M. Pasini for the HIE-ISOLDE activity at CERN

HIE-ISOLDE PROJECT Nb SPUTTERING AT CERN

OUTLOOK

- ISOLDE at CERN
 HIE-ISOLDE activity
 SC linac (HIE-LINAC)
 Nb sputtering QWR development
- × Summary

SOLDE AT CERN – THE PHYSICS

SOLDE AT CERN - THE FACILITY

HIE-ISOLDE ACTIVITY

REX energy upgrade and increase of current capacity

- Energy upgrade in 3 stages: 5.5 MeV and 10 MeV/u and lower energy capacity
- REX trap and charge breeder upgrade
- ISOLDE proton driver beam intensity upgrade strongly linked to PS Booster improvements including linac4
- Faster cycling of the booster
- New target stations for ISOLDE
- New targets
- New target handling system
- ISOLDE radioactive ion beam quality more than half already financed through the ISOLDE collaboration
- Smaller longitudinal and transverse emittance
- Higher charge state for selected users
- Better mass resolution
- Target and ion source development e.g. RILIS

HIE-LINAC

HIE-LINAC

101.28 MHZ Nb SPUTTERED QW CAVITIES

Low β

High β

Table 1: Cavity design parameters		
Cavity	Low β	$\mathbf{high}eta$
No. of Cells	2	2
f (MHz)	101.28	101.28
β_0 (%)	6.3	10.3
Design gradient Eace(MV/m)	6	6
Active length (mm)	195	300
Inner conductor diameter (mm)	50	90
Mechanical length (mm)	215	320
Gap length (mm)	50	85
Beam aperture diameter (mm)	20	20
$U/E_{acc}^2 (mJ/(MV/m)^2)$	73	207
Epk/Eacc	5.4	5.6
Hpk/Eace (Oe/MV/m)	80	100.7
$R_{\rm sh}/Q(\Omega)$	564	548
$\Gamma = R_S \cdot Q_0$	23	30.6
Q_0 for 6MV/m at 7W	$3.2 \cdot 10^8$	$5 \cdot 10^{8}$
TTF max	0.85	0.9
No. of cavities	12	20

MANUFACTURING SEQUENCE

- 1. Rolling of half tubes, longitudinal welding, rough machining
- 2. Machining of end piece
- 3. E-beam welding
- 4. Fine machining of inner surface
- 5. "Bossage" and machining of beam ports
- 6. Manufacturing of baseplate of inner conductor

- 7. Manufacturing of central tube
- 8. Manufacturing of head
- 9. E-beam welding of the 3 parts of inner conductor
- 10. Fine machining of inner conductor
- 11. Drilling of beam line
- 12. Final long-distance e-beam welding

WELDING TEST: 1000 MM DISTANCE E-BEAM

Roughness test performed after SUBU chemical polishing, 20 μm removed Achieved Ra \leq 0.8 μm , target value

MANUFACTURING OF BEAM PORTS: FLAT TEST

Starting thickness 10 mm Residual thickness > 8 mm

MANUFACTURING OF MAIN COMPONENTS

MANUFACTURING OF BEAM PORTS: CILINDRICAL TEST

MANUFACTURING OF SPUTTERING SYSTEM

All elements needed for manufacturing (flanges, tubes, etc.) have been procured

Components for UHV vacuum system have been procured (UHV gate valve, pressure reducer)

First test will show if we need other components (heaters, gauges, etc)

SURFACE TREATMENTS

- × All components ordered
- Performed the check of chemical vapours aspiration (safety issue)
- Lab set-up is starting

RRR MEASUREMENT

- Cryostat insert built
- DVM and current source purchased
- DAQ program being prepared

TEMS PRESENTLY BEING DESIGNED

- Support structure for the coating system
 Ultra-pure water rinsing system (cavity support + water rinsing nozzles)
- Handling tooling for surface treatments, water rinsing, clean room handling

 Items that need testing: niobium sputter cathodes, grids, feedthroughs

BIAS ELECTRODE BY WATER JET CUTTING

SUMMARY

- A high β cavity prototype is in construction, first Nb sputtering foreseen by end of this year.
- Cold test expected by Jan Feb 2009
- Development of magnetron sputtering for QWR geometry foreseen in the next European program with LNL-INFN