

1.3 GHz 9-cell cavity T-mapping and surface inspection results at LANL

Tsuyoshi Tajima, A. Canabal, G. Eremeev, A. Bhatty, R. Roybal, F. Krawczyk, J. Sedillo, P. Chacon

TTC meeting, New Delhi, India, 20-23 October 2008

NNS A

9-cell temperature mapping system

Sensors

 A total of 4608 Allen-Bradley 100-ohm resistors

System

- One board covers 3 cells
- Every 10 degrees, 108 boards.
- Cavity was divided into 9 sectors azimuthally (every 40°) and signal was multiplexed

 768 manganin wires in custom-made feedthrough Resistance (kohm)

UNCLASSIFIED

Temperature (K)

Sensor positions

- One board covers 3 cells and a total of 108 boards cover all the cells at 10° interval.
- 15 sensors per cell per meridian except for cell 1 (12) and cell 9 (11). A total of 4608 sensors.

A cavity (AES-03) loaned from FNAL has been used to commission the system

The first 2 tests were carried out in June 2008. The second test was done without breaking vacuum, but with thermal cycle. We did not have time to disassemble and re-apply grease to the sensors.

Tests summary

- Some heating spots were observed.
- Only sector-by-sector 2D maps were obtained.
- Four sectors out of 9 were not tested due to some disconnection problem.
- A noise problem prevented full mapping.

NNS

Screen shot of the T-mapping program

- sensors at every 10 degrees azimuthally
- Divided into 9
 sectors, i.e., 40
 degrees each to
 reduce the
 number of cables
 coming out of the
 cryostat
- Diodes insensitive to temperature change used to multiplex the power

Summary of first 2 tests in June 2008 Q-E curve was not taken due to a computer problem

RF pickup, HOM 0°

Sensor numbers from top to bottom with the position of equator

Cell 1: 1-17 equator 9

Cell 2: 18-34 equator 26

Cell 3: 35-51 equator 43

Cell 4: 52-68 equator 60

Cell 5: 69-85 equator 77

Cell 6: 86-102 equator 94

Cell 7: 103-119 equator 111

Cell 8: 120-136 equator 128

Cell 9: 137-153 equator 145

 Previous FNAL measurement was limited at ~20 MV/m with quench.

- 1st test at quench
 61@120° cell 4 near eq.
 75@150° cell 5 near eq.
 50+61@160° cell 3 near iris+cell 4 near eq. (X-ray was detected as well)
 23@200° cell 2 in the middle
- 2nd test after warming up to room temperature (we did not re-apply grease!)
 112@220° cell 7 near eq.
 79@230° cell 5 near eq.
 112@260° cell 7 near eq.
 No X-ray was detected.

ΕD

Cavity inner surface optical inspection system

- A videoscope with 1/10 inch CCD (250,000 pixels) inside the tip was used.
- 80° field of view and 7-40 mm working distance.
- Although there is tip articulation function of +/- 120°, it has not been used.
- Although there is a function of measuring distance and depth, it has not been used.

AES-03 cavity inspection results Cell 2, 230°, 3 sensors up from equator

Marked as 200° on the cavity

Cell 3, 160° near iris to cell 4

This spot was not checked possibly due to the fact that the location was not marked on the cavity surface??

Cell 4, 160°, 1 sensor down from equator X-ray was detected in the first test

Cell 4, 120°, 1 sensor down from equator

This spot was not checked possibly due to the fact that the location was not marked on the cavity surface??

Cell 5, 150°, 2 sensors up from equator

Cell 5, 150°, at the equator, marked on the cavity

Cell 5, 230°, 2 sensor down from equator

Cell 7, 220°, 1 sensor down from equator

Cell 7, 260°, 1 sensor down from equator

Other imperfections found Cell 9, 160°, below equator

Cell 7 iris to cell 6, approx. 70°. This might have been caused by a screw head of the inspection system.

Cell 5, 150° ~45° up, 2 scratches are found

NNS

Cell 1, marked X4

NISA

Cell 9, marked X, ~45° up

INNS

Cell 6, marked X1

Cavity preparation for the third test at LANL in October 2008

- The cavity was slowly vented with filtered air in the clean room.
- Surface inspection was carried out with top (HOM side) flange on. This
 is the same position as during cold tests.
- High-pressure (700-1000 psi) ultra-pure water rinsing was done for 2 hours. The top flange was removed for HPR nozzle to go through it. The cavity was dried over night with top and bottom flanges open in class 100 clean room.
- The cavity was sealed with blank beam pipe flanges and a vacuum valve in the class 100 clean room.
- Pumped down, leak test (no leak), then, baked at ~120° C for 48 hours. The cavity vacuum after baking at room temperature was ?? Torr. We skipped baking of vacuum line. We usually get 2-3E-9 Torr if we do it.

NNS

Third cavity test at LANL in October 2008

- 4K data was taken, but unfortunately, when we pumped down the LHe, part of the top cell was exposed above the liquid, which made it impossible to carry out a correct measurement at ~2K. We did not have enough helium to refill the cryostat.
- T-mapping
 - Taken sector by sector
 - After taking reference data without RF power in the cavity, the T-map is taken continuously with an interval of ~230 ms.
 - Only 3 sectors (0° 110°) worked

4K data and data at \sim 2K with part of top cell above liquid (E_{acc} might be wrong)

UNCLASSIFIED

Office of Science

We observed one hot spot. (only 0°-110° were monitored.)

- Cell 2 top half at 50° showed heating
- Only sector 2 (40°-70°) data are shown on the right map.
- Unfortunately, the T-map for 120°-350° range where we found most of the heating in the June 2008 tests did not work possibly due to disconnects at the connectors in the cryostat.

UNCLAS

T-map system future improvements

- Hardware interface will be increasingly robust. 83 ft. cables currently are prone to failure. Connections are strained on both ends leading to increased risk of broken pins, etc.
- Reduction of noise
 - Future revisions of the T-mapping system will incorporate better shielding especially from 60 Hz crosstalk.
 - Other noise-filtration methods will be incorporated by means of signal processing on the program end, hardware filtering, or a combination of the two.
- Acquisition method currently focuses on one sector at a time.
 Future revisions may incorporate simultaneous scans to reduce acquisition time.

Backup slides

Checks and repairs on T-map system after the first 2 tests

Sensors and wiring

- Physical inspection of sensors found 21 broken sensors out of 4608 sensors. They were all repaired.
- Electrical tests were conducted and found 4 diodes on the T-map boards were reverse-biased. They were fixed.
- No disconnects were found in the 108 60-pin ribbon cables connecting the signal from T-map boards to an interface board located in the cryostat.
- 8 out of 12 83.3-ft. cables having a 62-pin connector each had problems and they were all fixed.
- 5 out of 1536 pins for hermetic manganin wire feedthrough on the cryostat lid had been damaged and repaired.

T-map system improvements and issues

Improvements

- 2D T-map display has been improved to show accurate azimuthal angel on the horizontal axis and eliminated the signals from nonexistent sensors.
- Remaining issues that need to be solved
 - The manganin wire connectors are sometimes loose without a means to secure it.
 - Strain on the cables attached to the connectors at the ends of long (83 ft.) cables connecting the cryostat and the control room.
 - The signal shows 60 Hz noise. Electrical shielding needs to be done.
 - Noise when switching power from one sector to another. We had to do the mapping sector by sector without fast switching.

NNS

false signals due to 60 Hz noise This can be seen at high resolution T-mapping.

