Partition Function of Chiral Boson

on 2-Torus

from Floreanini-Jackiw Lagrangian based on arXiv: 1307.2172 [hep-th]

KHOO Fech Scen

Jacobs University

Nordic String Meeting 2014
AEI, Golm
February 3, 2014

Motivation

- To establish a Lagrangian formulation for the quantum theory of a chiral boson, accommodating a wider class of chiral boson theories.

Chiral Boson

- Self-dual gauge theory/chiral boson theory lives in $4 k+2$ spacetime dimensions, for integer k.
- There exists a $2 k$-form field/chiral boson, ϕ.
- Field strength of $(2 k+1)$-form is self-dual, i.e. $d \phi=* d \phi$.

In 2 dimensions:

- Chiral scalar field, ϕ
- Self-duality: $\dot{\phi}=\phi^{\prime}$

Outline

- Henningson-Nilsson-Salomonson - Holomorphic decomposition
- Witten - Holomorphic line bundle
- Our proposal - Path integral for FJ model

Introduction

In the following discussions, we will be operating with three different actions S on a 2 -torus Σ, defined by

$$
z \sim z+m+n \tau \quad(m, n \in \mathbb{Z})
$$

and a circle target space of the scalar field ϕ obeying the periodic boundary condition

$$
\begin{equation*}
\phi(z+m+n \tau, \bar{z}+m+n \bar{\tau})=\phi(z, \bar{z})+2 \pi\left(m \omega_{1}+n \omega_{2}\right), \tag{1}
\end{equation*}
$$

for arbitrary winding numbers $\omega_{1}, \omega_{2} \in \mathbb{Z}$.

Introduction

The goal is to compute the partition function $Z\left(=\int D \phi e^{-S}\right)$ for a chiral boson.

The partition function is a product of zero-mode- and non-zero-mode-,

$$
Z[A]=Z_{0}\left[A^{(0)}\right] \tilde{Z}[\tilde{A}]
$$

Formula:
General Jacobi ϑ function:

$$
\vartheta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](y ; \tau)=\sum_{n \in \mathbb{Z}} \exp \left[\pi i(n+\alpha)^{2} \tau\right] \exp [2 \pi i(n+\alpha)(y+\beta)]
$$

with real characteristics/spin structures α, β.

Holomorphic decomposition

(Henningson et al., hep-th/9908107)

Idea:

$$
Z_{\text {non-chiral }}\left[A_{\bar{z}}, A_{z}\right]=Z_{\text {hol }}\left[A_{\bar{z}}\right] Z_{\text {anti-hol }}\left[A_{z}\right]
$$

Holomorphic decomposition

(Henningson et al., hep-th/9908107)

Idea:

$$
Z_{\text {non-chiral }}\left[A_{\bar{z}}, A_{z}\right]=Z_{\text {hol }}\left[A_{\bar{z}}\right] Z_{\text {anti-hol }}\left[A_{z}\right]
$$

However for nontrivial topology,

$$
Z_{\text {non-chiral }}\left[A_{\bar{z}}, A_{z}\right] \sim \sum_{s} Z_{\text {hol }}^{(s)}\left[A_{\bar{z}}\right] Z_{\text {anti-hol }}^{(s)}\left[A_{z}\right]
$$

where s is spin structure.

Holomorphic decomposition

(Henningson et al., hep-th/9908107)

Idea:

$$
Z_{\text {non-chiral }}\left[A_{\bar{z}}, A_{z}\right]=Z_{\text {hol }}\left[A_{\bar{z}}\right] Z_{\text {anti-hol }}\left[A_{z}\right]
$$

However for nontrivial topology,

$$
Z_{\text {non-chiral }}\left[A_{\bar{z}}, A_{z}\right] \sim \sum_{s} Z_{\text {hol }}^{(s)}\left[A_{\bar{z}}\right] Z_{\text {anti-hol }}^{(s)}\left[A_{z}\right]
$$

where s is spin structure.
Action:

$$
S[\phi, A]=\frac{1}{\pi g^{2}} \int d z d \bar{z} \partial_{z} \phi \partial_{\bar{z}} \phi+\frac{1}{\pi g} \int d z d \bar{z}\left(A_{\bar{z}} \partial_{z} \phi+A_{z} \partial_{\bar{z}} \phi\right)
$$

Calculations ${ }^{1}$

The non-chiral zero-mode partition function obtained is

$$
\begin{align*}
Z_{0}[y, \bar{y}]= & k_{2}^{-1} \mathcal{W}[y, \bar{y}] \sum_{n_{1}=0}^{k_{1}-1} \sum_{n_{2}=0}^{k_{2}-1} \vartheta\left[\begin{array}{l}
\frac{n_{1}}{k_{1}} \\
\frac{n_{2}}{k_{2}}
\end{array}\right]\left(\sqrt{\frac{k_{1}}{k_{2}}} y ; \frac{k_{1}}{k_{2}} \tau\right) \\
& \vartheta\left[\begin{array}{c}
\frac{n_{1}}{k_{1}} \\
\frac{n_{2}}{k_{2}}
\end{array}\right]\left(\pm \sqrt{\frac{k_{1}}{k_{2}}} y ; \frac{k_{1}}{k_{2}} \tau\right), \tag{2}
\end{align*}
$$

where

$$
\mathcal{W}[y, \bar{y}]=\sqrt{\frac{g^{2} \tau_{2}}{2}} \exp \left[\frac{\pi}{2 \tau_{2}}(y+\bar{y})^{2}\right]
$$

and $y=\frac{i \tau_{2}}{\pi} A_{\bar{z}}^{(0)}, \quad \bar{y}=-\frac{i \tau_{2}}{\pi} A_{z}^{(0)}$.
$+: g=\sqrt{k_{1} k_{2}}, \quad-: g=\frac{2}{\sqrt{k_{1} k_{2}}}$.

Calculations ${ }^{2}$

- There is a T-duality relating the two coupling constants (g and $g^{\prime}=\frac{2}{g}$).
- Self-duality is realized at $g^{2}=2$ with the only possibility from $k_{1}=1, k_{2}=2$.

Calculations ${ }^{2}$

- There is a T-duality relating the two coupling constants $(g$ and $\left.g^{\prime}=\frac{2}{g}\right)$.
- Self-duality is realized at $g^{2}=2$ with the only possibility from $k_{1}=1, k_{2}=2$.

The zero-mode partition function of a chiral boson should be identified with the holomorphic factor,

$$
Z_{0}^{\text {chiral }}[y]=\vartheta\left[\begin{array}{c}
\frac{n_{1}}{k_{1}} \tag{3}\\
\frac{n_{2}}{k_{2}}
\end{array}\right]\left(\sqrt{\frac{k_{1}}{k_{2}}} y ; \frac{k_{1}}{k_{2}} \tau\right)
$$

Discussions

Disadvantages in this approach:

- A Lagrangian of a non-chiral boson is assumed.
- An anomalous by-product \mathcal{W}.

Results:

- Modular parameter defining the base space z and base space $A^{(0)}$ can differ by a fraction k_{1} / k_{2}.
- Obtained more general rational spin structures. (Could be lifted to arbitrary real spin structures.)

Holomorphic line bundle

(Witten, hep-th/9610234)

Idea:
Anti-chiral component decoupled in a Lorentz invariant action.

Action:

$$
\begin{aligned}
S[\phi, A] & =\frac{1}{\pi g^{2}} \int_{\Sigma} d z d \bar{z}\left[\left(\partial_{z} \phi+g A_{z} / 2\right)\left(\partial_{\bar{z}} \phi+g A_{\bar{z}} / 2\right)-g \phi F_{z \bar{z}} / 2\right] \\
& =\frac{1}{\pi g^{2}} \int_{\Sigma} d z d \bar{z}\left(\partial_{z} \phi \partial_{\bar{z}} \phi+g A_{\bar{z}} \partial_{z} \phi+g^{2} A_{z} A_{\bar{z}} / 4\right) .
\end{aligned}
$$

Holomorphic line bundle

Z satisfies the two differential equations

$$
\begin{gather*}
\frac{D}{D A_{z}} Z[A]=0, \tag{4}\\
{\left[\partial_{z} \frac{D}{D A_{z}}+\partial_{\bar{z}} \frac{D}{D A_{\bar{z}}}-\frac{F_{\bar{z} \bar{z}}}{2 \pi}\right] Z[A]=0,} \tag{5}
\end{gather*}
$$

on which the line bundle is defined with the covariant derivatives

$$
\frac{D}{D A_{z}}=\frac{\delta}{\delta A_{z}}+\frac{A_{\bar{z}}}{4 \pi}, \quad \frac{D}{D A_{\bar{z}}}=\frac{\delta}{\delta A_{\bar{z}}}-\frac{A_{z}}{4 \pi} .
$$

By these transformations,

$$
\delta A_{\bar{z}}=-\partial_{\bar{z}} \epsilon_{z}, \quad \delta A_{z}=\lambda,
$$

we can get to configurations

$$
A_{\bar{z}}=A_{\bar{z}}^{(0)} \quad \text { and } \quad A_{z}=A_{z}^{(0)}
$$

Holomorphic line bundle

The space of $A_{\bar{z}}^{(0)}$ forms a torus, parametrized by

$$
\begin{equation*}
A_{\bar{z}}^{(0)} \rightarrow A_{\bar{z}}^{(0)}+\frac{2 \pi i}{g \tau_{2}}(m \tau-n) \quad(m, n \in \mathbb{Z}) \tag{6}
\end{equation*}
$$

- Z will not be a function of $A_{\bar{z}}^{(0)}$.

Holomorphic line bundle

The space of $A_{\bar{z}}^{(0)}$ forms a torus, parametrized by

$$
\begin{equation*}
A_{\bar{z}}^{(0)} \rightarrow A_{\bar{z}}^{(0)}+\frac{2 \pi i}{g \tau_{2}}(m \tau-n) \quad(m, n \in \mathbb{Z}) \tag{6}
\end{equation*}
$$

- Z will not be a function of $A_{\bar{z}}^{(0)}$.

Calculations:

Let $y=i \tau_{2} A_{\bar{z}}^{(0)} / \pi$ and $\bar{y}=-i \tau_{2} A_{z}^{(0)} / \pi$, the covariant derivatives are

$$
\begin{equation*}
D_{\bar{y}}=\frac{\partial}{\partial \bar{y}}-\frac{F}{2} y, \quad D_{y}=\frac{\partial}{\partial y}+\frac{F}{2} \bar{y}, \tag{7}
\end{equation*}
$$

where field strength $F=-\pi / \tau_{2}$.

Calculations ${ }^{2}$

From

$$
\begin{equation*}
U_{(m, n)} D_{i}(y ; \bar{y}) U_{(m, n)}^{-1}=D_{i}\left(y+\frac{2}{g}(m+n \tau) ; \bar{y}+\frac{2}{g}(m+n \bar{\tau})\right), \tag{8}
\end{equation*}
$$

we find the transition function $U_{(m, n)}$ is

$$
U_{(m, n)}=e^{-\frac{F}{g}(m+n \bar{\tau}) y+\frac{F}{g}(m+n \tau) \bar{y}+f(m, n)}
$$

A section Y of the bundle should satisfy

$$
\begin{equation*}
U_{(m, n)} Y(y, \bar{y})=Y\left(y+\frac{2}{g}(m+n \tau), \bar{y}+\frac{2}{g}(m+n \bar{\tau})\right) . \tag{9}
\end{equation*}
$$

By further satisfying the self-duality condition: $D_{\bar{y}} Y=0$, we have

$$
Y(y, \bar{y})=e^{\frac{\digamma}{2} y \bar{y}-\frac{F}{2} y^{2}} Y_{0}(y)
$$

Calculations ${ }^{3}$

Given a choice of $f(m, n)$, we can have

$$
Y_{0}(y)=\vartheta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](a y ; b \tau)
$$

This is realized from a property of the ϑ function,

$$
\vartheta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](y+n \tau+m ; \tau)=e^{-i 2 \pi n y-i \pi n^{2} \tau+i 2 \pi(m \alpha-n \beta)} \vartheta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](y ; \tau) .
$$

We found that a, b could be parametrized by integers k_{1}, k_{2},

$$
a=\sqrt{\frac{k_{1}}{k_{2}}}, \quad b=\frac{k_{1}}{k_{2}},
$$

where $g=\frac{2}{\sqrt{k_{1} k_{2}}}$.
So the zero-mode partition function for chiral boson is

$$
Z_{0}^{(s)}[y, \bar{y}]=\mathcal{N}^{(s)} e^{\frac{F}{2} y \bar{y}-\frac{F}{2} y^{2}} \vartheta\left[\begin{array}{l}
\alpha \tag{10}\\
\beta
\end{array}\right]\left(\sqrt{\frac{k_{1}}{k_{2}}} y ; \frac{k_{1}}{k_{2}} \tau\right)
$$

where spin structure $s=(\alpha, \beta)$.

Discussions

Shortcoming in this approach:

- The action

$$
S[\phi, A]=\frac{1}{\pi g^{2}} \int_{\Sigma} d z d \bar{z}\left[\left(\partial_{z} \phi+g A_{z} / 2\right)\left(\partial_{\bar{z}} \phi+g A_{\bar{z}} / 2\right)-g \phi F_{z \bar{z}} / 2\right]
$$

was tailor-made.

Result:

- Obtained arbitrary real spin structures.

Path integral for FJ model

(Chen et al., hep-th/1307.2172)
Idea: Direct computation by a modified chiral boson Lagrangian.

Path integral for FJ model

(Chen et al., hep-th/1307.2172)
Idea: Direct computation by a modified chiral boson Lagrangian. Action we propose:

$$
\begin{align*}
S_{\phi}= & S_{0}+S_{A}\left[A+A_{0}\right]+S_{B}+S_{\Psi} \\
= & \frac{1}{4 \pi g^{2}} \int d z d \bar{z}\left(\partial_{z}+\partial_{\bar{z}}\right) \phi \partial_{\bar{z}} \phi \\
& +\frac{1}{2 \pi g} \int d z d \bar{z}\left(\partial_{z}+\partial_{\bar{z}}\right) \phi\left(A+A_{0}\right) \\
& +i \int d \sigma_{\mathcal{B}} \wedge d \sigma_{\mathcal{A}} B\left(\sigma_{\mathcal{B}}\right) \partial_{\mathcal{B}} \phi(z, \bar{z}) \\
& +\frac{i}{2 \pi k_{1}} \int(d \phi+d \Gamma) \wedge d \Psi \tag{11}
\end{align*}
$$

to compute the zero-mode partition function.
Notations: $\sigma_{\mathcal{A}}=\frac{-\bar{\tau} z+\tau \bar{z}}{\tau-\bar{\tau}}, \quad \sigma_{\mathcal{B}}=\frac{z-\bar{z}}{\tau-\bar{\tau}}$

Local physics ${ }^{1}$

The original FJ action

$$
\begin{equation*}
S_{0}=\frac{1}{4 \pi g^{2}} \int d z d \bar{z}\left(\partial_{\mathcal{A}} \phi\right)\left(\partial_{\bar{z}} \phi\right) \tag{12}
\end{equation*}
$$

has the equation of motion

$$
\partial_{\mathcal{A}} \partial_{\overline{\mathbf{z}}} \phi=0 .
$$

where $\partial_{\mathcal{A}}=\partial_{z}+\partial_{\bar{z}}, \partial_{\mathcal{B}}=\tau \partial_{z}+\bar{\tau} \partial_{\bar{z}}$.
Through gauge transformation

$$
\begin{equation*}
\phi \rightarrow \phi^{\prime}=\phi+F\left(\sigma_{\mathcal{B}}\right), \tag{13}
\end{equation*}
$$

it is equivalent to the self-duality condition

$$
\begin{equation*}
\partial_{\bar{z}} \phi=0 \tag{14}
\end{equation*}
$$

Local physics ${ }^{2}$

The source term of action

$$
\begin{equation*}
S_{A}[A]=\frac{1}{2 \pi g} \int d z d \bar{z}\left(\partial_{\mathcal{A}} \phi\right) A \tag{15}
\end{equation*}
$$

When expressing in a new coordinate $y=\frac{i \tau_{2}}{\pi} A$, we notice the partition function is periodic,

$$
\begin{equation*}
Z_{0}[y+g]=Z_{0}[y] \tag{16}
\end{equation*}
$$

Gauge fixing

- The winding number ω_{2} has become gauge-invariant, as a consequence from the symmetry $\phi \rightarrow \phi^{\prime}=\phi+F\left(\sigma_{\mathcal{B}}\right)$.
- Consider the gauge-fixing condition

$$
\oint_{C_{\mathcal{A}}\left(\sigma_{\mathcal{B}}\right)} d \sigma_{\mathcal{A}} \partial_{\mathcal{B}} \phi(z, \bar{z})=2 \pi \omega_{2}=\text { constant } \quad \forall \sigma_{\mathcal{B}}
$$

- Impose another constraint by introducing a constant Lagrange multiplier $a \in \mathbb{R}$.
- We set ω_{2} to zero.

This procedure contributes a term in action as

$$
\begin{equation*}
S_{B}=i \int d \sigma_{\mathcal{B}} \wedge d \sigma_{\mathcal{A}} B\left(\sigma_{\mathcal{B}}\right) \partial_{\mathcal{B}} \phi(z, \bar{z}) \tag{17}
\end{equation*}
$$

where $\sigma_{\mathcal{A}}=\frac{-\bar{\tau} z+\tau \bar{z}}{\tau-\bar{\tau}}, \sigma_{\mathcal{B}}=\frac{z-\bar{z}}{\tau-\bar{\tau}}$.

Modifications ${ }^{1}$

We introduce topological terms into the action,

$$
\begin{equation*}
S_{\Psi}=\frac{i}{2 \pi k_{1}} \int(d \phi+d \Gamma) \wedge d \Psi \tag{18}
\end{equation*}
$$

Ψ is a scalar auxiliary field, with twisted periodicity

$$
\Psi \sim \Psi+2 \pi(N+\beta) \quad \forall N \in \mathbb{Z}, \beta \in \mathbb{R}
$$

The respective winding modes are

$$
\begin{array}{rlr}
(d \phi)^{(0)} & =2 \pi \omega_{1} d \sigma_{\mathcal{A}}+2 \pi \omega_{2} d \sigma_{\mathcal{B}} & \left(\omega_{1}, \omega_{2} \in \mathbb{Z}\right),\left[\omega_{2} \text { is set to zero }\right] \\
(d \Psi)^{(0)} & =2 \pi m d \sigma_{\mathcal{A}}+2 \pi n d \sigma_{\mathcal{B}} & \\
(m, n \in \mathbb{Z}) .
\end{array}
$$

The constant one-form $d \Gamma$ is defined by

$$
d \Gamma=\gamma d \sigma_{\mathcal{A}}+\zeta d \sigma_{\mathcal{B}}
$$

where $\gamma=-2 \pi n_{1}$. We may ignore the effect of ζ which contributes only an overall factor.

Modifications ${ }^{2}$

[Recall from earlier $Z_{0}[y+g]=Z_{0}[y]$.]
The implication of the auxiliary field is to realize the twisted quotient periodic boundary condition,

$$
\begin{equation*}
Z_{0}^{n e w}[y]=e^{-i 2 \pi n_{1} / k_{1}} Z_{0}^{n e w}\left[y+g / k_{1}\right] \tag{19}
\end{equation*}
$$

This is satisfied when we define

$$
\begin{equation*}
Z_{0}^{n e w}[y]=\sum_{n=0}^{k_{1}-1} e^{-i 2 \pi n n_{1} / k_{1}} Z_{0}\left[y+g n / k_{1}\right] \tag{20}
\end{equation*}
$$

Or,

$$
Z_{0}^{n e w}[y]=\frac{1}{\left(\sum_{r \in \mathbb{Z}} 1\right)} \sum_{n \in \mathbb{Z}} e^{-i 2 \pi n n_{1} / k_{1}} Z_{0}\left[y+g n / k_{1}\right]
$$

under gauge symmetry

$$
n \rightarrow n+r k_{1} \quad \forall r \in \mathbb{Z}
$$

Modifications ${ }^{3}$

The twisting of β in the boundary condition of Ψ introduces a background A_{0}, where we define

$$
A_{0}=\pi g \beta / i \tau_{2} k_{1}
$$

in $E_{\mathcal{B}}$-direction. This appears from a nontrivial topological term $\int d \phi \wedge d \kappa$, where $d \kappa$ is a constant one-form. That is, we have a term in action as

$$
\begin{equation*}
S_{A}\left[A_{0}\right]=\frac{1}{2 \pi g} \int d z d \bar{z}\left(\partial_{\mathcal{A}} \phi\right) A_{0} \tag{21}
\end{equation*}
$$

This gives a shift in the source term A.

Calculations

The zero-mode partition function is computed to be

$$
Z_{0}[y]=\mathcal{N} \sum_{\omega_{1}, n} e^{-S_{\phi}^{(0)}}=\vartheta\left[\begin{array}{c}
n_{1} / k_{1} \tag{22}\\
\beta
\end{array}\right]\left(\frac{k_{1}}{g} y ; \frac{k_{1}^{2}}{g^{2}} \tau\right)
$$

To derive this result we have decomposed the variables

$$
\omega_{1}=k_{1} p+m, \quad n=k_{1} q+r,
$$

where $p, q \in \mathbb{Z}$ and $m, r=0,1,2, \cdots,\left(k_{1}-1\right)$.
To reproduce the former results, $g=\sqrt{k_{1} k_{2}}$.

Discussions

Our proposal:

- For a generic interacting chiral boson Lagrangian, of Lorentz-invariance or -variance, we propose to introduce the correction terms $S_{A}\left[A_{0}\right]+S_{\psi}$ to the "local" action $S_{0}+S_{A}[A]$.
- The quotient condition is the guiding principle. And it involves introducing an auxiliary field.
- All possible topological terms are exhausted and carefully defined.

Discussions

Our proposal:

- For a generic interacting chiral boson Lagrangian, of Lorentz-invariance or -variance, we propose to introduce the correction terms $S_{A}\left[A_{0}\right]+S_{\psi}$ to the "local" action $S_{0}+S_{A}[A]$.
- The quotient condition is the guiding principle. And it involves introducing an auxiliary field.
- All possible topological terms are exhausted and carefully defined.

Results:

- Obtained a single ϑ function as a solution for the chiral boson partition function.
- Spin structures can be lifted to be arbitrary real by twisting the boundary condition of ϕ.

Summary

- Henningson-Nilsson-Salomonson:
- contains an anomalous piece that makes the decomposition not strictly holomorphic.
- requires a non-chiral boson action to start with.
- Witten:
- it is a customized action.
- Our approach:
- clear emergence of a single ϑ function.
- applicable to other generic actions.

Future works

- Interacting chiral boson Lagrangian
- Higher genus
- Higher dimension
- Curved spacetime

THANK YOU for your attention

Formulas ${ }^{1}$

General Jacobi ϑ function:

$$
\vartheta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](y ; \tau)=\sum_{n \in \mathbb{Z}} \exp \left[\pi i(n+\alpha)^{2} \tau\right] \exp [2 \pi i(n+\alpha)(y+\beta)]
$$

with real characteristics/spin structures α, β.
Poisson resummation formula:

$$
\begin{aligned}
& \sum_{m=-\infty}^{\infty} \exp \left[-\alpha(m+\beta)^{2}+\gamma(m+\beta)\right] \\
= & \sum_{n=-\infty}^{\infty} \sqrt{\frac{\pi}{\alpha}} \exp \left[i 2 \pi n \beta+\frac{1}{4 \alpha}(\gamma-i 2 \pi n)^{2}\right]
\end{aligned}
$$

Identity:

$$
k_{2}^{-1} \sum_{n_{2}=0}^{k_{2}-1} e^{2 \pi i\left(m_{1}-m_{2}\right) n_{2} / k_{2}}=\sum_{\omega_{2}=-\infty}^{\infty} \delta_{m_{1}-m_{2}}^{\omega_{2} k_{2}}
$$

Formulas ${ }^{2}$

Modular transformations of Jacobi ϑ function:

$$
\begin{aligned}
& \vartheta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]\left(\frac{y}{\tau} ;-\frac{1}{\tau}\right)=\sqrt{-i \tau} e^{i \pi y^{2} / \tau+2 \pi i \alpha \beta} \vartheta\left[\begin{array}{c}
\beta \\
-\alpha
\end{array}\right](y ; \tau) \\
& \vartheta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](y ; \tau+1)=e^{-i \pi \alpha(\alpha+1)} \vartheta\left[\begin{array}{c}
\alpha \\
\beta+\alpha+\frac{1}{2}
\end{array}\right](y ; \tau)
\end{aligned}
$$

For $m, n \in \mathbb{Z}$, the Jacobi ϑ function has the periodicity

$$
\vartheta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](y+n \tau+m ; \tau)=e^{-i 2 \pi n y-i \pi n^{2} \tau+i 2 \pi(m \alpha-n \beta)} \vartheta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](y ; \tau) .
$$

