Developmental Studies for High Current Proton Linac at BARC

P. Singh Bhabha Atomic Research Centre Mumbai, India

TTC Meeting - October 22, 2008, IUAC

Three Stages of Indian Nuclear Power Programme

Uranium reserves are limited and also Thorium offers a proliferation resistant fuel cycle

World Thorium Resources

Country Australia India Norway USA Canada S. Africa Brazil **Other Countries** World total

Reserves (tons) 300,000 290,000 170,000 160,000 100,000 35,000 16,000 95,000 1,200,000

Why Thorium so important to us?

•Thorium produces much less quantity of long-lived radioactive actinide wastes as compared to Uranium

- •Large reserves available
- Cost is much less as compare to uranium

Accelerator Driven Sub-critical Reactor System (ADS)

A new type of fission reactor, where nuclear power (say, 500-1000 MWe) can be generated in a neutron multiplying core $(k_{eff} < 1.000)$ without the need of criticality. But, ADS has to be driven by an external neutron source

Most cost effective way to produce neutrons

- By Spallation process with GeV energy protons striking on high Z target.
- Number of neutrons per proton per Watt of beam power reaches a plateau just above 1 GeV.

$$P_{thermal}(MW) = E_{fission}(MeV)I(A)\frac{\nu_s}{\nu}\frac{k}{1-k}$$

Proton Energy : 1 GeV $v_s = 25$ neutrons/proton v = 2.5 neutrons/fission $P_{electrical} = 500$ MW (1500 MW (th)) k = 0.95

P _{thermal} (MW)	I (mA)
1000	29.2
1500	43.9
2000	58.5
2500	73.1
3000	87.7

Scheme for Indian ADS Programme

HINS Front end general layout

100 MeV – 1 GeV SC Linac

(Initial design with 5 MV/m gradient)

Parameter	β_{G} = 0.47	β _G = 0.62	β_{G} = 0.80
Energy Range (MeV)	98.6-198.3	198.3-498.3	498.3-1008.3
Frequency (MHz)	704.42	704.42	704.42
Current (mA)	29.3	29.3	29.3
Trans. Focusing lattice	Doublet	Doublet	Doublet
Lattice Period (cm)	300.1	608.0	810.7
Quadrupole gradient (T/m)	5.8-5.37	4.5	4.4
Eff. Length of Quad (cm)	35	40	45
Synch. Phase (degrees)	-30	-23.44	-23.44
Cavities/cryomodule	2	3	4
No. of Cryomodules	35	40	51
Aperture Radius (cm)	4.0	4.0	4.0
Total length (m)	105.04	243.2	413.46
Norm. Trans. Emitt. (π cm-mrad) ϵ_x	0.024-0.025	0.025-0.029	0.029-0.030
ε _y	0.024-0.025	0.025-0.028	0.028-0.027
Norm. Long. Emitt. (MeV-deg)	0.327-0.444	0.444-0.482	0.482-0.499

Beam Dynamics

Aperture is more than 16 times the rms beam size in the SC Linac.
Aperture is 10-12 times the rms beam size in the NC Linac.
Transmission through the linac = 100%.

Parameters of RFQ, DTL, CCDTL and SC Linac

RFQ SO			SC L	inac (15	MV/m)	
Frequency	352.21 MH	Z	Parameter	β _G = 0.49	β _G = 0.62	$\beta_{\rm G}$ = 0.80
Energy	50 keV/ <mark>3</mark> N	леV	Energy Range (MeV)	100.2-197.2	197.2-421.3	421.3-1016.5
Input current	30 mA		Frequency (MHz)	704.42	704.42	704.42
Vane voltage	82-111 kV		Current (mA)	29.3	29.3	29.3
Avg. Aperture R ₀	3.63-4.53 n	nm	Trans. Focusing lattice	Doublet	Doublet	Doublet
Length	3.45 m		Lattice Period (cm)	304 27	607.90	810.47
Total RF power	500 kW		Quadrurala anadiant	5 90 4 21	4.50,4.00	4.40
Transmission	97 %		(T/m)	5.80-4.51	4.30-4.99	4.40
	DTL	CCDTL	Eff. Length of Quad (cm)	35	40	45
Energy Range (MeV)	3-40.1	40.1-100.2	Synch. Phase (degrees)	-30	-35.24	-34.37
Frequency (MHz)	352.21	704.42	Cavities/cryomodule	2	3	4
Current (mA)	29.3	29.3	No. of Cryomodules	12	15	23
Focusing Lattice	FFDD	FODO	Aperture Radius (cm)	4.0	4.0	4.0
Quadrupole Gradient (T/m)	43	62.4-19.5	Total length (m)	34.76	88.15	183.33
Avg. Acc. Gradient (MV/m)	2.5	1.37	Norm. Trans. Emitt.	0.023-0.030	0.030-0.033	0.033-0.037
Total Length (m)	22.66	69.57	$(\pi \text{cm-mrad}) \ \varepsilon_{x_{y}} \varepsilon_{y}$	0.024-0.027	0.027-0.030	0.030-0.031
Norm. Trans. Emitt. (π cm-mrad) $\epsilon_x \epsilon_y$	0.022-0.0232 0.022-0.0236	0.0232-0.0233 0.0236-0.0242	Norm. Long. Emitt. (MeV-deg)	0.237-0.241	0.241-0.240	0.240-0.257

Transmission = 100%;

Total Length = 407 m (100.68 + 306.24)

Beam Dynamics

Aperture is more than 16 times the rms beam size in the SC Linac.
Aperture is 10-12 times the rms beam size in the NC Linac.
Transmission through the linac = 100%.

Scheme for Accelerator Development for ADS

Phase I: Layout of 20 MeV Linac Section

ECR Ion sourceRFQ 4 Vane type20 MeV, 30 mA50 keV, 35mA.3MeV, 30 mAAlvarez type DTL

- **LEBT** : Low Energy Beam Transport System
- **RFQ** : Radio Frequency Quadrupole
- **MEBT** : Medium Energy Beam Transport System
- **DTL** : Drift Tube Linac

ECR Ion Source (being developed by APPD, BARC)

Five electrodes
 2.45 GHz
 50 keV
 50 mA
 0.02 π cm-mrad

Schematic of the ECR Ion Source

Low Energy Beam Transport (LEBT) System

Emittance = 0.02π cm mrad

Error Analysis of Solenoids Tolerance on solenoid strength=±30 Gauss

Low Energy Beam Transport Line

Used to match the dc beam from the ion source to the RFQ.
Two solenoids (~2 kG) are used.

Beam Energy = 50 keV Beam current = 30 mA RMS Norm. Emittance = 0.02π cm mrad Max. beam size in the LEBT = 13 cm Total length = 1.85 m.

Effect of Space Charge Compensation on beam dynamics

Degree of Space Charge Compensation (%)	I _{eff} (mA)	Max. Beam size (cm)	Emit at end of LEBT (cm mrad)	Transmission through the RFQ (%)
0	30	13.0	0.02081	97.1
90	3.0	7.0	0.02003	96.0
95	1.5	6.8	0.02000	97.3
98	0.6	6.4	0.02000	97.4

Effect of Non-Linear space charge on beam dynamics in LEBT

•KV distribution being uniform causes linear space charge forces.

•Any kind of non-uniformity in the density will give rise to non-linear space charge.

•Non-linearity of the space charge field reflects in emittance increase as well as in waist diameter.

With KV- distribution

With Parabolic distribution

KV: Kapchinskij-Vladimirskij distribution S.C.L. Srivastava, S.V.L.S. Rao and P. Singh, Pramana-J Phys. 69, 551(2007)

RFQ Parameters

1. Bunching 2. Focusing 3. Acceleration

Frequency	352.21 MHz
Energy	50 keV/ <mark>3 MeV</mark>
Input current	30 mA
Vane voltage	82-111 kV
Avg. Aperture R ₀	3.63-4.53 mm
Length	3.45 m
Total RF power	500 kW
Transmission	97 %

3 MeV Radio Frequency Quadrupole

↓24 vacuum ports **4**Frequency detuning : 745.86 kHz (all)

Thermal Analysis

24 cooling channels

1,2-Vane channel

3,4-Wall channels

Coolant temperatures are 16 °C in vane channels and 20 °C in wall channels

Water temp within ± 0.1°C,

Already available within ± 0.05 °C at RRCAT

Phase II: DTL and CCDTL

3-50 MeV

DTL

Parameter	DTL	CCDTL
Energy Range (MeV)	3-50	50-98.6
Frequency (MHz)	352.21	704.42
Current (mA)	29.3	29.3
Quadrupole Gradient (T/m)	100	58.2-19.6
Eff. Length of Quad. (cm)	4.72	8.0
No. of Quadrupoles	164	182
Avg. Acc. Gradient (MV/m)	2.58	1.6
Aperture Radius (cm)	1.0	1.2
Total Length (m)	28	75

50-100 MeV CCDTL at CERN

Phase III: Design of Superconducting Cavity

Superconducting cavity (IPN Orsay) – 5 cells, 700 MHz, β =0,65

In order to efficiently design a linac it is necessary to divide it in sections, each using a different cavity geometry in an energy range.

Parameters	β _G = 0.47	$\beta_{\rm G} = 0.62$	$\beta_{\rm G} = 0.8$
No. of Cells	5	5	5
Diameter D (cm)	36.27	35.83	37.34
Dome B (cm)	2	3	5.5
Dome A/B	1.5	1.5	1
Wall Angle $\alpha_w(deg)$	5	5	7
Iris a/b	1.2	1	0.5
Bore Radius (cm)	4	4	4

3-D view of the cavity

Single Cell Cavity in Copper is fabricated at APPD,BARC.

Cryomodules for Different Beta Sections

Field in SC Linac: 5 MV/m

15 MV/m

RFQ	:(0.	5	MW	3	MeV	0.	50 MW	3	MeV
DTL	•	"	4	MW	50	MeV	4	MW	50	MeV
CCDTL	:		5	MW	100	MeV	5	MW	100	MeV
SC Linac	:	2	7	MW	1	GeV	27	7 MW	1	GeV

Total RF Power : 37 MW

37 MW

RFQ	:	3.5	m	3.5 m
DTL	:	28	m	23 m
CCDTL	:	75	m	70 m
SC Linac	:	762	m	306 m
Total Longth		870	m	403 m

Total Length : 879 m

Experimental facility

> Facility for carrying out experiments on physics of ADS and for testing the simulations is being set up. This will use 14 MeV neutrons produced through D+T reaction.

Simple sub-critical assembly (k_{eff} =0.87) of natural uranium and light water is chosen

>Measurements of flux distribution, flux spectra, total fission power, source multiplication, and degree of sub-criticality will be carried out.

For this purpose a 400 keV RFQ is being built

For deuteron current of 1mA at 400 keV, 14 MeV neutron yield is 1.0x 10¹¹ n/s D+T reaction

400 keV RFQ parameters

Parameters	Value
Frequency	350 MHz
Injection energy	50 keV
Final energy	400 keV
RFQ length	1.05 m
RF Power dissipated	68 kW
Beam current	1 mA
Norm. RMS emittance	0.015 π cm-mrad
Vane voltage	44 kV
Transmission efficiency	96 %
Peak surface field	32.9 MV/m
Average radius	1.873 cm
Maximum Modulation	1.287

Transmission at the end of RFQ : 94.8%

Variation of RFQ parameters along the length.

RF Coupler design

High flux neutron Facility

Neutron Yield for Beryllium target

Layout of LEHIPA Building

Summary

- Physics Design of a 1 GeV, 30 mA Linac has been done and refinements are in progress.
- 100-1000 MeV part will be superconducting
- In Phase I, 20 MeV, 30 mA Linac is being made
- Development of prototypes of different sub-systems is in progress
- Work on Control, RF, Cooling, diagnostics and other systems is in progress
- It is expected that 20 MeV beam will be available in 2012.
- Developmental work on SC cavities has been initiated at BARC

PARTICIPATING DIVISIONS:

✓ Nuclear Physics Division (NPD)

- ✓ Vacuum Physics and Instrumentation Division (VPID)
- ✓ Accelerator & Pulse Power Division (APPD)
- ✓ Reactor Safety Division (RSD)
- ✓ Centre for Design and Manufacture (CDM)
- ✓ Research Reactor Design & Projects Division (RRDPD)
- ✓ Technical Services Division (TSD)
- ✓ Architecture & Civil Engineering Division (A&CED)
- ✓ Laser and Neutron Physics Section (LNPS)
- ✓ Control Instrumentation Division (CnID)
- ✓ Radiation Safety & Systems Division (RSSD)
- ✓ Electronics Division (ED)
- ✓ Reactor Control Division (RCnD)
- ✓ Reactor Projects Division (RPD)
- ✓ Raja Ramanna Centre for Advanced Technology (RRCAT)

