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Motivation

Set up a model to support boson star solutions in
Gauss-Bonnet gravity in 4 + 1 dimensions
Gauss-Bonnet theory which appears naturally in the low
energy effective action of quantum gravity models
We are interested in the effect of Gauss-Bonnet gravity
and will study these objects in the minimal number of
dimensions in which the term does not become a total
derivative.
Higher dimensions appear in attempts to find a quantum
description of gravity as well as in unified models.
For black holes many of their properties in (3 + 1)
dimensions do not extend to higher dimensions.
Discovery of the Higgs Boson in 2012: fundamental
scalar fields do exist in nature.
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Solitons in non-linear field theories

General properties of soliton solutions
Localized, finite energy, stable, regular solutions of
non-linear field equations
Can be viewed as models of elementary particles

Examples
Topological solitons: Skyrme model of hadrons in high
energy physics one of first models and magnetic
monopoles, domain walls etc.
Non-topological solitons: Q-balls (named after Noether
charge Q) (flat space-time) and boson stars
(generalisation in curved space-time)
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Non-topolocial solitons

Properties of non-topological solitons
Solutions possess the same boundary conditions at
infinity as the physical vacuum state
Degenerate vacuum states do not necessarily exist
Require an additive conservation law, e.g. gauge
invariance under an arbitrary global phase
transformation

S. R. Coleman, Nucl. Phys. B 262 (1985), 263, R. Friedberg, T. D. Lee and A. Sirlin, Phys. Rev. D 13 (1976) 2739),

D. J. Kaup, Phys. Rev. 172 (1968), 1331, R. Friedberg, T. D. Lee and Y. Pang, Phys. Rev. D 35 (1987), 3658, P.

Jetzer, Phys. Rept. 220 (1992), 163, F. E. Schunck and E. Mielke, Class. Quant. Grav. 20 (2003) R31, F. E.

Schunck and E. Mielke, Phys. Lett. A 249 (1998), 389.
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Why study Q-balls and boson stars?

Q-balls
Scalar fields prevented from collapse by Heisenberg’s
uncertainty principle and repulsive self-interaction
Supersymmetric Q-balls have been considered as
possible candidates for baryonic dark matter

Boson stars
Described by relatively simple equations
Simple toy models for a wide range of objects such as
particles, compact stars, e.g. neutron stars and even
centres of galaxies
Gauss-Bonnet gravity: its spectrum does not include
new propagating degrees of freedom besides
gravitation
Toy models for AdS/CFT correspondence. Planar boson
stars in AdS have been interpreted as Bose-Einstein
condensates of glueballs
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Model for Gauss–Bonnet Boson Stars

Action

S =
1

16πG5

∫
d5x
√
−g (R − 2Λ + αLGB + 16πG5Lmatter)

LGB =
(

RMNKLRMNKL − 4RMNRMN + R2
)

(1)

Matter Lagrangian Lmatter = − (∂µψ)∗ ∂µψ − U(ψ)

Gauge mediated potential

USUSY(|ψ|) = m2η2
susy

(
1− exp

(
− |ψ|

2

η2
susy

))
(2)

USUSY(|ψ|) = m2|ψ|2 − m2|ψ|4

2η2
susy

+
m2|ψ|6

6η4
susy

+ O
(
|ψ|8

)
(3)

A. Kusenko, Phys. Lett. B 404 (1997), 285; Phys. Lett. B 405 (1997), 108, L. Campanelli and M. Ruggieri,

Phys. Rev. D 77 (2008), 043504
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Model for Gauss–Bonnet Boson Stars

Einstein Equations are derived from the variation of the
action with respect to the metric fields

GMN + ΛgMN +
α

2
HMN = 8πG5TMN (4)

where HMN is given by

HMN = 2
(

RMABCRABC
N − 2RMANBRAB − 2RMARA

N + RRMN

)
− 1

2
gMN

(
R2 − 4RABRAB + RABCDRABCD

)
(5)

Energy-momentum tensor

TMN = −gMN

[
1
2

gKL (∂Kψ
∗∂Lψ + ∂Lψ

∗∂Kψ) + U(ψ)

]
+ ∂Mψ

∗∂Nψ + ∂Nψ
∗∂Mψ (6)
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Ansatz

The Klein-Gordon equation is given by:(
�− ∂U

∂|ψ|2

)
ψ = 0 (7)

Lmatter is invariant under the global U(1) transformation

ψ → ψeiχ . (8)

Locally conserved Noether current jM

jM = − i
2

(
ψ∗∂Mψ − ψ∂Mψ∗

)
; jM;M = 0 (9)

The globally conserved Noether charge Q reads

Q = −
∫

d4x
√
−gj0 . (10)
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Ansatz

Metric in spherical Schwarzschild-like coordinates

ds2 = −N(r)A2(r)dt2 +
1

N(r)
dr2

+ r2
(

dθ2 + sin2 θdϕ2 + sin2 θ sin2 ϕdχ2
)

(11)

where
N(r) = 1− 2n(r)

r2 (12)

Stationary Ansatz for complex scalar field

ψ(r , t) = f (r)eiωt (13)

Rescaling using dimensionless quantities

r → r
m

, ω → mω , ψ → ηsusyψ , n→ n/m2 , α→ α/
√

m
(14)
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Einstein equations

Equations for the metric functions:

N ′(r) = 2r

(
1− N − r2

3 Λ

r2 + 2α(1− N)

)

− 2
3
κr3

NA2

(
UNA2 + ω2f 2 + N2A2f ′2

r2 + 2α(1− N)

)
(15)

A′ =
2κr3 (A2N2f ′2 + ω2f 2)
3AN2

(
r2 + 2α(1− N)

) (16)

κ = 8πG5η
2
susy (17)

Matter field equation:(
r3ANf ′

)′
= r3A

(
1
2
∂U
∂f
− ω2f

NA2

)
(18)
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Boundary Conditions flat space-time

Appropriate boundary conditions:

f ′(0) = 0 , n(0) = 0 . (19)

We need the scalar filed to vanish at infinity and therefore
require f (∞) = 0, while we choose A(∞) = 1 (rescaling of
the time coordinate)
If Λ = 0 the scalar field function falls of exponentially with

f (r >> 1) ∼ 1

r
3
2

exp
(
−
√

1− ω2r
)

+ ... (20)
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AdS space-time

3

Figure : (a) Penrose diagram of AdS space-time, (b) massive (solid) and massless
(dotted) geodesic.

3J. Maldacena, The gauge/gravity duality, arXiv:1106.6073v1
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Boundary Conditions for asymptotic AdS space time

If Λ < 0 the scalar field function falls of with

φ(r >> 1) =
φ∆

r∆
, ∆ = 2 +

√
4 + L2

eff . (21)

Where Leff is the effective AdS-radius:

L2
eff =

2α

1−
√

1− 4α
L2

(22)

With L being the AdS-radius which is related to Λ as:

Λ =
−6
L2 (23)

Chern-Simons limit:

α =
L2

4
(24)
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Expressions for Charge Q and Radius R

The explicit expression for the Noether charge

Q = 2π2

∞∫
0

dr r3ωf 2

AN
(25)

Define the radius of the boson star as an averaged radial
coordinate4

R =
2π2

Q

∞∫
0

dr r4ωf 2

AN
(26)

4D. Astefanesei and E. Radu, Nucl. Phys. B 665 (2003) 594
[gr-qc/0309131].
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Expressions for Mass M

Mass for κ = 0

M = 2π2

∞∫
0

dr r3
(

Nf ′2 +
ω2f 2

N
+ U(f )

)
(27)

Mass for κ > 0 we define the gravitational mass5 by the
asymptotic behaviour:

MG ∼ n(r →∞)/κ (28)

5Y. Brihaye and B. Hartmann, Nonlinearity 21 (2008), 1937, D. Astefanesei
and E. Radu, Phys. Lett. B 587 (2004) 7
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Finding solutions: fixing ω

f
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Figure : Effective potential V (f ) = ω2f 2 − U(f ).
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Gauss–Bonnet boson stars with Λ = 0
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Figure : Charge Q in dependence on the frequency ω for κ = 0.05 and different
values of α
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Gauss–Bonnet boson stars with Λ = 0
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Figure : Mass M in dependence on the frequency ω for κ = 0.05 (left) and κ = 0.02
(right) and different values of α
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Gauss–Bonnet boson stars with Λ = 0
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Figure : Metric function A(r) for different values of α and f (0),
κ = 0.05.
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Gauss–Bonnet boson stars with Λ = 0
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Figure : f (r) and N(r) for fixed f (0), different values of α (large alpha
regime) and κ = 0.05.
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Gauss–Bonnet boson stars with Λ = 0
6

Figure : Mass-radius relation for the equation of state of neutron stars
(left) in comparison to the mass-radius relation of Gauss-Bonnet
boson stars (right).

6S. GANDOLFI et al, PHYSICAL REVIEW C 85, 032801(R) (2012)
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Gauss–Bonnet boson stars with Λ < 0
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Figure : Charge Q in dependence on the frequency ω for Λ = −0.01, κ = 0.02 and
different values of α. ωmax shift: ωmax = ∆
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Gauss–Bonnet boson stars with Λ < 0
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Figure : Mass M in dependence on the frequency ω for Λ = −0.01, κ = 0.02 and
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Excited Gauss–Bonnet boson stars with Λ = 0
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Figure : Charge Q in dependence on the frequency ω for Λ = 0, κ = 0.0, and
different values of α
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Excited Gauss–Bonnet boson stars with Λ < 0
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Figure : Charge Q in dependence on the frequency ω for Λ = −0.01, κ = 0.02, and
different values of α. ωmax shift: ωmax = ∆+2k

Leff

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS



Outlook

Rotating Gauss-Bonnet Boson Stars paper with Vyes
Brihaye online: arXiv:1310.7223
Gauss-Bonnet Boson Stars and AdS/CFT
correspondance
Stability analysis of Gauss-Bonnet Boson Stars
Boson Stars in general Lovelock theory
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Thank You

Thank You!
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