

CANADA'S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

Low Beta North American Activities

R. Laxdal, TRIUMF TTC Meeting New Delhi, Oct. 20, 2008

LABORATOIRE NATIONAL CANADIEN POUR LA RECHERCHE EN PHYSIQUE NUCLÉAIRE ET EN PHYSIQUE DES PARTICULES

Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Outline

- Overview of community and goal
 - Existing facilities
 - ANL, ISAC-II
 - MSU-reaccelerator
 - Proposals in development
 - FRIB, HINS/Project-X, ...
- Conclusions

Canada's National Laboratory for Particle and Nuclear Physics

Low-Beta SC (Niobium) Community

Projects and Proposals at Low Velocity

Project	Lab	Driver	Post- accelerator	Particle	Structure
ISAC-II	TRIUMF		\checkmark	н	QWR
Reaccel	MSU		\checkmark	н	QWR
Upgrade	ANL		\checkmark	н	QWR
FRIB	ANL,MSU	\checkmark	\checkmark	HI/HI	QWR, HWR, Spoke
HINS/Project x	FNAL	\checkmark		Р	QWR, HWR, spoke
AAA	LANL	\checkmark		Р	spoke

TRIUMF

ISAC-II 106MHz Superconducting Linac

Twenty bulk niobium quarter wave cavities housed in five cryomodules
 Boosts ion energy by 20MV to provide stable and RIB's above the Coulomb Barrier

Summary

□ISAC-II Accelerator commissioned in Spring 2006 with beam delivery for key experiments in 2007-08

WITHING Superconducting Cavities

•Bulk niobium cavities designed in collaboration with INFN-Legnaro

•Fabricated in Italian industry (Zanon) and chemically etched in CERN and J-Lab

•Twenty installed in five cryomodules

Bob Laxdal, TTC Meeting Oct. 20-23, New Delhi

ISAC-II Linac: RF Systems

IRF power

- Provide useable bandwidth by overcoupling
- > Require $P_f=200W$ at cavity for f _{1/2}=20Hz at $E_a=6MV/m$, $\beta=200$

Coupling loop

- > Developed LN2 cooled loop
- > <0.5W to LHe for P_f=250W

□Mechanical tuner

Precise (0.3~Hz), fast (>50Hz/sec) tuner with dynamic range of 8kHz and coarse range of 32kHz

□ Tuning plate

Spun, slotted, `oil-can' tuning plate to improve tuning range

Mechanical Tuner

Cavities: On-line vs. Off-line Performance

•On-line gradients calculated from beam acceleration at 7W/cavity averaged over three different ions. The average gradient for the on-line cavities is 7.25MV/m corresponding to a peak surface field of 36MV/m

•Off-line results give an average gradient at 7W/cavity of 7.6MV/m corresponding to Ep=38MV/m

•Some contamination evident in a few cavities but on-line performance down by only 5% from off-line tests

ISAC-II Phase II

ISAC-II (Phase II - High Velocity Section - 2009)

•The Phase-II Extension of ISAC-II calls for the addition of 20 higher velocity (β =0.11) quarter wave cavities by the end of 2009

•The twenty cavities will be housed in three cryomodules and add an additional 20MV to the ISAC-II ions Bob Laxdal, TTC Meeting Oct. 20-23, New Delhi

PAVAC

- Who is PAVAC?
 - A Canadian Company located in Richmond B.C.
- Specializing in
 - Electron Beam Welding
 - Precision machining
 - Pulsed Electron Beam Coating

First Frequency Tuning

Two Prototypes Tested

•Two prototypes fabricated in copper and two in bulk niobium

•Both niobium prototypes perform significantly above ISAC-II specifications; average values of E_a =8.4MV/m (Ep=41MV/m) - specification 6MV/m

•Average voltage gain Va=1.5MV @ 7W

Phase II Linac: RF Tuner

Pressure

3

Time (min)

6

Tuner Positior

Coupling loop

- developed new coupling loop with improved mechanical drive
 - Uses non-magnetic cross roller bearings
 - Reduce side loads by making the LN2 feed more symmetric
 - Performance tests show at Pf=200W the heat load to the helium is <0.5W

RF Amplifiers – Moving to Solid State

Solid State Amplifier from QEI designed for ISAC-II Phase II Cavities showed very good performance and twice less noise level in RF System of the cavity in comparison with tube amplifier

Mechanical Dissipator Performance

Tuner motor used to drive mechanical noise on the top of the cryostat
Cavity lowest mechanical resonance ~110 Hz which is from inner conductor

•110 Hz frequency deviation without and 19 Hz with dissipator at the same excitation amplitude

MSU

MSU Reaccelerator Project

In house construction of three cryomodules, including fabrication and processing of 20 quarter-wave cavities

Superconducting Linac Cryomodules

- 1st Cryomodule
 - 2 Superconducting solenoids
 - 1 $\lambda/4$ SC cavity, $\beta_{opt}=0.041$
 - Transverse and longitudinal matching
- 2nd Cryomodule
 - 3 Superconducting solenoids
 - 6 $\lambda/4$ SC cavities, $\beta_{opt}=0.041$
 - Acceleration/deceleration: 1.2/0.3 MeV/u
 - 3rd Cryomodule
 - 3 Superconducting solenoids
 - 8 $\lambda/4$ SC cavities, $\beta_{opt}=0.085$
 - Acceleration/rebunching

Two SRF Cavity Types Used

β_{opt}=0.041

 $\beta_{opt} = 0.085$

Туре	λ/4	λ/4	
Optimum β	0.041	0.085	
Frequency	80.5 MHz	80.5 MHz	
Epeak	16.5 MV/m	20.0 MV/m	
Vacc	0.46 MV	1.18 MV	
Eacc	4.84 MV/m	5.62 MV/m	
Bpeak	28.2 mT	46.5 mT	
Temperatur	4.5 K	4.5 K	
Length	0.095 m	0.21 m	
Aperture	30 mm	30 mm	

MSU Reaccelerator

SRF Cavity Prototype R&D

- QWR b_{opt}=0.085 prototyped and tested in 2003
 - Q₀: 5×10⁸
 - E_p: 20 MV/m

- QWR b_{opt}=0.041 prototyped and tested in 2007
 - Rs=2nΩ
 - Toroidal shorting plate a la Spiral and ANL
 - TRIUMF slotted tuning plate

MSU Reaccelerator

SC Linac Prototype Cryomodules

(a) cold mass

(c) inner MLI

(e) outer MLI

(b) top plate (d) 77 K shield (f) vacuum vessel Bob Laxdal, TTC Meeting Oct. 20-23, New Delhi

SRF Cavity Design, Fabrication, and Testing

E & M Modeling and Cavity Design

Cavity Machining

Cavity Forming

Cavity Etching

Cavity Cleaning Cavity Insert Assembly Bob Laxdal, TTC Meeting Oct. 20-23, New Delhi **Cavity Testing**

Argonne

Argonne-ATLAS

A superconducting linac cryomodule currently in use at the ANL/ATLAS heavy-ion facility.

ANL Energy Upgrade

ATLAS Energy Upgrade and Refrigerator Improvements

Atlas Energy Upgrade Cryomodule

Cryomodule nearing completion •Cavities

•7 QWR's (115MHz, beta=0.15)
•Energy booster downstream of ATLAS with expected increase in Atlas final energy >30%
•Separated vacuum system

type	QWR	HW			
f	115 MHz	172.5 MHz			
Bgeom	0.15	0.26			
Length	25 cm	30 cm			
QRs	42	58			
at an accelerating field of 1 MV/m					
Epeak	3.2 MV/m	2.9 MV/m			
Bpeak	57 G	78 G			
rf energy	170 mJ	345 mJ			

Upgrade quarter wave

QWR 109	Paramet	ers
Frequency	109.125	MHz
Geometric Beta	0.144	v/c
Active Length	25	cm
QRs	40	ohm
Epeak/Eacc	3.2	
Bpeak@ 1 MV/m	58.3	Gauss
RF Energy/Eacc ²	0.1662	Joule

EP at Argonne

Commissioning the SCSPF: Electropolishing

Upgrade Cryomodule

- •Separate vacuum system
- •Average performance of Ep=33MV/m at 4.2K

FRIB (RIA Lite)

- Site evaluations are on-going this month
- Both MSU and Argonne have prototypes in hand to move forward if funded

345 MHz, $\beta = .4$

All 3 prototypes have been completed and significantly exceeded baseline specifications for the RIA driver

AEBL Driver – FRIB Proposal

II. Applications: Spoke –cavity based AEBL

Advanced Exotic Beam Laboratory

Reference [9]

ANL – Argonne USA

•345MHz Triple spoke cavity developed over last several years for beta=0.5 and 0.62

•Now proposed for Project X to replace elliptical cavities in mid beta range

•Q-slope apparent at 4K virtually disappears at 2K after hydrogen degassing

•Enhancement in Q at high field is more than just reduction of Rbcs

Bob Laxdal, TTC Meeting Oct. 20-23, New Delhi

FNAL

Beam Dynamics Studies of the 8 GeV Linac at FNAL Bob Laxdal, TTC Meeting Oct. 20-23, New Delhi October 2, 2008

5

Project-X RF

•Cold section starts at 10MeV with 51 single spoke resonators to 120MeV followed by 42 triple spoke resonators to 420MeV

Project X

Project X

Voltage gain per cavity

Beam Dynamics Studies of the 8 GeV Linac at FNAL

HINS Project

•What is HINS?

•A 60MeV test linac to demonstrate beam dynamics and rf feed capabilities of the Project X front end design

Conclusion

- On-going projects in North America of ISAC-II Phase II, MSU reaccelerator and Argonne energy upgrade keep interest strong in Low beta community
- Community very interested in new developments concerning HINS/Project X to prove the capability of spoke resonators at mid energy regime
- Waiting for positive response to FRIB funding