Instantons on Special Geometries

Maike Tormählen
Leibniz Universität Hannover
Nordic String Meeting, Potsdam 2014

DFG

GRK 1463

Contents

(1) Instantons
(2) Matrix Equations
(3) Quiver Theory

4 Summary

Yang-Mills Instantons in String Theory

- Higher-dimensional Super-Yang-Mills theory appears in the low-energy limit of the heterotic superstring

Yang-Mills Instantons in String Theory

- Higher-dimensional Super-Yang-Mills theory appears in the low-energy limit of the heterotic superstring
- String compactification: Spacetime is decomposed as

$$
M^{10}=M^{10-n} \times X^{n}
$$

Yang-Mills Instantons in String Theory

- Higher-dimensional Super-Yang-Mills theory appears in the low-energy limit of the heterotic superstring
- String compactification: Spacetime is decomposed as

$$
M^{10}=M^{10-n} \times X^{n}
$$

- Instanton equations on X^{n} arise as conditions of supersymmetry preservation in heterotic superstring compactifications

Yang-Mills Instantons in String Theory

- Higher-dimensional Super-Yang-Mills theory appears in the low-energy limit of the heterotic superstring
- String compactification: Spacetime is decomposed as

$$
M^{10}=M^{10-n} \times X^{n}
$$

- Instanton equations on X^{n} arise as conditions of supersymmetry preservation in heterotic superstring compactifications
- Instantons on special geometry manifolds can be lifted to solutions of heterotic supergravity

Yang-Mills Instantons in String Theory

- Higher-dimensional Super-Yang-Mills theory appears in the low-energy limit of the heterotic superstring
- String compactification: Spacetime is decomposed as

$$
M^{10}=M^{10-n} \times X^{n}
$$

- Instanton equations on X^{n} arise as conditions of supersymmetry preservation in heterotic superstring compactifications
- Instantons on special geometry manifolds can be lifted to solutions of heterotic supergravity

Yang-Mills Instantons in String Theory

- Higher-dimensional Super-Yang-Mills theory appears in the low-energy limit of the heterotic superstring
- String compactification: Spacetime is decomposed as

$$
M^{10}=M^{10-n} \times X^{n}
$$

- Instanton equations on X^{n} arise as conditions of supersymmetry preservation in heterotic superstring compactifications
- Instantons on special geometry manifolds can be lifted to solutions of heterotic supergravity

Aim of my work:
Better understanding of instantons on special geometries

Instantons in Higher Dimensions

- Recall:
instantons in four dimensions satisfy the anti-self-duality equation

$$
* \mathcal{F}=-\mathcal{F}
$$

\mathcal{F} : curvature of connection \mathcal{A} on a principal G-bundle over M^{4}

Instantons in Higher Dimensions

- Recall:
instantons in four dimensions satisfy the anti-self-duality equation

$$
* \mathcal{F}=-\mathcal{F}
$$

\mathcal{F} : curvature of connection \mathcal{A} on a principal G-bundle over M^{4}

- Generalization to higher dimensions: Consider a coset space $X^{n}=G / H$
G : compact, semisimple Lie group
H : closed Lie subgroup

Instantons in Higher Dimensions

- Recall:
instantons in four dimensions satisfy the anti-self-duality equation

$$
* \mathcal{F}=-\mathcal{F}
$$

\mathcal{F} : curvature of connection \mathcal{A} on a principal G-bundle over M^{4}

- Generalization to higher dimensions:

Consider a coset space $X^{n}=G / H$
G : compact, semisimple Lie group
H : closed Lie subgroup

- We work with the cone over this coset space:

$$
\begin{aligned}
\mathcal{C}(G / H) & =\left(\mathbb{R}_{+} \times G / H, g_{\text {cone }}\right) \\
g_{\text {cone }} & =e^{2 \tau}\left(d \tau^{2}+g_{G / H}\right)
\end{aligned}
$$

τ : parameter in \mathbb{R}-direction

Instantons in Higher Dimensions

- Assume there exists a 4-form $Q \in \Omega^{4}(\mathcal{C}(G / H))$

Instantons in Higher Dimensions

- Assume there exists a 4-form $Q \in \Omega^{4}(\mathcal{C}(G / H))$
- Let $*$ be the Hodge operator on $\mathcal{C}(G / H)$

Instantons in Higher Dimensions

- Assume there exists a 4-form $Q \in \Omega^{4}(\mathcal{C}(G / H))$
- Let $*$ be the Hodge operator on $\mathcal{C}(G / H)$
- Let \mathcal{A} be a connection on a principal G-bundle over $\mathcal{C}(G / H)$ with curvature $\mathcal{F}=d \mathcal{A}+\mathcal{A} \wedge \mathcal{A}$.

Instantons in Higher Dimensions

- Assume there exists a 4-form $Q \in \Omega^{4}(\mathcal{C}(G / H))$
- Let $*$ be the Hodge operator on $\mathcal{C}(G / H)$
- Let \mathcal{A} be a connection on a principal G-bundle over $\mathcal{C}(G / H)$ with curvature $\mathcal{F}=d \mathcal{A}+\mathcal{A} \wedge \mathcal{A}$.

Instantons in Higher Dimensions

- Assume there exists a 4-form $Q \in \Omega^{4}(\mathcal{C}(G / H))$
- Let $*$ be the Hodge operator on $\mathcal{C}(G / H)$
- Let \mathcal{A} be a connection on a principal G-bundle over $\mathcal{C}(G / H)$ with curvature $\mathcal{F}=d \mathcal{A}+\mathcal{A} \wedge \mathcal{A}$.
- Instanton equation (generalized anti-self-duality equation):

$$
* \mathcal{F}=-(* Q) \wedge \mathcal{F}
$$

Instantons in Higher Dimensions

- Assume there exists a 4-form $Q \in \Omega^{4}(\mathcal{C}(G / H))$
- Let * be the Hodge operator on $\mathcal{C}(G / H)$
- Let \mathcal{A} be a connection on a principal G-bundle over $\mathcal{C}(G / H)$ with curvature $\mathcal{F}=d \mathcal{A}+\mathcal{A} \wedge \mathcal{A}$.
- Instanton equation (generalized anti-self-duality equation):

$$
* \mathcal{F}=-(* Q) \wedge \mathcal{F}
$$

- Remark: Instanton equation implies Yang-Mills equation with torsion

$$
\mathcal{D} * \mathcal{F}+\underbrace{* \mathcal{H} \wedge \mathcal{F}}_{\text {Torsion }}=0
$$

where $* \mathcal{H}=d * Q$

Why cones over coset spaces?

- Explicit higher-dimensional instanton solutions exist on Euclidean spaces and on certain conical manifolds

Why cones over coset spaces?

- Explicit higher-dimensional instanton solutions exist on Euclidean spaces and on certain conical manifolds
- Instantons on special holonomy manifolds can be lifted to heterotic supergravity solutions

Why cones over coset spaces?

- Explicit higher-dimensional instanton solutions exist on Euclidean spaces and on certain conical manifolds
- Instantons on special holonomy manifolds can be lifted to heterotic supergravity solutions
- Special holonomy manifolds can be constructed as cones over
- 5-dimensional Sasaki manifolds
- 6-dimensional nearly Kähler manifolds
- 7-dimensional 3-Sasakian manifolds
- 7-dimensional nearly parallel G_{2}-manifolds Many examples of these manifolds are coset spaces

Lechtenfeld et.al [arxiv 1108.3951, 1202.5046] Bär [Commun. Math. Phys., 154(3):509-521, 1993]

Reduction to Matrix Equations

- Instanton equation $* \mathcal{F}=-(* Q) \wedge \mathcal{F}$ in components:

$$
\mathcal{F}_{0 a}=-\frac{1}{2} Q_{0 a c d} \mathcal{F}_{c d} \quad \mathcal{F}_{a b}=\frac{1}{2}\left(Q_{0 e a b} Q_{0 e c d}-Q_{a b c d}\right) \mathcal{F}_{c d}
$$

Reduction to Matrix Equations

- Instanton equation $* \mathcal{F}=-(* Q) \wedge \mathcal{F}$ in components:

$$
\mathcal{F}_{0 a}=-\frac{1}{2} Q_{0 a c d} \mathcal{F}_{c d} \quad \mathcal{F}_{a b}=\frac{1}{2}\left(Q_{0 e a b} Q_{0 e c d}-Q_{a b c d}\right) \mathcal{F}_{c d}
$$

- Ansatz for the gauge potential:

$$
\mathcal{A}=e^{i} I_{i}+e^{a} X_{a}(\tau)
$$

$X_{a}(\tau)=X_{a}^{b}(\tau) I_{b}$: matrix-valued function that satisfies the invariance condition $\left[l_{i}, X_{a}\right]=f_{i a}^{b} X_{b}$

Reduction to Matrix Equations

- Instanton equation $* \mathcal{F}=-(* Q) \wedge \mathcal{F}$ in components:

$$
\mathcal{F}_{0 a}=-\frac{1}{2} Q_{0 a c d} \mathcal{F}_{c d} \quad \mathcal{F}_{a b}=\frac{1}{2}\left(Q_{0 e a b} Q_{0 e c d}-Q_{a b c d}\right) \mathcal{F}_{c d}
$$

- Ansatz for the gauge potential:

$$
\mathcal{A}=e^{i} I_{i}+e^{a} X_{a}(\tau)
$$

$X_{a}(\tau)=X_{a}^{b}(\tau) I_{b}$: matrix-valued function that satisfies the invariance condition $\left[l_{i}, X_{a}\right]=f_{i a}^{b} X_{b}$

- Curvature:

$$
\mathcal{F}=\dot{X}_{a} e^{0} \wedge e^{a}-\frac{1}{2}\left(f_{a b}^{i} I_{i}+f_{a b}^{e} X_{e}-\left[X_{a}, X_{b}\right]\right) e^{a} \wedge e^{b}
$$

Notation:

I_{a} generators of G
$f_{a b}^{c}$ structure constants of G
$e^{a} \quad$ coframe on $\mathbb{R} \times G / H$
$\{0, a\}$ indices on $\mathbb{R} \times G / H$
\{i\} indices on H

Reduction to Matrix Equations

- Assume $g_{G / H} \propto \delta_{a b} e^{a} e^{b}$ to define a 3 -form:

$$
f=\frac{1}{3!} f_{a b c} e^{a} \wedge e^{b} \wedge e^{c}
$$

- Use this to construct the 4-form Q :

$$
Q=\beta_{1} d \tau \wedge f+\beta_{2} d f
$$

Reduction to Matrix Equations

- Assume $g_{G / H} \propto \delta_{a b} e^{a} e^{b}$ to define a 3-form:

$$
f=\frac{1}{3!} f_{a b c} e^{a} \wedge e^{b} \wedge e^{c}
$$

- Use this to construct the 4-form Q :

$$
Q=\beta_{1} d \tau \wedge f+\beta_{2} d f
$$

- With \mathcal{F} and Q, the instanton equations reduce to matrix equations:

$$
\begin{align*}
& \dot{X}_{a}=\frac{\tilde{\beta}_{1}}{2} f_{a c d}\left(f_{c d}^{a} X_{a}-\left[X_{c}, X_{d}\right]\right) \tag{1}\\
& f_{a b}^{i} l_{i}+f_{a b}^{e} X_{e}-\left[X_{a}, X_{b}\right] \\
&=\left(\frac{\tilde{\beta}_{1}^{2}}{2} f_{a b}^{e} f_{c d}^{e}+3 \beta_{2} f_{[a b}^{e} f_{c d]}^{e}\right)\left(f_{c d}^{i} I_{i}+f_{c d}^{a} X_{a}-\left[X_{c}, X_{d}\right]\right) \tag{2}
\end{align*}
$$

- Interpretation in terms of quiver gauge theory: instanton conditions match the relations of a certain quiver

Example (simplest possible case)

- Suppose \mathcal{A} is parametrized by only one function $\phi(\tau)$:

$$
\begin{gathered}
X_{a}=\phi(\tau) I_{a} \\
\mathcal{F}=\dot{\phi}=e^{i} l_{i}+\phi e^{a} l_{a} \\
\mathcal{F} e^{a}-\frac{1}{2}\left(\left(1-\phi^{2}\right) f_{a b}^{i} l_{i}+\left(\phi-\phi^{2}\right) f_{a b}^{e} l_{e}\right) e^{a} \wedge e^{b}
\end{gathered}
$$

Example (simplest possible case)

- Suppose \mathcal{A} is parametrized by only one function $\phi(\tau)$:

$$
\begin{gathered}
X_{a}=\phi(\tau) I_{a} \\
\mathcal{F}=\dot{\phi} e^{0} \wedge e^{i} l_{i}+\phi e^{a} l_{a}-\frac{1}{2}\left(\left(1-\phi^{2}\right) f_{a b}^{i} I_{i}+\left(\phi-\phi^{2}\right) f_{a b}^{e} I_{e}\right) e^{a} \wedge e^{b}
\end{gathered}
$$

- Condition (2) is identically satisfied.

Condition (1) turns into the Kink equation:

$$
\dot{\phi}=\frac{1}{2}\left(\phi^{2}-\phi\right)
$$

Interpretation:

Instanton solution $\mathcal{A}(\tau)$ interpolates

between vacuum configurations
$\mathcal{A}(-\infty)$ and $\mathcal{A}(+\infty)$

Equivariant Dimensional Reduction

- Idea: Construct an effectively 4-dimensional field theory from 10-dimensional string theory:

$$
M^{10}=M^{4} \times G / H
$$

Equivariant Dimensional Reduction

- Idea: Construct an effectively 4-dimensional field theory from 10-dimensional string theory:

$$
M^{10}=M^{4} \times G / H
$$

- 4-dimensional Lagrangian on M^{4} must be independent of the extra spacetime coordinates on G / H

Equivariant Dimensional Reduction

- Idea: Construct an effectively 4-dimensional field theory from 10-dimensional string theory:

$$
M^{10}=M^{4} \times G / H
$$

- 4-dimensional Lagrangian on M^{4} must be independent of the extra spacetime coordinates on G / H
- This is the case when isometries of the extra spacetime dimensions can be compensated by gauge tansformations (G-equivariance)

Equivariant Dimensional Reduction

- Idea: Construct an effectively 4-dimensional field theory from 10-dimensional string theory:

$$
M^{10}=M^{4} \times G / H
$$

- 4-dimensional Lagrangian on M^{4} must be independent of the extra spacetime coordinates on G / H
- This is the case when isometries of the extra spacetime dimensions can be compensated by gauge tansformations (G-equivariance)
- Yang-Mills theory on G / H reduces to a quiver gauge theory on M^{4}

Structure of the Equivariant Bundle

 (see also arxiv 0706.0979)- Specify the coset: $G / H=S U(3) / U(1) \times U(1)$

Structure of the Equivariant Bundle

(see also arxiv 0706.0979)

- Specify the coset: $G / H=S U(3) / U(1) \times U(1)$
- Consider $U(n)$ Yang-Mills theory on a rank n hermitean vector bundle:

Structure of the Equivariant Bundle

 (see also arxiv 0706.0979)- Specify the coset: $G / H=S U(3) / U(1) \times U(1)$
- Consider $U(n)$ Yang-Mills theory on a rank n hermitean vector bundle:

- SU(3)-equivariance:
$S U(3)$ must act on the fibers in a $U(n)$ representation
- We choose the fundamental representation 3 of $S U(3)$ \rightarrow structure group of ε becomes $U(3)$

Structure of the Equivariant Bundle

- G-equivariance determines the vector bundle structure:

$$
\begin{gathered}
\varepsilon=\left(\mathbb{R} \otimes \mathcal{L}_{1}\right) \oplus\left(\mathbb{R} \otimes \mathcal{L}_{2}\right) \oplus\left(\mathbb{R} \otimes \mathcal{L}_{3}\right) \\
\downarrow \\
\mathbb{R} \times G / H
\end{gathered}
$$

Structure of the Equivariant Bundle

- G-equivariance determines the vector bundle structure:

$$
\begin{gathered}
\varepsilon=\left(\mathbb{R} \otimes \mathcal{L}_{1}\right) \oplus\left(\mathbb{R} \otimes \mathcal{L}_{2}\right) \oplus\left(\mathbb{R} \otimes \mathcal{L}_{3}\right) \\
\downarrow \\
\mathbb{R} \times G / H
\end{gathered}
$$

- Idea:
- The representation 3 decomposes under restriction to H as

$$
\left.\mathbf{3}\right|_{U(1) \times U(1)}=\bigoplus_{\alpha} \rho_{\alpha}=\rho_{1} \oplus \rho_{2} \oplus \rho_{3}
$$

- H-representation induces G-equivariant vector bundle over G/H
- $\mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}$: complex line bundles over G / H

Structure of the Equivariant Bundle

- G-equivariance determines the vector bundle structure:

$$
\begin{gathered}
\varepsilon=\left(\mathbb{R} \otimes \mathcal{L}_{1}\right) \oplus\left(\mathbb{R} \otimes \mathcal{L}_{2}\right) \oplus\left(\mathbb{R} \otimes \mathcal{L}_{3}\right) \\
\downarrow \\
\mathbb{R} \times G / H
\end{gathered}
$$

- Idea:
- The representation 3 decomposes under restriction to H as

$$
\left.\mathbf{3}\right|_{U(1) \times U(1)}=\bigoplus_{\alpha} \rho_{\alpha}=\rho_{1} \oplus \rho_{2} \oplus \rho_{3}
$$

- H-representation induces G-equivariant vector bundle over G/H
- $\mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}$: complex line bundles over G / H
- The single summands are related by G-action
- Gauge group $U(3)$ of ε is broken to $\prod_{\alpha=1}^{3} U(1)$

Quiver Gauge Theory

- Connection on $\varepsilon=\left(\mathbb{R} \otimes \mathcal{L}_{1}\right) \oplus\left(\mathbb{R} \otimes \mathcal{L}_{2}\right) \oplus\left(\mathbb{R} \otimes \mathcal{L}_{3}\right)$:

$$
\mathcal{A}=\left(\begin{array}{ccc}
a_{1} & -\bar{\phi}_{12} \otimes \beta^{12} & -\phi_{13} \otimes \bar{\beta}^{13} \\
\phi_{12} \otimes \bar{\beta}^{12} & a_{2} & -\bar{\phi}_{23} \otimes \beta^{23} \\
\bar{\phi}_{13} \otimes \beta^{13} & \phi_{23} \otimes \bar{\beta}^{23} & a_{3}
\end{array}\right)
$$

$$
\phi_{\alpha \beta} \in \operatorname{Hom}(\mathbb{C}, \mathbb{C}) \quad \text { Higgs fields }
$$

$$
\beta^{\alpha \beta} \in \Omega^{1}(G / H) \quad \text { one-forms }
$$

$$
a_{\alpha} \in \mathfrak{u}(1) \quad \text { connection on } \mathcal{L}_{\alpha}
$$

Quiver Gauge Theory

- Connection on $\varepsilon=\left(\mathbb{R} \otimes \mathcal{L}_{1}\right) \oplus\left(\mathbb{R} \otimes \mathcal{L}_{2}\right) \oplus\left(\mathbb{R} \otimes \mathcal{L}_{3}\right)$:

$$
\mathcal{A}=\left(\begin{array}{ccc}
a_{1} & -\bar{\phi}_{12} \otimes \beta^{12} & -\phi_{13} \otimes \bar{\beta}^{13} \\
\phi_{12} \otimes \bar{\beta}^{12} & a_{2} & -\bar{\phi}_{23} \otimes \beta^{23} \\
\bar{\phi}_{13} \otimes \beta^{13} & \phi_{23} \otimes \bar{\beta}^{23} & a_{3}
\end{array}\right)
$$

$$
\phi_{\alpha \beta} \in \operatorname{Hom}(\mathbb{C}, \mathbb{C}) \text { Higgs fields }
$$

$$
\beta^{\alpha \beta} \in \Omega^{1}(G / H) \quad \text { one-forms }
$$

$$
a_{\alpha} \in \mathfrak{u}(1) \quad \text { connection on } \mathcal{L}_{\alpha}
$$

- This gives rise to a quiver gauge theory:

Quiver Gauge Theory

- Requiring \mathcal{A} to satisfy the instanton equation implies the Quiver relations:

$$
\phi_{13}=\bar{\phi}_{12} \bar{\phi}_{23} \quad \bar{\phi}_{12}=\phi_{13} \phi_{23} \quad \bar{\phi}_{23}=\phi_{12} \phi_{13}
$$

Quiver Gauge Theory

- Requiring \mathcal{A} to satisfy the instanton equation implies the Quiver relations:

$$
\begin{equation*}
\phi_{13}=\bar{\phi}_{12} \bar{\phi}_{23} \quad \bar{\phi}_{12}=\phi_{13} \phi_{23} \quad \bar{\phi}_{23}=\phi_{12} \phi_{13} \tag{3}
\end{equation*}
$$

- Invariance condition $\left[I_{i}, X_{a}\right]=f_{i a}^{b} X_{b}$ specifies $X_{a}=X_{a}\left(\phi_{12}, \phi_{13}, \phi_{23}\right)$

Quiver Gauge Theory

- Requiring \mathcal{A} to satisfy the instanton equation implies the Quiver relations:

$$
\begin{equation*}
\phi_{13}=\bar{\phi}_{12} \bar{\phi}_{23} \quad \bar{\phi}_{12}=\phi_{13} \phi_{23} \quad \bar{\phi}_{23}=\phi_{12} \phi_{13} \tag{3}
\end{equation*}
$$

- Invariance condition $\left[I_{i}, X_{a}\right]=f_{i a}^{b} X_{b}$ specifies $X_{a}=X_{a}\left(\phi_{12}, \phi_{13}, \phi_{23}\right)$
- Direct computation:
quiver relations (3) match the matrix instanton equations:

$$
\begin{aligned}
& f_{a b}^{i} I_{i}+f_{a b}^{e} X_{e}-\left[X_{a}, X_{b}\right] \\
& \quad=\left(\frac{\tilde{\beta}_{1}^{2}}{2} f_{a b}^{e} f_{c d}^{e}+3 \beta_{2} f_{[a b}^{e} f_{c d]}^{e}\right)\left(f_{c d}^{i} I_{i}+f_{c d}^{a} X_{a}-\left[X_{c}, X_{d}\right]\right)
\end{aligned}
$$

Summary

- Higher-dimensional instantons satisfy $* \mathcal{F}=-(* Q) \wedge \mathcal{F}$
- Interesting objects in string theory, especially on cones over special holonomy manifolds
- We have constructed general instanton conditions on $\mathcal{C}\left(X^{n}\right)$ that can be solved under special assumptions
- Equivariant dimensional reduction: quiver gauge theory
- Quiver relations match the instanton matrix equations
- Outlook:

Instanton conditions with deformed metric;
Lifting of the building blocks to heterotic supergravity solutions;
Relation to heterotic string model building

