Quantum geometry of refined topological strings

Jonas Reuter

Physikalisches Institut Bonn

12.03.2014

Based on:

M.-x. Huang, A. Klemm, J. R. & M. Schiereck: arXiv:1401.4723 [hep-th]

Overview

What is refined topological string theory?

Refining special geometry

Conclusion & Outlook

The topological string

- topological subsector of physical string
- targetspace X is Calabi-Yau 3fold
- two possibilities: A- and Bmodel

- A- and B-model connected by mirror symmetry
- A-model depends only on Kähler moduli, B-model on complex structure moduli
- applications: geometrical engineering, black hole partition functions, Gromov-Witten invariants

Jonas Reuter 3 / 12

Refinement

- two parameter deformation of topological string
- genus expansion of topological string theory gets

$$F(\epsilon_1, \epsilon_2) = \sum_{n,g=0}^{\infty} (\epsilon_1 + \epsilon_2)^{2n} (\epsilon_1 \epsilon_2)^{g-1} F^{(n,g)}$$

- for $\epsilon_1 = -\epsilon_2$ get the topological string partition function
- particular simple limit: Nekrasov-Shatashvili limit

$$\epsilon_i = 0$$
 for $i = 1$ or 2

applications: Nekrasov partition function, quantum integrable system
 Nekrasov, Shatashvili

Jonas Reuter 4 / 12

Periods

- for local B-model geometries, periods are given by periods of meromorphic one form $\lambda=p\mathrm{d}x$ on the Riemann surface
- 2g cycles on a Riemann surface of genus g: A^i , B_i
- intersection numbers of cycles: $A^i \cap B_j = \delta^i_j$
- then periods are

$$a^i = \oint_{A^i} \lambda, \quad a_{D,i} = \oint_{B_i} \lambda$$

Jonas Reuter 5 / 12

Special geometry

 prepotential can be calculated from the periods by use of special geometry

$$a_D = \frac{\partial F_0}{\partial a}$$

how can we use this for refined free energies?

Jonas Reuter 6/1

Refining the differential

• the eta ensemble is a proposition for a matrix model for refined topological strings $$_{
m Dijkgraaf,\,Vafa}$$

$$Z = \int \prod_{i=1}^{N} d\lambda_i \prod_{i < j} (\lambda_i - \lambda_j)^{-2\epsilon_1/\epsilon_2} e^{-\frac{1}{\epsilon_2} \sum_i V(\lambda_i)}$$

• inserting brane operators into the path integral leads to an equation for the brane wave-functions $$_{\rm Aganagic\ et\ al.}$$

$$\left(-\epsilon_{\alpha}^2 \frac{\partial^2}{\partial x^2} + W'(x)^2 + f(x) + g_s^2 \sum_{n=0}^g x^n \partial_{(n)}\right) \Psi_{\alpha}(x) = 0$$

• simplifies in Nekrasov-Shatashvili limit $(\epsilon_2 \to 0 \Rightarrow g_s = \epsilon_1 \epsilon_2 \to 0, \ \epsilon_1 = \hbar) \\ \to \text{just quantum version of defining equation for Riemann surface}$

$$H(x, i\hbar\partial_x)\Psi(x) = 0$$

Jonas Reuter 7 /

Refined periods

- can be solved for example by a WKB approximation in \hbar \Rightarrow Ansatz: $\Psi(x,\hbar) = \exp\left(\frac{1}{\hbar}S(x,\hbar)\right)$
- plugging WKB ansatz into Schrödinger equation find for zeroth order

$$S'(x,\hbar)|_{\hbar^0} = -p(x)$$

 \Rightarrow propose to use S'(x) as quantum deformation

Aganagic et al.

- integration of $\lambda = S'(x,\hbar) \mathrm{d}x$ around cycles of geometry gives quantum periods
- ullet for A-periods integral reduces to a residue \Rightarrow easy to calculate
- But: in general the cycles get also quantum deformed
 ⇒ not clear or very complicted to calculate B-periods

Jonas Reuter 8 / 12

Operators for the refined B-periods

- operators have the general form

$$\mathcal{D}_{2n} = a(u, \vec{m})\Theta_u + b(u, \vec{m})\Theta_u^2$$

u are renormalizable moduli, m are non-renormalizable moduli

- renormalizable moduli: correspond to cycles of Riemann surface
- non-renormalizable moduli: just residues of the meromorphic differential
- operators can be exchanged with integration
 ⇒ exact for periods
- 1 use Picard-Fuchs equation to find zeroth order periods
- 2 apply operators to find quantum corrections

Jonas Reuter 9 / 12

Example: local \mathbb{F}_1

Huang, Klemm, Poretschkin

- ullet $\mathcal{O}(-\mathcal{K}_{\mathbb{F}_1}) o \mathbb{F}_1$ is a toric geometry
- quantum corrected mirror curve is

$$H(x,p) = -1 + e^{x} + mu^{2} e^{-x} + e^{p} + e^{-\hbar/2} \frac{u}{m} e^{x} e^{-p}$$

the first operator for the quantum correction is

$$\mathcal{D}_2 = \frac{mu^2 (4m - 9u)}{6(-8m + 9u)} \Theta_u + \frac{4m - 3u - 16m^2u^2 + 36u^3m}{24(-8m + 9u)} \Theta_u^2$$

• integration of special geometry relation leads to the instanton numbers

Jonas Reuter 10 /

Example: Instanton numbers

\hbar^0	d_1	0	1	2	3	\hbar^2	d_1	0	1	2	3
d_2						d_2					
0			1			0					
1		-2	3			1		-1	4		
2			5	-6		2			20	-35	
3			7	-32	27	3			56	-368	396

Jonas Reuter 11/12

Conclusion & Outlook

Conclusion

- could check calculations for refined free energies with different approaches and extend them to the orbifold and conifold point in the moduli space
- all operators were second order differential operators in the renormalizable moduli u

Outlook

- are operators in general of second order?
- can one generalize the Picard-Fuchs equations to quantum Picard-Fuchs equations?
- extend this procedure to higher genus curves
- Not yet clear if the β ensemble is the right deformation for topological string matrix models. If not, why gives this procedure the right results?

Jonas Reuter 12 /