

Status XFEL

Hans Weise

TESLA Technology Collaboration Meeting New Delhi, October 20th – 23th, 2008

Introduction / History

Oct 2002: XFEL supplement to TESLA TDR \rightarrow Feb 2003 approval by German government to realize the XFEL as European project with at least 40% funding contributions from partners \rightarrow intense preparation work on technical design, industrialization of components, evaluation of cost/schedule, international project organization

July 2006: completion of XFEL TDR, submitted to and approved by International Steering Committee → 986M€/y2005 construction cost (+preparation & commissioning cost), negotiations of funding contributions continuing

June 5, 2007: Official project start announced on basis of initially de-scoped start version at 850M€/y2005 construction cost → launch tender process for civil construction, finalization of legal documents & prep of XFEL GmbH foundation, negotiations of in-kind contributions

2

IELMHOLTZ

Overall layout of the European XFEL

XFEL site in Hamburg/Schenefeld

... after construction (computer simulation)

Properties of XFEL radiation

Hans Weise, DESY TTC Meeting, New Delhi, October 20 - 23, 2008

HELMHOLTZ

GEMEINSCHAFT

Beam lines in start version

three photon beamlines

superconducting linac: 17.5 GeV

 \rightarrow Photon wavelengths below 0.1 nm design value require a linac gradient above 23.6 MV/m (design value)

Selection of first instruments was made

	Instrument	Brief description of the instrument
Hard X-rays	SPB	Ultrafast Coherent Diffraction Imaging of Single Particles, Clusters, and Biomolecules – Structure determination of single particles: atomic clusters, bio-molecules, virus particles, cells.
	MID	Materials Imaging & Dynamics –Structure determination of nano- devices and dynamics at the nanoscale.
	FDE	Femtosecond Diffraction Experiments – Time-resolved investigations of the dynamics of solids, liquids, gases
	HED	High Energy Density Matter – Investigation of matter under extreme conditions using hard x-ray FEL radiation, e.g. probing dense plasmas.
	SQS	Small Quantum Systems – Investigation of atoms, ions, molecules and clusters in intense fields and non-linear phenomena.
Soft X-rays	SCS	Soft x-ray Coherent Scattering –Structure and dynamics of nano-systems and of non-reproducible biological objects using soft X-rays.
Î		

Distribution of first instruments

Source	Photon beam line characeristics
SASE 1	FEL radiation ~12 keV High coherence Spontaneous radiation (3 rd , 5 th harmonics)
SASE 2	FEL radiation 3-12 keV High time-resolution Spontaneous radiation (3 rd , 5 th harmonics)
SASE 3	FEL radiation 0.25 – 3 keV; High flux
	FEL radiation 0.25 – 3 keV; High resolution

The European X-Ray Laser Project X-Ray Free-Electron Laser

FLASH

Free-Electron LASer in Hamburg

FLASH – Free-Electron Laser in Hamburg

Wavelength (fundamental)	47
FEL range (harmonics)	-
Average energy per pulse	up to
Maximum energy per pulse	200
Radiation pulse duration	10 - :
Peak power (calc. from average)	~ 3 –
Spectral width (FWHM)	0.5 –
Angular divergence (FWHM)	160
Peak brilliance (calc. from max)	5-10>

<E> = 70 µJ

10

FLASH

Free-Electron LASer in Hamburg

The FLASH VUV-FEL facility at DESY

→ 6 accelerator modules routinely in operation; design beam energy & photon wavelength (6.5 nm) since Oct. 2007

→ pilot facility regarding practically all aspects (accelerator technology, beam physics, FEL process, user operation) of the XFEL

FLASH and XFEL

Time to explore the femtosecond dynamics of nature

- Ever seen the machinery of a living cell at work at atomic resolution?
- Observed how molecules change shape in femtoseconds during chemical or biochemical reactions?
- Watched a drug molecule enter a protein receptor in real time?

Soon X-ray free-electron lasers will enable us to probe ultra fast physical, chemical and biochemical processes at atomic resolution, opening new frontiers for science and technology.

At long last we may see, and not just model, how molecular machines really work.

FLASH

Free-Electron LASer in Hamburg

FLASH References

Operation of a free-electron laser from the extreme ultraviolet to the water window

nature photonics | VOL 1 | JUNE 2007 | www.nature.com/naturephotonics

©2007 Nature Publishing Group

New technologies for new science: Soon X-ray tree-exciton latent will enable us to probe ultrafast physical, chemical and biochemical processes at donors encolutor, opening new finders for admose and technology. Al lung later te may see, and nut just model, how meleoular machines really work.

Accelerators | Pictor Science | Particle Physics Deutsches Diektonen-Synchrotron Member of the Helminott: Association

http://flash.desy.de/

FLASH

Experiments with the FEL Beam

about 30 publications already, many more to come 11 PRL 6 APL 1 Nature, 1 Nature Physics 4 Nature Photonics

See, e.g., http://hasylab.desy.de/facilities/flash/publications

HELMHOLTZ

Accelerator complex & TESLA Technology

Hans Weise, DESY TTC Meeting, New Delhi, October 20 - 23, 2008

XFEL cavity fabrication

Half cells are produced by deep drawing.

Annealing is next to achieve complete recrystalisation.

Dumb bells are formed by electron beam welding.

RF measurements support visual inspection.

After proper cleaning eight dumb bells and two end group sections are assembled in a precise fixture.

All equator welds can be done in one production step.

Engineering Data Management Systems (EDMS) is used for the documentation of the cavity fabrication process.

XFEL cavity preparation test cycle

Proposal for minimum cost: One RF Test @ 2K only Minimum manipulations on CV after 2K test (ready for module assembly)

Final EP:	Flash BCP:
Tuning	Tuning
Final EP (40 μm)	Installation of FMS
HPR	TI-cone rings welding
Installation of FMS	FM control/ tuning
TI-cone rings welding	Tank welding
FM control/ tuning	Removal of FMS
Tank welding	Flash BCP (10 μm)
Removal of FMS	Installation of probes
Installation of probes	HOM /Pick Up
(HOM /Pick Up)	HQ Antenna (Fixed coupling)
HQ Antenna (Fixed coupling)	HPR
HPR	120 C bake
120 C bake	Acceptance test @ 2K
Acceptance test @ 2K	Ready for module
Ready for module	** FMS= field profile measurement system

Hans Weise, DESY TTC Meeting, New Delhi, October 20 - 23, 2008

Cavity preparation at DESY

Cavity preparation cont'd

- Industrialization of EP ongoing: 10 cavities received from each of two companies
- Decision on final treatment before end of 2008
- If final EP then large overlap with ILC interest

Cavities since Jan 2006, 1st test

Hans Weise, DESY TTC Meeting, New Delhi, October 20 - 23, 2008

Cavities since Jan 2006, 1st test

more on cavity results later this morning and in WG 3 by Detlef Reschke

21

Large Grain Cavities

Results of the DESY / W.C. Heraeus Collaboration on large grain material

• Positive experience

several large grain ingots were produced large grain crystals are growing in axial direction

Disappointing

transition phase from start crystal to continuously growing crystal is critical quite a few of the well prepared start crystals were destroyed

different start crystals produced by W.C. Heraeus

the goal and the problem

not a stable process

no reproducible growth of the required 150 mm diameter central grain

 \rightarrow the XFEL unfortunately can no longer support this interesting program

HAZEMEMA (machine RF measurement of dumb bells etc.)

Equipments for RF measurement of half cells, dumb bells and end groups

 prototype has been tested at ACCEL and ZANON during fabrication of last 30 cavities

- some improvements in design were done
- main parts for two equipments are ordered
- final assembly to be done at DESY
- ready end of 2008

Niobium Scanning

DESY eddy current apparatus

- Niobium for the pre-series (ca. 30 cavities) will be scanned on the existing prototype equipment at DESY
- equipment will be renovated for that purpose
- order of a new equipment is not critical in time and will be shifted to 2009

Niobium Scanning

actually existing tuning machine at DESY

- 4 tuners are going to be built in collaboration with FNAL and KEK, two of them for XFEL
- final assembly and commissioning as well as certification at DESY
- main parts are ordered
- project should be completed in Q2
 2009

Cavity string & module assembly

Using experience gained at DESY and results of industrial studies, the assembly facility for all 100 XFEL modules will be set up at the CEA-Saclay site.

CEA (IRFU), CIEMAT, DESY, INFN-Milano, LAL Orsay, Swierk take the responsibility for the cold linac.

The European X-Ray Laser Project

Assembly facility at CEA Saclay – industrial study near completion

RF coupler processing facility under preparation at LAL Orsay

More during this TTC meeting / WG2

- Assembly plan for XFEL cryomodule
- Assembly infrastructure as Saclay
- Industrialization of XFEL couplers

Corinne Liguoro (Thales) Olivier Napoly (CEA Saclay) Serge Prat (LAL Orsay)

(underground)

 $\alpha \alpha \alpha \alpha$

PP

Almo da

HELMHOLTZ GEMEINSCHAFT

Gas

cleanin

water plant

Module Transport Frame

More during this TTC meeting / WG2 by Rolf Lange • DESY – CEA Saclay – DESY transport scheduled for week 45 • re-test at CMTB in end of November '08

- The Frame is equipped with two Data Loggers EnDal Curve 1111
- INFN equipped the Frame and the Module with **additional sensors and** uses **3 geophones** inside of the module (2 on the magnet and 1 on the coldmass' center)
- The INFN electronic will also readout the vacuum gages on the beam pipe and coupler pump line and the is permanently checking all RF main input couplers with respect to a short circuit.

Coldmass vs. Vacuum Vessel Caps

Hans Weise, DESY TTC Meeting, New Delhi, October 20 - 23, 2008

HELMHOLTZ

GEMEINSCHAFT

Operation of CMTB at DESY (cryo module test bench)

- Four modules tested on CMTB → 3 installed at FLASH, 1 in 2009
- **Positive experience** for later series tests:
 - Fast conditioning of RF-power coupler
 - little additional conditioning in FLASH Linac necessary
- Good performance of the modules

 → design beam energy reached in
 FLASH
- "crash test" of fault conditions (using old module M3* from FLASH)

M3* "crash test" – worst case vacuum faults

Venting system Iso.-vac DN 100

After recovery from **iso-vac "accident"**, module could be operated with unchanged performance (16 – 20 MV/m)

Pressure front in beam-vac takes ~4s(!) through module length

More during this TTC meeting / later this morning by Rolf Lange

• High pressure vessel code: Test of module 3*

Venting system beam-pipe-vac DN 100

HELMHOLTZ

GEMEINSCHAFT

XFEL Prototype Cryogenic Modules

One cryomodule each from ...

- Thales / Phoebe (France)
- FCM (Spain)
- IHEP / Aerosun (China)

More during this TTC meeting / WG2

Cold mass prototyping and industrialization

Hans Weise, DESY TTC Meeting, New Delhi, October 20 - 23, 2008 delivery expected for December 2008 delivery expected for January 2009 delivery expected for February 2009 (?)

Rolf Lange (DESY)

Frequency Tuner Parts: Overview

33

Tuner WP-07: Ongoing Work

- Tests

- M3*: Motors survived crash test
- M8: Is done, final acceptance of piezo fixture and choice of pre-tuning

– Mechanics

- Qualification of vendors
 - Need 24 prototypes for M10-M12

- Drive unit

- Found vendors to deliver full drive unit
- Vendor qualification is underway

- Piezo system

- Beginning installation of permanent FLASH setup
- Tested piezo for breakdown under He atmosphere (INFN)
- Work on specifications and procedures
 - Detailed assembly steps are available (INFN, DESY)
 - Development of a semi-automatic test system for verification during installation

Detailed tuner assembly steps

Goal:

- Verification of current procedure
- Very detailed description, e.g. for training purposes
- for both, the piezo and the mechanical system

 Particly assembly the small place holder advariations of its believings 24-6x7 and a subsymption

Region the second ball basing 25-bit/ and safety wather 3/5

 Insert the MCOwsolver Joint on the cavity side

Module #8 test results

More during this TTC meeting / WG3 by Hans Weise

New pre-adjusted waveguide distribution system for ACC6

TTC Meeting, New Delhi, October 20 - 23, 2008

ELMHOLTZ GEMEINSCHAFT 37

Klystron and modulator prototyping

Toshiba E3736H at Toshiba, Japan

- Factory Acceptance Test in Nasu successfull on August 22/23, 2007
- Klystron arrived at DESY on 18th Sept.
- Site Acceptance Test at DESY successfull!

Prototypes from two more manufacturers in near future

Hans Weise, DESY TTC Meeting, New Delhi, October 20 - 23, 2008

Prototype from 1st of two companies recently arrived – test program started

Tunnel mock-up completed and installations ongoing

Other important XFEL R&D at DESY

- Injector R&D at PITZ \rightarrow small emittance, dark current reduction
- **Extensive S2E simulations** \rightarrow Slice emittance at undulators < 1 mm*mrad
- **FEL simulations** • \rightarrow SASE1: 0.1nm with wakefields
- NOSt OF THE R&U IS DONE IN PHD Collaboration Detween DESY & PhD collaboration Detween on Inniversities Slice emittance diagnostics \rightarrow different methods tested at FLASH
- Timing / synchronisation \rightarrow diagnostics in fs-regime
- **Beam distribution**
 - \rightarrow Fast intra-train feedback system (DESY & PSI cooperation)

Injector R&D at PITZ

Slice emittance diagnostics

Slice emittance diagnostics (method developed @SLAC)

Hans Weise, DESY TTC Meeting, New Delhi, October 20 - 23, 2008

M. Roehrs / DESY & Hamburg Univ.

Timing/synchronisation diagnostics in fs-regime

Hamburg Univ.

∞

S

Loehl / DE

ш¹

XFEL Company and Accelerator Consortium

Accelerator Consortium work packages

Hans Weise, DESY TTC Meeting, New Delhi, October 20 - 23, 2008

Financial commitments to the European XFEL project

Includes ~90 M€ project preparation phase & commissioning costs

Hans Weise, DESY TTC Meeting, New Delhi, October 20 - 23, 2008

Accelerator in-kind contributions (total value ~500 M€)

Figures will change in detail – negotiations ongoing!

Many institutes from TESLA collaboration & some new partners

Hans Weise, DESY TTC Meeting, New Delhi, October 20 - 23, 2008

Schedule (as of July 2007)

Estimated delay ~ 10 months

(tender process underground construction)

Hans Weise, DESY TTC Meeting, New Delhi, October 20 - 23, 2008

The end

