Cryomodule Test Plan in KEK-STF

KEK-STF Group

Norihito Ohuchi

Contents

- KEK General Cryomodule Test Plan for ILC
- STF1
- S1-Global
- STF2
- Summary

General Cryomodule Test Plan in STF

STF-1

- Module-A: 4 BL cavities (Tesla-like) cold test from May to Dec. 2008.
- Module-B: Cryostat thermal test without cavities in 2009.

S1-Global

- Construction and operation of the cryomodule over 31.5 MV/m
- International collaboration R&D with DESY, FNAL, INFN and KEK

• STF-2

- Construction of 1 RF unit module system
- Operation of the system

2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
STF-1			1						
			—	S1-G					
					STF-2				

STF1: Cryomodule cold test with 4 BL cavities

4 BL cavities were assembled in the STF cryomodule (Module-A) and being cold-tested at 2K.

From May to Oct. 2008

- 1. Low power test and RF processing at high field of 4 cavities (Reported by Eiji Kako)
- 2. Static heat load measurements

From Nov. to Dec. 2008

- 3. High power tests of 4 cavities
 - Q₀ measurements (dynamic loss measurements)
 - Detuning measurements and compensations
- 4. Operation of 4 cavities
- 5. Power distribution test

Cross section of BL cavity-module

STF1 Cold Test: Static heat load measurements

Static Heat loads of cryogenic components

• Recalculation of the component heat load with the measured temperature distribution.

Module-A

- The sums of the heat loads of components for Module-A = the measured heat loads by the evaporation rates.
- The largest heat source = RF-cables without 5K anchors + Piezo cable = 3.6 W for four cavities.

Module-B

• The RF cables were thermal-anchored with the 5K shield, and then the heat load was calculated to be 0.03 W.

	Module A (1 Cavity)	Module B (1 Cavity)	Module A (4 Cavities)		
Measured Heat Load	5.6W	6.1 W	9.8 W		
2K Cold Box	1.0 W	1.0 W	1.0 W		
Transfer Tube	3.4 W	3.4 W	3.4 W		
Cryomodule	1.2 W	1.7 W	5.4 W		
Input Coupler	0.13 W	0.23 W	1.4 W (140K at 80K anchor position; not normal operation)		
Beam Pipe	0.002 W	0.001 W	0.003 W		
RF Cables	0.9 W	0.03 W	3.6 W		
Signal Cables	0.05 W	0.14 W	0.05 W		
Tuner	0.12 W	NA	0.48 W		

STF1: Thermal study by Module B

Measurement of heat loads with and without 5K shields by STF Module-B (scheduled at 2009)

For the study of ILC-cryomodule design;

• The 5 K thermal shield is considered to be removed from the cost reduction of the cryomodule.

ILC Cryomodule Thermal Model

5K line: cooling the input couplers, support posts and current leads

40K line: cooling the thermal radiation shield, support posts and current leads (44K)

cooling HOM couplers, HOM absorber and input couplers (66K)

Calculation: The difference between the required powers at 300K of two cases: 0.11 kW/Module

• The heat load at 2K will be measured with and without 5K shields.

2008/10/21

S1- Global

As the mile-stone of ILC construction, the cryomodule over the ILC DESIGN GRADIENT is required to be realized internationally (S1).

1. The planed cryomodules for the S1

• FNAL-CM2 [to be constructed at 2009], STF-1 (S1-Global) [to be operated at 2010].

2. Target of the S1-Global

 Attaining the average operating gradient over 31.5 MV/m by 8 cavities from FNAL, DESY and KEK.

3. International research collaboration

FNAL: Two Tesla-type cavities with Blade tuner

DESY: Two XFEL cavities with Sacley tuner

KEK and Asia: Tesla-like cavities with Slide Jack tuner or cavities compatible with the KEK type

INFN: New cryostat (Module C) for FNAL and DESY cavities

INFN and KEK have already made the MOU for developing the cryomodule (Module-C) in July.

S1- Global: Cryomodule design

1. The cryomodule design has started between INFN and KEK.

- The general module design with 3D CAD (I-Deas) has been almost completed to confirm the interfaces between Module-A, Module-C and the cryogenic system.
- KEK and DESY & FNAL input couplers locate in the opposite side with respect to the cavity packages, however, LHe supply pipes are in the same side.
- Distances between input coupler axes of DESY and FNAL are 1384.15 mm (same as XFEL).
- Distances between input coupler axes of KEK are 1337.0 mm.

Cryogenic system

Module C

Module A

8

S1- Global: Cryomodule design

- 2. The details of the cryostat components is designed from October.
 - The Module-C design is basically same as the XFEL cryomodule.
 - The length of Module-C cryostat is designed to be 5800 mm.
 - The interface components between KEK and INFN components are manufactured and assembled by KEK.
- 3. The design of the KEK tuner and cavity-vessel will be improved from the present configuration.

Cross section of FNAL cavity and Module-C

Cross section of KEK-BL cavity and Module-A

S1- Global: Study subjects

- 1. Attaining to the average operation gradient > 31.5 MV/m.
- 2. Information exchange of cryomodule assembly between DESY, FNAL, INFN and KEK.
 - For constructing the ILC-cryomodule design including the plug-compatible concept, the actual assembling process for the different cavity-packages will supply important data.
 - The information exchange of assembly method and tooling is very important, too.

Alignment strategy and tools, auto-welding machine, auto-pipe cutter, etc.

- 3. Comparing the performances and the heat loads of the individual components between the collaboration laboratories.
 - Functional performance of the tuners and the input couplers for the operation over 31.5 MV/m.

Tuner: Sacley type, Blade type, Slide Jack type

Input coupler: TESLA input coupler, KEK coaxial window input coupler

• Thermal performances of the components.

The heat load measurements will be done under the completely same conditions.

Static heat loads

Dynamic heat loads at 31.5 MV/m

Heat load data will lead to the confirmation of the specification of the ILC cryogenic system.

S1- Global: Schedule (detail)

Calendar Year		2008		2009			2010			
Month	7,8,9	10,11,12	1,2,3	4,5,6	7,8,9	10,11,12	1,2,3	4,5,6	7,8,9	10,11,12
Cryostat design	→	▶								
INFN cryostat construction		•				→				
DESY and FNAL cavities at KEK					_	→				
Preparation of cavities for clean room work						+				
Clean room work						+				
Cryomodule C assembly							\rightarrow			
Modification of STF assembly area and clean room								#		
Construction and preparation of BL cavities for S1						\rightarrow				
Cryomodule A disassembly			\leftrightarrow							
Clean room work of new BL cavities							†			
Cryomodule A assembly with new BL cavities							+	→		
Installation of Modules A and C in the tunnel								†	4	
Operation of S1 –Global cryomodules									╋	

STF2

- Construction of 1 RF unit of ILC
 - Cryomodule: 2 modules (9 cavities) + 1 module (8 cavity + 1 quadrupole)
 - Design of cryomodule (CM-Type 5 or ILC-prototype)
 - RF system of 10MW Multi-beam Klystron
 - Reinforcement of the cryogenic system
 - Expansion of the clean room
 - Enable assembly of 9 cavities in a string
 - The present clean room was designed for assembly of 4 cavities.

STF2: Cryomodule design

- Design concept
 - The module is designed in order to get the ILC proto-type module design.
 - Plug compatibility
 - Accepting the different type of cavity-packages
 - DESY, FNAL and KEK cavity-packages
 - Improving the thermal model including the cost effect
 - Re-designing the thermal shield system
 - removing 5K shield + 40 K shield
 - Thermal intercept design
 - 5 K and 60 K thermal interceptors

STF2: Schedule (cryomodule development)

(Details and operation are still under discussion.)

Summary: STF Module Plan and Schedule

STF1

May-Dec. 2008 Cryomodule-A with 4 base-line cavities: 2K cold test is now continuing.

Jan-Dec. 2009 Cryomodule-B without cavities: Thermal measurement at

2K

S1-Global

May 2008 – Dec.2010 Cryomodule with 8 cavities (FNAL, DESY and KEK cavities, INFN cryostat and STF cryostat)

STF-Module A + Module-C

Operation: June-Dec. 2010

Target:31.5MV/m

STF2 (ILC 1 RF unit + 1 capture module)

2009-2010 Design work (SC cavity, Cryomodule, Cryogenic system, RF system, etc.)

2010- Construction of the components and infrastructure

Quadrupole