Instantons	

Matrix Equations

Quiver Theory 00000

Instantons on Special Geometries

Maike Tormählen

Leibniz Universität Hannover Nordic String Meeting, Potsdam 2014

イロト 不同下 イヨト イヨト

э

1/15

Instantons	Matrix Equations	Quiver Theory	Summary
0000	000	00000	O
Contents			

Yang-Mills Inst	tantons in String	Theory	
Instantons	Matrix Equations	Quiver Theory	Summary
•000	000	00000	O

• Higher-dimensional Super-Yang-Mills theory appears in the low-energy limit of the heterotic superstring

- Higher-dimensional Super-Yang-Mills theory appears in the low-energy limit of the heterotic superstring
- String compactification: Spacetime is decomposed as

$$M^{10} = M^{10-n} \times X^n$$

- Higher-dimensional Super-Yang-Mills theory appears in the low-energy limit of the heterotic superstring
- String compactification: Spacetime is decomposed as

$$M^{10} = M^{10-n} \times X^n$$

 Instanton equations on Xⁿ arise as conditions of supersymmetry preservation in heterotic superstring compactifications

- Higher-dimensional Super-Yang-Mills theory appears in the low-energy limit of the heterotic superstring
- String compactification: Spacetime is decomposed as

$$M^{10} = M^{10-n} \times X^n$$

- Instanton equations on Xⁿ arise as conditions of supersymmetry preservation in heterotic superstring compactifications
- Instantons on special geometry manifolds can be lifted to solutions of heterotic supergravity

- Higher-dimensional Super-Yang-Mills theory appears in the low-energy limit of the heterotic superstring
- String compactification: Spacetime is decomposed as

$$M^{10} = M^{10-n} \times X^n$$

- Instanton equations on Xⁿ arise as conditions of supersymmetry preservation in heterotic superstring compactifications
- Instantons on special geometry manifolds can be lifted to solutions of heterotic supergravity

- Higher-dimensional Super-Yang-Mills theory appears in the low-energy limit of the heterotic superstring
- String compactification: Spacetime is decomposed as

$$M^{10} = M^{10-n} \times X^n$$

- Instanton equations on Xⁿ arise as conditions of supersymmetry preservation in heterotic superstring compactifications
- Instantons on special geometry manifolds can be lifted to solutions of heterotic supergravity

Aim of my work:

Better understanding of instantons on special geometries

Instantons	Matrix Equations	Quiver Theory	Summary
0●00	000	00000	O
Instantons in H	igher Dimensions		

• Recall:

instantons in four dimensions satisfy the anti-self-duality equation

 $*\mathcal{F}=-\mathcal{F}$

 \mathcal{F} : curvature of connection \mathcal{A} on a principal G-bundle over M^4

Instantons	Matrix Equations	Quiver Theory	Summary
0●00	000	00000	O
Instantons in H	igher Dimensions		

• Recall:

instantons in four dimensions satisfy the anti-self-duality equation

 $*\mathcal{F} = -\mathcal{F}$

 ${\mathcal F}$: curvature of connection ${\mathcal A}$ on a principal ${\mathit G}\mbox{-bundle}$ over ${\mathit M}^4$

• Generalization to higher dimensions: Consider a coset space $X^n = G/H$ *G*: compact, semisimple Lie group *H*: closed Lie subgroup

Instantons	Matrix Equations	Quiver Theory	Summary
0●00	000	00000	O
Instantons in H	igher Dimensions		

• Recall:

instantons in four dimensions satisfy the anti-self-duality equation

 $*\mathcal{F}=-\mathcal{F}$

 \mathcal{F} : curvature of connection \mathcal{A} on a principal G-bundle over M^4

- Generalization to higher dimensions: Consider a coset space $X^n = G/H$ *G*: compact, semisimple Lie group *H*: closed Lie subgroup
- We work with the cone over this coset space:

$$\mathcal{C}(G/H) = (\mathbb{R}_+ imes G/H, g_{cone})$$

 $g_{cone} = e^{2 au} (d au^2 + g_{G/H})$

 τ : parameter in \mathbb{R} -direction

- 3

Instantons	Matrix Equations	Quiver Theory	Summary
00●0	000	00000	O
Instantons in Hi	gher Dimensions		

• Assume there exists a **4-form** $Q \in \Omega^4(\mathcal{C}(G/H))$

Instantons	Matrix Equations	Quiver Theory	Summary
00●0	000	00000	O
Instantons in H	igher Dimensions		

- Assume there exists a **4-form** $Q \in \Omega^4(\mathcal{C}(G/H))$
- Let * be the **Hodge operator** on C(G/H)

Instantons	Matrix Equations	Quiver Theory	Summary
00●0	000	00000	O
Instantons in H	igher Dimensions		

- Assume there exists a **4-form** $Q \in \Omega^4(\mathcal{C}(G/H))$
- Let * be the **Hodge operator** on C(G/H)
- Let A be a connection on a principal G-bundle over C(G/H) with curvature F = dA + A ∧ A.

Instantons	Matrix Equations	Quiver Theory	Summary
00●0	000	00000	O
Instantons in H	igher Dimensions		

- Assume there exists a **4-form** $Q \in \Omega^4(\mathcal{C}(G/H))$
- Let * be the **Hodge operator** on C(G/H)
- Let A be a connection on a principal G-bundle over C(G/H) with curvature F = dA + A ∧ A.

Instantons	Matrix Equations	Quiver Theory	Summary
00●0	000	00000	O
Instantons in H	igher Dimensions		

- Assume there exists a **4-form** $Q \in \Omega^4(\mathcal{C}(G/H))$
- Let * be the **Hodge operator** on C(G/H)
- Let A be a connection on a principal G-bundle over C(G/H) with curvature F = dA + A ∧ A.
- Instanton equation (generalized anti-self-duality equation):

 $*\mathcal{F} = -(*Q) \wedge \mathcal{F}$

Instantons	Matrix Equations	Quiver Theory	Summary
00●0	000	00000	O
Instantons in H	igher Dimensions		

- Assume there exists a **4-form** $Q \in \Omega^4(\mathcal{C}(G/H))$
- Let * be the **Hodge operator** on $\mathcal{C}(G/H)$
- Let A be a connection on a principal G-bundle over C(G/H) with curvature F = dA + A ∧ A.
- Instanton equation (generalized anti-self-duality equation):

$$*\mathcal{F}=-(*Q)\wedge\mathcal{F}$$

• **Remark:** Instanton equation implies Yang-Mills equation with torsion

Torsion

where $*\mathcal{H} = d*Q$

Instantons	Matrix Equations	Quiver Theory	Summary
000●	000	00000	O
Why cones over	r coset spaces?		

• Explicit higher-dimensional instanton solutions exist on Euclidean spaces and on certain conical manifolds

Why cones over	coset spaces?		
Instantons	Matrix Equations	Quiver Theory	Summary
0000	000	00000	O

- Explicit higher-dimensional instanton solutions exist on Euclidean spaces and on certain conical manifolds
- Instantons on **special holonomy manifolds** can be lifted to heterotic supergravity solutions

Why cones over	coset spaces?		
Instantons	Matrix Equations	Quiver Theory	Summary
000•	000	00000	O

- Explicit higher-dimensional instanton solutions exist on Euclidean spaces and on certain conical manifolds
- Instantons on **special holonomy manifolds** can be lifted to heterotic supergravity solutions
- Special holonomy manifolds can be constructed as cones over
 - 5-dimensional Sasaki manifolds
 - 6-dimensional nearly Kähler manifolds
 - 7-dimensional 3-Sasakian manifolds
 - 7-dimensional nearly parallel G2-manifolds

Many examples of these manifolds are coset spaces

Lechtenfeld et.al [arxiv 1108.3951, 1202.5046] Bär [Commun. Math. Phys., 154(3):509-521, 1993]

Instantons	Matrix Equations	Quiver Theory	Summary
0000	●00	00000	O
Reduction t	o Matrix Equations		

• Instanton equation $*\mathcal{F} = -(*Q) \wedge \mathcal{F}$ in components:

$$\mathcal{F}_{0a} = -\frac{1}{2}Q_{0acd}\mathcal{F}_{cd} \qquad \mathcal{F}_{ab} = \frac{1}{2}(Q_{0eab}Q_{0ecd} - Q_{abcd})\mathcal{F}_{cd}$$

Instantons	Matrix Equations	Quiver Theory	Summary
0000	●00	00000	O
Reduction to N	latrix Equations		

• Instanton equation $*\mathcal{F} = -(*Q) \wedge \mathcal{F}$ in components:

$$\mathcal{F}_{0a} = -\frac{1}{2}Q_{0acd}\mathcal{F}_{cd}$$
 $\mathcal{F}_{ab} = \frac{1}{2}(Q_{0eab}Q_{0ecd} - Q_{abcd})\mathcal{F}_{cd}$

• Ansatz for the gauge potential:

$$\mathcal{A}=e^{i}I_{i}+e^{a}X_{a}(\tau)$$

 $X_a(\tau) = X_a^b(\tau)I_b$: matrix-valued function that satisfies the invariance condition $[I_i, X_a] = f_{ia}^b X_b$

Instantons	Matrix Equations	Quiver Theory	Summary
0000	●00	00000	O
Reduction to M	latrix Equations		

• Instanton equation $*\mathcal{F} = -(*Q) \wedge \mathcal{F}$ in components:

$$\mathcal{F}_{0a} = -\frac{1}{2}Q_{0acd}\mathcal{F}_{cd} \qquad \mathcal{F}_{ab} = \frac{1}{2}(Q_{0eab}Q_{0ecd} - Q_{abcd})\mathcal{F}_{cd}$$

• Ansatz for the gauge potential:

$$\mathcal{A}=e^{i}I_{i}+e^{a}X_{a}(\tau)$$

$$X_a(\tau) = X_a^b(\tau)I_b$$
: matrix-valued function that satisfies the
invariance condition $[I_i, X_a] = f_{ia}^b X_b$

• Curvature:

$$\mathcal{F} = \dot{X}_{a}e^{0} \wedge e^{a} - \frac{1}{2}\left(f_{ab}^{i}I_{i} + f_{ab}^{e}X_{e} - [X_{a}, X_{b}]\right)e^{a} \wedge e^{b}$$

Notation: I_a generators of G $\{0, a\}$ indices on $\mathbb{R} \times G/H$ f_{ab}^c structure constants of G $\{i\}$ indices on H e^a coframe on $\mathbb{R} \times G/H$ $\{i\}$ indices on H

Instantons	Matrix Equations	Quiver Theory	Summary
0000	0●0	00000	O
Reduction to	Matrix Equations		

• Assume $g_{G/H} \propto \delta_{ab} e^a e^b$ to define a 3-form:

$$f=rac{1}{3!}f_{abc}e^{a}\wedge e^{b}\wedge e^{c}$$

• Use this to construct the 4-form Q:

 $Q = \beta_1 d\tau \wedge f + \beta_2 df$

Instantons	Matrix Equations	Quiver Theory	Summary
0000	0●0	00000	O
Reduction to	o Matrix Equations		

• Assume $g_{G/H} \propto \delta_{ab} e^a e^b$ to define a 3-form:

$$f=rac{1}{3!}f_{abc}e^{a}\wedge e^{b}\wedge e^{c}$$

• Use this to construct the 4-form Q:

$$Q = \beta_1 d\tau \wedge f + \beta_2 df$$

• With \mathcal{F} and Q, the instanton equations reduce to matrix equations:

$$\begin{split} \dot{X}_{a} &= \frac{\tilde{\beta}_{1}}{2} f_{acd} (f_{cd}^{a} X_{a} - [X_{c}, X_{d}]) \\ f_{ab}^{i} I_{i} + f_{ab}^{e} X_{e} - [X_{a}, X_{b}] \\ &= \left(\frac{\tilde{\beta}_{1}^{2}}{2} f_{ab}^{e} f_{cd}^{e} + 3\beta_{2} f_{[ab}^{e} f_{cd]}^{e} \right) (f_{cd}^{i} I_{i} + f_{cd}^{a} X_{a} - [X_{c}, X_{d}]) \quad (2) \end{split}$$

8/15

 Instantons
 Matrix Equations
 Quiver Theory
 Summary

 Ooo
 Ooo
 Summary
 Ooo

• Suppose A is parametrized by only one function $\phi(\tau)$:

$$\begin{aligned} X_{a} &= \phi(\tau)I_{a} \qquad \mathcal{A} = e^{i}I_{i} + \phi e^{a}I_{a} \\ \mathcal{F} &= \dot{\phi}e^{0} \wedge e^{a} - \frac{1}{2}\left((1 - \phi^{2})f_{ab}^{i}I_{i} + (\phi - \phi^{2})f_{ab}^{e}I_{e}\right)e^{a} \wedge e^{b} \end{aligned}$$

9/15

 Instantons
 Matrix Equations
 Quiver Theory
 Summary

 ooo
 oo
 Summary
 oo

• Suppose \mathcal{A} is parametrized by only one function $\phi(\tau)$:

$$X_{a} = \phi(\tau)I_{a}$$
 $\mathcal{A} = e^{i}I_{i} + \phi e^{a}I_{a}$
 $\mathcal{F} = \dot{\phi}e^{0} \wedge e^{a} - \frac{1}{2}\left((1 - \phi^{2})f_{ab}^{i}I_{i} + (\phi - \phi^{2})f_{ab}^{e}I_{e}\right)e^{a} \wedge e^{b}$

• Condition (2) is identically satisfied. Condition (1) turns into the Kink equation:

$$\dot{\phi}=rac{1}{2}(\phi^2-\phi)$$

Interpretation:

Instanton solution $\mathcal{A}(\tau)$ interpolates between vacuum configurations $\mathcal{A}(-\infty)$ and $\mathcal{A}(+\infty)$

Lechtenfeld, Rahn et.al [arxiv 0904.0654]

Instantons	Matrix Equations	Quiver Theory	Summary
0000	000	●0000	O
Equivariant Dim	nensional Reductio	n	

$$M^{10} = M^4 imes G/H$$

	Dimonologia Daduu		
Equivariant L	Dimensional Reduc	CLION	

$$M^{10} = M^4 \times G/H$$

• 4-dimensional Lagrangian on M^4 must be independent of the extra spacetime coordinates on G/H

Instantons	Matrix Equations	Quiver Theory	Summary
0000		●0000	O
Equivariant Dim	nensional Reductio	n	

$$M^{10} = M^4 \times G/H$$

- 4-dimensional Lagrangian on M^4 must be independent of the extra spacetime coordinates on G/H
- This is the case when isometries of the extra spacetime dimensions can be compensated by gauge tansformations (*G*-equivariance)

Instantons	Matrix Equations	Quiver Theory	Summary
0000	000	●0000	O
Equivariant Dim	nensional Reductio	n	

$$M^{10} = M^4 \times G/H$$

- 4-dimensional Lagrangian on M^4 must be independent of the extra spacetime coordinates on G/H
- This is the case when isometries of the extra spacetime dimensions can be compensated by gauge tansformations (*G*-equivariance)
- Yang-Mills theory on G/H reduces to a quiver gauge theory on M^4

Instantons	Matrix Equations	Quiver Theory	Summary
0000	000	0●000	O
Structure of the (see also arxiv 0706.097	e Equivariant Bund	lle	

• Specify the coset: $G/H = SU(3)/U(1) \times U(1)$

Instantons	Matrix Equations	Quiver Theory	Summary
0000		0●000	O
Structure of the (see also arxiv 0706.097		Bundle	

- Specify the coset: $G/H = SU(3)/U(1) \times U(1)$
- Consider *U*(*n*) Yang-Mills theory on a rank *n* hermitean vector bundle:

 $\begin{array}{c} \varepsilon \\ \downarrow_{\mathbb{C}^n} \\ \mathbb{R} \times G/H \end{array}$

Instantons	Matrix Equations	Quiver Theory	Summary
0000		o●ooo	O
Structure of the (see also arxiv 0706.097	e Equivariant Bur	ndle	

- Specify the coset: $G/H = SU(3)/U(1) \times U(1)$
- Consider *U*(*n*) Yang-Mills theory on a rank *n* hermitean vector bundle:

- SU(3)-equivariance:
 SU(3) must act on the fibers in a U(n) representation
- We choose the fundamental representation 3 of SU(3)
 → structure group of ε becomes U(3)

Instantons	Matrix Equations	Quiver Theory	Summary
0000	000	00●00	O
Structure of the	Equivariant	Bundle	

• *G*-equivariance determines the vector bundle structure:

$$\varepsilon = (\mathbb{R} \otimes \mathcal{L}_1) \oplus (\mathbb{R} \otimes \mathcal{L}_2) \oplus (\mathbb{R} \otimes \mathcal{L}_3)$$

$$\downarrow$$

$$\mathbb{R} \times G/H$$

Instantons	Matrix Equations	Quiver Theory	Summary
0000		00●00	O
Structure of the	Equivariant Bu	ndle	

• *G*-equivariance determines the vector bundle structure:

$$\varepsilon = (\mathbb{R} \otimes \mathcal{L}_1) \oplus (\mathbb{R} \otimes \mathcal{L}_2) \oplus (\mathbb{R} \otimes \mathcal{L}_3)$$

$$\downarrow$$

$$\mathbb{R} \times G/H$$

- Idea:
 - The representation $\mathbf{3}$ decomposes under restriction to H as

$$\mathbf{3}|_{U(1)\times U(1)} = \bigoplus_{\alpha} \rho_{\alpha} = \rho_1 \oplus \rho_2 \oplus \rho_3$$

- *H*-representation induces *G*-equivariant vector bundle over G/H
- $\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3$: complex line bundles over ${\it G}/{\it H}$

Instantons	Matrix Equations	Quiver Theory	Summary
0000		00●00	O
Structure of the	Equivariant Bund	lle	

• *G*-equivariance determines the vector bundle structure:

- Idea:
 - The representation ${\bf 3}$ decomposes under restriction to ${\it H}$ as

$$\mathbf{3}|_{U(1)\times U(1)} = \bigoplus_{\alpha} \rho_{\alpha} = \rho_1 \oplus \rho_2 \oplus \rho_3$$

- *H*-representation induces *G*-equivariant vector bundle over G/H
- $\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3$: complex line bundles over ${\it G}/{\it H}$
- The single summands are related by G-action
- Gauge group U(3) of ε is broken to $\prod_{\alpha=1}^{3} U(1)$

Instantons	Matrix Equations	Quiver Theory	Summary
0000		000●0	O
Quiver Gauge T	heory		

• Connection on $\varepsilon = (\mathbb{R} \otimes \mathcal{L}_1) \oplus (\mathbb{R} \otimes \mathcal{L}_2) \oplus (\mathbb{R} \otimes \mathcal{L}_3)$:

$$\mathcal{A} = \begin{pmatrix} \mathbf{a}_1 & -\bar{\phi}_{12} \otimes \beta^{12} & -\phi_{13} \otimes \bar{\beta}^{13} \\ \phi_{12} \otimes \bar{\beta}^{12} & \mathbf{a}_2 & -\bar{\phi}_{23} \otimes \beta^{23} \\ \bar{\phi}_{13} \otimes \beta^{13} & \phi_{23} \otimes \bar{\beta}^{23} & \mathbf{a}_3 \end{pmatrix}$$

 $\begin{array}{ll} \phi_{\alpha\beta} \in \operatorname{Hom}(\mathbb{C},\mathbb{C}) & \operatorname{Higgs} \text{ fields} \\ \beta^{\alpha\beta} \in \Omega^1(G/H) & \operatorname{one-forms} \\ a_{\alpha} \in \mathfrak{u}(1) & \operatorname{connection} \operatorname{on} \mathcal{L}_{\alpha} \end{array}$

Instantons 0000	Matrix Equations	Quiver Theory 000●0	Summary O
Quiver Ga	uge Theory		

• Connection on $\varepsilon = (\mathbb{R} \otimes \mathcal{L}_1) \oplus (\mathbb{R} \otimes \mathcal{L}_2) \oplus (\mathbb{R} \otimes \mathcal{L}_3)$:

$$\mathcal{A} = \begin{pmatrix} a_1 & -\bar{\phi}_{12} \otimes \beta^{12} & -\phi_{13} \otimes \bar{\beta}^{13} \\ \phi_{12} \otimes \bar{\beta}^{12} & a_2 & -\bar{\phi}_{23} \otimes \beta^{23} \\ \bar{\phi}_{13} \otimes \beta^{13} & \phi_{23} \otimes \bar{\beta}^{23} & a_3 \end{pmatrix}$$

$$\begin{array}{ll} \phi_{\alpha\beta} \in \operatorname{Hom}(\mathbb{C},\mathbb{C}) & \operatorname{Higgs} \text{ fields} \\ \beta^{\alpha\beta} \in \Omega^1(G/H) & \operatorname{one-forms} \\ a_{\alpha} \in \mathfrak{u}(1) & \operatorname{connection} \text{ on } \mathcal{L}_{\alpha} \end{array}$$

• This gives rise to a **quiver gauge theory**:

・ロト ・回ト ・ヨト ・ヨト

3

Instantons	Matrix Equations	Quiver Theory	Summary
0000		0000●	O
Quiver Gaug	e Theory		

• Requiring ${\cal A}$ to satisfy the instanton equation implies the ${\bf Quiver}$ relations:

$$\phi_{13} = \bar{\phi}_{12}\bar{\phi}_{23} \qquad \bar{\phi}_{12} = \phi_{13}\phi_{23} \qquad \bar{\phi}_{23} = \phi_{12}\phi_{13} \quad (3)$$

Instantons	Matrix Equations	Quiver Theory	Summary
0000	000	0000●	O
Quiver Gauge	Theory		

• Requiring A to satisfy the instanton equation implies the **Quiver** relations:

$$\phi_{13} = \bar{\phi}_{12}\bar{\phi}_{23}$$
 $\bar{\phi}_{12} = \phi_{13}\phi_{23}$ $\bar{\phi}_{23} = \phi_{12}\phi_{13}$ (3)

14/15

• Invariance condition $[I_i, X_a] = f_{ia}^b X_b$ specifies $X_a = X_a(\phi_{12}, \phi_{13}, \phi_{23})$

Instantons	Matrix Equations	Quiver Theory	Summary
0000	000	0000●	O
Quiver Gauge	Theory		

• Requiring A to satisfy the instanton equation implies the **Quiver** relations:

$$\phi_{13} = \bar{\phi}_{12}\bar{\phi}_{23} \qquad \bar{\phi}_{12} = \phi_{13}\phi_{23} \qquad \bar{\phi}_{23} = \phi_{12}\phi_{13} \qquad (3)$$

• Invariance condition $[I_i, X_a] = f_{ia}^b X_b$ specifies $X_a = X_a(\phi_{12}, \phi_{13}, \phi_{23})$

• Direct computation:

quiver relations (3) match the matrix instanton equations:

$$\begin{aligned} f_{ab}^{i}I_{i}+f_{ab}^{e}X_{e} &- [X_{a}, X_{b}] \\ &= \left(\frac{\tilde{\beta}_{1}^{2}}{2}f_{ab}^{e}f_{cd}^{e} + 3\beta_{2}f_{[ab}^{e}f_{cd}^{e}]\right)\left(f_{cd}^{i}I_{i}+f_{cd}^{a}X_{a} - [X_{c}, X_{d}]\right) \end{aligned}$$

Instantons	Matrix Equations	Quiver Theory	Summary
0000	000	00000	●
Summary			

- Higher-dimensional instantons satisfy $*\mathcal{F} = -(*\mathcal{Q})\wedge\mathcal{F}$
- Interesting objects in string theory, especially on cones over special holonomy manifolds
- We have constructed general instanton conditions on $\mathcal{C}(X^n)$ that can be solved under special assumptions
- Equivariant dimensional reduction: quiver gauge theory
- Quiver relations match the instanton matrix equations

• Outlook:

Instanton conditions with deformed metric; Lifting of the building blocks to heterotic supergravity solutions; Relation to heterotic string model building