcal{K}_{k}(A, b)}\left\|b-A x^{(k)}\right\|_{2}=\min _{x^{(k)} \in \mathcal{K}_{k}(A, b)}\left\|r^{(k)}\right\|_{2}
$$

Idea: For orthonormal basis v_{1}, \ldots, v_{k} of $\mathcal{K}_{k}(A, b)$

$$
x \in \mathcal{K}_{k}(A, b) \Longrightarrow x=\sum_{\ell=1}^{k} v_{\ell} y_{\ell}=\left[v_{1}|\ldots| v_{k}\right] y=V_{k} y
$$

Hence we find

$$
\min _{x^{(k)} \in \mathcal{K}_{k}(A, b)}\left\|b-A x^{(k)}\right\|_{2}=\min _{y}\left\|b-A V_{k} y\right\|_{2}
$$

The Arnoldi Iteration

Compute orthonormal basis $\left\{v_{1}, \ldots, v_{k}\right\}$ of $\mathcal{K}_{k}(A, b)$

Arnoldi Iteration

$\beta=\|b\|_{2}, v_{1}=\beta^{-1} b$
for $k=1,2, \ldots$ do

$$
q=A v_{k}
$$

$$
\text { for } j=1, \ldots, k \text { do }
$$

$$
h_{j, k}=\left\langle v_{j}, q\right\rangle_{2}
$$

$$
q=q-h_{j, k} v_{j}
$$

end for
$h_{k+1, k}=\|q\|_{2}$

$$
v_{k+1}=h_{k+1, k}^{-1} q
$$

end for

With $V_{k}=\left[v_{1}|\ldots| v_{k}\right]$ and

we have the Arnoldi relation

$$
A V_{k}=V_{k+1} H_{k+1, k}
$$

with $V_{k}^{\dagger} V_{k}=I$

Optimal Krylov subspace methods III — GMRES

Using the Arnoldi relation in $(*)$ we find

$$
\min _{y}\left\|b-A V_{k} y\right\|_{2}=\min _{y}\left\|b-V_{k+1} H_{k+1, k} y\right\|_{2}
$$

Since V_{k+1} has orthonormal columns and $v_{1}=\|b\|_{2}^{-1} b$

$$
\min _{y}\left\|b-V_{k+1} H_{k+1, k} V_{k} y\right\|_{2}=\min _{y}\| \| b\left\|_{2} e_{1}-H_{k+1, k} y\right\|_{2}
$$

Naïve GMRES

$$
\begin{aligned}
& \text { for } k=1,2, \ldots \text { do } \\
& \quad \text { Compute } v_{k}, H_{k+1, k} \quad \text { (Arnoldi) } \\
& \text { Solve } \operatorname{argmin}_{y}\| \| b\left\|_{2} e_{1}-H_{k+1, k} y\right\|_{2} \\
& x^{(k)}=V_{k} y \\
& \text { end for }
\end{aligned}
$$

Restarted GMRES

Although an optimal method, GMRES has severe drawbacks:

- The computation of $x^{(k)}$ requires $V_{k}=\left[v_{1}|\ldots| v_{k}\right]$
\Rightarrow Storage requirements grow with k
\Rightarrow Computation time in Arnoldi grows with k
- Least-Squares solution requires $\mathcal{O}\left(k^{3}\right)$ operations

Idea: Restart GMRES every m-iterations $(\Rightarrow \operatorname{GMRES}(m))$

GMRES (m)

for $\ell=0,1, \ldots$ do
$r^{(0)}=b-A x^{(0)}, \beta=\left\|r^{(0)}\right\|_{2}, v_{1}=\beta^{-1} r^{(0)}$
Compute $V_{m}, H_{m+1, m} \quad$ (Arnoldi)
$y_{m}=\operatorname{argmin}_{y}\left\|\beta e_{1}-H_{m+1, m} y\right\|_{2}$
$x^{(0)}=x^{(0)}+V_{m} y_{m}$
end for

Optimal Krylov subspace methods - Summary

	requirements	optimality	recurrence			
CG	$A=A^{\dagger}$	$\\|\cdot\\|_{A}$	short			
MINRES *	$\langle x, x\rangle_{A}>0, x \neq 0$	$\\|=A^{\dagger}$	$\\|\cdot\\|_{2}$			
GMRES †	none	$\\|\cdot\\|_{2}$	short			

- What are the requirements for short recurrence?
- Do non-optimal methods exists with short recurrence?

[^0]
Faber-Manteuffel Theorem

The Faber-Manteuffel Theorem

There exists an optimal method with $(s+2)$-term recurrence iff A is s-normal, i.e., $A^{\dagger}=p(A), \quad p \in \Pi_{s}$

- A normal $\Longrightarrow A^{\dagger}=p(A), \quad p \in \Pi_{n-1}$
- A hermitian, $A^{\dagger}=A \longrightarrow$ (3-term recurrence)
- A anti-hermitian $A^{\dagger}=-A \longrightarrow$ (3-term recurrence)
- Chiral operator $\gamma_{5} D=-D \gamma_{5} \Longrightarrow D^{\dagger}=-D$

Barth-Manteuffel Theorem - Ginsparg-Wilson relation

The Barth-Manteuffel Theorem

There exists an optimal method with $(s+2, t)$-term recurrence iff A is (s, t)-normal, i.e.,

$$
A^{\dagger}=\frac{p(A)}{q(A)}, \quad p \in \Pi_{s}, q \in \Pi_{t}
$$

- Methods have multiple recursions
- Occurrence in Lattice QCD: Ginsparg-Wilson relation

$$
\begin{aligned}
D \gamma_{5}+\gamma_{5} D=a D \gamma_{5} D & \Longleftrightarrow \gamma_{5}(I-a D) D^{\dagger}=-\gamma_{5} D \\
& \Longleftrightarrow D^{\dagger}=(I-a D)^{-1} D
\end{aligned}
$$

- D fulfills Ginsparg-Wilson $\Longleftrightarrow D$ is (1,1)-normal

Non-optimal Krylov subspace methods - BCG

What if no optimal short recurrence method exists for A ?
Ansatz: Throw optimality over board!

- Instead of building one Krylov subspace build two

$$
\mathcal{K}_{k}\left(A, r^{(0)}\right) \quad \text { and } \quad \mathcal{K}_{k}\left(A^{\dagger}, \tilde{r}^{(0)}\right)
$$

- bi-orthogonalization
- Similar to CG, the residuals of BCG fulfill

$$
r^{(k)} \perp \mathcal{K}_{k}\left(A^{\dagger}, \tilde{r}^{(0)}\right)
$$

- Not optimal in any norm
- erratic convergence behaviour (\rightarrow excercises)
- breakdowns can occur, i.e., convergence not guaranteed
- BiCGstab is a stabilized variant of BCG

BiCGstab

$$
\begin{aligned}
& r^{(0)}=b, \beta_{0}=0 \\
& \hat{r}=r \\
& \text { for } k=0,1, \ldots \text { do } \\
& \quad \rho_{k}=\left\langle r^{(k)}, \hat{r}\right\rangle_{2} \\
& \beta_{k}=\frac{\rho_{k}}{\rho_{k-1}} \cdot \frac{\alpha_{k-1}}{\omega_{k-1}} \\
& \quad p^{(k)}=r^{(k)}+\beta_{k}\left(p^{k-1}-\omega_{k-1} v^{(k-1)}\right) \\
& \quad \alpha_{k}=\frac{\rho_{k}}{\left\langle A p^{(k)}, \hat{r}_{2}\right.} \\
& \quad x^{\left(k+\frac{1}{2}\right)}=x^{(k)}+\alpha_{k} p^{(k)} \\
& s^{(k)}=r^{(k)}-\alpha_{k} A p^{(k)} \\
& \quad \omega_{k}=\frac{\left\langle s^{(k)}, A s^{(k)}\right\rangle_{2}}{\left\langle A s^{(k)}, A s^{(k)}\right\rangle_{2}} \\
& x^{(k+1)}=x^{\left(k+\frac{1}{2}\right)}+\omega_{k} s^{(k)} \\
& r^{(k+1)}=s^{(k)}-\omega_{k} A s^{(k)}
\end{aligned}
$$

List of Methods

	requirements	optimal	recurrence			
CG	hpd	$\\|\cdot\\|_{A}$	short			
MINRES	hermitian	$\\|\cdot\\|_{2}$	short			
GMRES	none	$\\|\cdot\\|_{2}$	long	\rightarrow restarts		
CGN	none	$\\|\cdot\\|_{A^{\dagger} A}$	short	$A^{\dagger} A x=A^{\dagger} b$		
BCG	none	no	short	similar to CG unstable		
QMR	none	no	short	similar to GMRES		
BiCGstab	none	no	short	breakdowns		
SUMR	shifted unitary	$\\|\cdot\\|_{2}$	short	multiple recursion		

More on Krylov subspace methods: [3, 6].

Krylov subspace methods are all-duty solvers

- require only multiplication by A. and inner products
- easy to implement (especially if A. is already done)
- easy to parallelize ($\log (p)$-scaling due to inner products)
- Whenever short-term recurrence is possible
- constant cost per iteration
- constant memory consumption
- If only long-term recurrence is possible
- restarts limit amount of work
- deflated-restarts are even more efficient (\rightarrow Solvers II)
- Convergence speed depends on the spectrum of A
- separation from the origin important (since $p_{k} \in \bar{\Pi}_{k}$)
- preconditioning improves performance (\rightarrow Solvers II)
T. Barth and T. Manteuffel.

Multiple recursion conjugate gradient algorithms. I. sufficient conditions.
SIAM J. Matrix Anal. Appl., 21, 2000.

V. Faber and T. Manteuffel.

Necessary and sufficient conditions for the existence of a conjugate gradient method.
SIAM J. Numer. Anal., 21, 1984.

A. Greenbaum.

Iterative Methods for Solving Linear Systems, volume 17 of Frontiers in Applied Mathematics.
Society for Industrial and Applied Mathematics, 1997.

M. Hestenes and E. Stiefels.

Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards, Section B, 49, 1952.

C. Jagels and L. Reichel.

A fast minimal residual algorithm for shifted unitary matrices.
Numer. Linear Algebra Appl., 1, 1994.

Y. Saad.

Iterative Methods for Sparse Linear Systems.
Society for Industrial and Applied Mathematics, 2nd edition, 2003.

[^0]: *mathematically equivalent, but possibly unstabe: CR
 ${ }^{\dagger}$ mathematically equivalent, but possibly unstabe: GCR

