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Yang-Mills Instantons in String Theory

@ Higher-dimensional Super-Yang-Mills theory appears in the
low-energy limit of the heterotic superstring

@ String compactification: Spacetime is decomposed as
MlO _ MlO—n % X"

@ Instanton equations on X" arise as conditions of
supersymmetry preservation in heterotic superstring
compactifications

@ Instantons on special geometry manifolds can be lifted to
solutions of heterotic supergravity

Aim of my work:
Better understanding of instantons on special geometries
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Instantons in Higher Dimensions

@ Recall:
instantons in four dimensions satisfy the anti-self-duality equation

*F = —F
F 1 curvature of connection A on a principal G-bundle over M*

@ Generalization to higher dimensions:
Consider a coset space X" = G/H
G: compact, semisimple Lie group
H: closed Lie subgroup

@ We work with the cone over this coset space:

C(G/H) = (R+ X G/Ha gcone)
Bcone = GQT(dT2 + gG/H) r\
T

7: parameter in R-direction
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Instantons in Higher Dimensions

@ Assume there exists a 4-form Q € Q*(C(G/H))
@ Let * be the Hodge operator on C(G/H)

@ Let A be a connection on a principal G-bundle over C(G/H)
with curvature F = dA+ AN A

e Instanton equation (generalized anti-self-duality equation):
*xF = —(xQ) N F

@ Remark: Instanton equation implies Yang-Mills equation with
torsion

DxF+*xHANF =0

Torsion

where *H = d*Q
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Why cones over coset spaces?

@ Explicit higher-dimensional instanton solutions exist on
Euclidean spaces and on certain conical manifolds

@ Instantons on special holonomy manifolds can be lifted to
heterotic supergravity solutions
@ Special holonomy manifolds can be constructed as cones over

5-dimensional Sasaki manifolds
6-dimensional nearly Kahler manifolds
7-dimensional 3-Sasakian manifolds
7-dimensional nearly parallel Go-manifolds

Many examples of these manifolds are coset spaces

Lechtenfeld et.al [arxiv 1108.3951, 1202.5046]
Bar [Commun. Math. Phys., 154(3):509-521, 1993]

6/15
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Reduction to Matrix Equations

@ Instanton equation *F = —(xQ) A F in components:

1
»FOa = _QQOachcd ab - 7(QOeabQOecd - Qabcd)

@ Ansatz for the gauge potential:
A=él+ e’ X,(7)
Xo(7) = XE(7) 1y matrix-valued function that satisfies the
invariance condition [/;, X,] = f£X,

@ Curvature:

F=X,e" N e? — 5 (fabl + £5Xe — [Xay Xp)) €@ N €°
Notation:
I, generators of G {0,a} indiceson R x G/H
f5 structure constants of G {i} indices on H
e? coframe on R x G/H
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Reduction to Matrix Equations

® Assume gg,/n o 6spee’ to define a 3-form:

1
= gﬁ,,bcea AeP e
@ Use this to construct the 4-form Q:

Q = BrdT A f + Bodf

f

@ With F and @, the instanton equations reduce to matrix equations:

.7
Xa = éfacd(fczxa - [XCde]) (1)
;blf_"ﬂaebXe - [Xavxb]
’§2 e re Q_re re i a
= (;fabfcd + 3e‘Jng[ab cd]) ( cali + T Xa — [XC’Xd]) (2)

@ Interpretation in terms of quiver gauge theory:
instanton conditions match the relations of a ‘certain quiver
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@ Suppose A is parametrized by only one function ¢(7):

Xa = ¢(7-)Ia A= eil,' + ¢e?l,

F=denet 2 (1= @)k + (0 - P)ple) & A
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Example (simplest possible case)

@ Suppose A is parametrized by only one function ¢(7):

Xa = ¢(7-)Ia A= eil,' + ¢e?l,
F=denet 2 (1= @)k + (0 - P)ple) & A

@ Condition (2) is identically satisfied.
Condition (1) turns into
the Kink equation:

o1
b= 5(62—9)

Interpretation:

Instanton solution A(7) interpolates
between vacuum configurations
A(—00) and A(+00)

Lechtenfeld, Rahn et.al [arxiv 0904.0654] 9/15
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Equivariant Dimensional Reduction

@ Idea: Construct an effectively 4-dimensional field theory from
10-dimensional string theory:

MO = M* x G/H

@ 4-dimensional Lagrangian on M* must be independent of the
extra spacetime coordinates on G/H

@ This is the case when isometries of the extra spacetime
dimensions can be compensated by gauge tansformations
(G-equivariance)

@ Yang-Mills theory on G/H reduces to a quiver gauge theory
on M*

10/15
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Structure of the Equivariant Bundle
(see also arxiv 0706.0979)

@ Specify the coset: G/H = SU(3)/U(1) x U(1)

@ Consider U(n) Yang-Mills theory on a rank n
hermitean vector bundle:

€

|

Rx G/H

@ SU(3)-equivariance:
SU(3) must act on the fibers in a U(n) representation

@ We choose the fundamental representation 3 of SU(3)
— structure group of € becomes U(3)

11/15
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Structure of the Equivariant Bundle

@ G-equivariance determines the vector bundle structure:

e=R®L)D(R® L) D (R L3)

|

R x G/H

@ ldea:
o The representation 3 decomposes under restriction to H as
3|U(1)><U(1) = @Pa = p1 D p2Dp3
«

o H-representation induces G-equivariant vector bundle over
G/H
o L1,L5, L3 : complex line bundles over G/H

@ The single summands are related by G-action
@ Gauge group U(3) of ¢ is broken to []>_, U(1)

a=1
12/15



Quiver Theory
0000

Quiver Gauge Theory

@ Connectionone = (R L) B (R® L) D (R L3):
a_ —9nep? —¢ep?
A= | ¢ p"? a —¢23 ® 7
P13 @ B o3 ® 573 a3
¢ap € Hom(C,C) Higgs fields

P € QY(G/H)  one-forms
as €u(l) connection on L,
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Quiver Gauge Theory

@ Connectionone = (R L) B (R® L) D (R L3):

a_ —9nep? —¢ep?
A= ¢nep? » e p?
P13 @ B2 P az

¢ap € Hom(C,C) Higgs fields
B8 € QY (G/H)  one-forms
as €u(l) connection on L,

@ This gives rise to a quiver gauge theory:

=z 12
R® L, $12®0 R® Ly

R® L;3

13 /15
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Quiver Gauge Theory

@ Requiring A to satisfy the instanton equation implies the Quiver
relations:

P13 = P12¢23 b12 = P1303 bo3 = d1od13  (3)

@ Invariance condition [I;, X5] = f2X,, specifies X, = Xu(¢12, P13, $23)

@ Direct computation:
quiver relations (3) match the matrix instanton equations:

ol 5 Xe — [Xa, Xo]

i ,-
- (21'[;27 ci’ + 362f[§b Ce:?'] ( cali + ciIXa - [XC7Xd])

14 /15



Summary
°

Summary

@ Higher-dimensional instantons satisfy «F = —(xQ) A F

@ Interesting objects in string theory,
especially on cones over special holonomy manifolds

@ We have constructed general instanton conditions on C(X")
that can be solved under special assumptions

@ Equivariant dimensional reduction: quiver gauge theory
@ Quiver relations match the instanton matrix equations

@ Outlook:
Instanton conditions with deformed metric;
Lifting of the building blocks to heterotic supergravity solutions;

Relation to heterotic string model building

15/15
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