"Quench Detection in 9-Cell ILC Superconducting Cavities Using Second Sound in He-II"

Zach Conway, Don Hartill, Eric Smith and Hasan Padamsee

(15 min)

What is 2nd Sound Quench Detection?

- 2nd Sound
 - Temperature wave propagation in superfluid helium due to large heat burst
- With well-known velocity, 20 m/sec at 1.8 K
- Use time delay to determine distance to quench spot
- Triangulate location of quench spot with information from 3 detectors
- Can be used to detect quench in several cells in one test by measuring pass-band modes

9-cell Re-entrant Cavity (AES)

• 100 rotating thermometers

• 8 Superfluid 2nd Sound Detectors

Time of flight of 2nd Sound for 3 detectors

Comparison Between 2nd Sound Location and Standard Thermometry Location

Standard Carbon thermometers

Defect Heating Below Quench

Questar Observation

3 mm

Heat Affected Zone

Defect Size 250 microns

Defect Found in 1-Cell Niowave Cavity #1 with 2nd Sound Detection and Questar Inspection

Several Standard Thermometrs Placed Near 2nd Sound Quench Location Temperature Rise vs. Position Compared to Prediction for Defect Heating Spread on He side

End