Axion-like particles in the sky Nearly massless pseudoscalars in astrophysics

Alexandre Payez

XXVI Workshop Beyond the Standard Model Bad Honnef

Axions and axion-like particles from theory

In particle physics, spinless particles = the simplest case one can think of.

Examples:

- Axions [solution Strong CP problem];
- Chameleons [f(R)] theories];
- $\bullet \quad \left\{ \begin{array}{l} \text{Scalars} \\ \text{Pseudoscalars} \end{array} \right\} \text{ [Super strings/Kaluza-Klein theories];}$
- **.**..

Axion-like particles

Axion-like particles (ALPs): generic feature of extensions of the Standard Model.

This kind of particles

- From the theoretical point of view: well motivated;
- From the experimental point of view: yet to be observed.

Not so invisible axions

Electromagnetic coupling that makes them extremely interesting to study

Similar to the Primakoff effect for π^0

Pseudoscalar ϕ :

$$\begin{split} \mathcal{L}_{\phi\gamma\gamma} &= \tfrac{1}{4} \ g\phi F_{\mu\nu} \widetilde{F}^{\mu\nu} = -g\phi (\vec{E} \cdot \vec{B}) = -g\phi (\vec{\mathcal{E}}_r \cdot \vec{B}) \\ \text{[Sikivie (1983)], [Maiani et al. (1986)], [Raffelt, Stodolsky (1988)], } \dots \end{split}$$

Consequences:

- possible 2- γ decay (though typically small m & g)
- new cooling channel
- axion-photon mixing
- **.**..

Affects all properties of ligh (rich phenomenology!)
Highly relevant in astrophysics

Not so invisible axions

Electromagnetic coupling that makes them extremely interesting to study

Similar to the Primakoff effect for π^0

Pseudoscalar ϕ :

$$\mathcal{L}_{\phi\gamma\gamma} = \frac{1}{4} g\phi F_{\mu\nu} \widetilde{F}^{\mu\nu} = -g\phi (\vec{E} \cdot \vec{B}) = -g\phi (\vec{\mathcal{E}}_{\mathbf{r}} \cdot \vec{\mathcal{B}})$$
[Sikivie (1983)], [Maiani et al. (1986)], [Raffelt, Stodolsky (1988)], ...

Consequences:

- possible 2- γ decay (though typically small m & g)
- new cooling channel
- axion-photon mixing

...

Affects all properties of light (rich phenomenology!)

Highly relevant in astrophysics

Searching for ALPs using their electromagnetic coupling

Dependences of ALP-photon mixing

 $P_{\gamma
ightleftarrow\phi}$ depends on only 2 dimensionless parameters in a given $ec{\mathcal{B}}$

$$\frac{1}{2}\mathrm{atan}\left(\frac{2g\mathcal{B}\omega}{m^2-{\omega_\mathrm{p}}^2}\right) = \theta \qquad \qquad \frac{\Delta\mu^2L}{\omega} = \frac{\sqrt{\left(2g\mathcal{B}\omega\right)^2+\left(m^2-{\omega_\mathrm{p}}^2\right)^2}L}{\omega}$$

 $\sim
u$ oscillations with 2 species (but $\Delta \mu^2(\omega)$) [Raffelt, Stodolsky (1988)]

NB: also holds for all Stokes parameters [AP, Cudell, Hutsemekers (2011)]

for a given ALP, mixing \rightarrow more efficient with

- / transverse field strength B
- \ momentum transfert: i.e. \ $\!\!\! / \omega_{\rm p} \sim \sqrt{\it n}_{\rm e}$

If "hints" really due to ALPs → same dependencies expected

Dependences of ALP-photon mixing

 $P_{\gamma
ightleftarrow\phi}$ depends on only 2 dimensionless parameters in a given $ec{\mathcal{B}}$

$$\frac{1}{2}\mathrm{atan}\big(\frac{2g\mathcal{B}\omega}{\mathbf{m}^2-{\omega_{\mathrm{p}}}^2}\big)=\theta \qquad \qquad \frac{\Delta\mu^2\mathbf{L}}{\omega}=\frac{\sqrt{\big(2g\mathcal{B}\omega\big)^2+\big(\mathbf{m}^2-{\omega_{\mathrm{p}}}^2\big)^2}\mathbf{L}}{\omega}$$

 $\sim
u$ oscillations with 2 species (but $\Delta \mu^2(\omega)$) [Raffelt, Stodolsky (1988)]

NB: also holds for all Stokes parameters [AP, Cudell, Hutsemekers (2011)]

for a given ALP, mixing \rightarrow more efficient with

- ullet \uparrow transverse field strength ${\cal B}$
- \quad momentum transfert: i.e. \(\frac{1}{2}\) \(\omega_p \sim \sqrt{n_e}\)

If "hints" really due to ALPs → same dependencies expected

Dependences of ALP-photon mixing

 $P_{\gamma
ightleftarrow\phi}$ depends on only 2 dimensionless parameters in a given $ec{\mathcal{B}}$

$$\frac{1}{2} \operatorname{atan}\left(\frac{2g\mathcal{B}\omega}{m^2 - {\omega_{\mathrm{p}}}^2}\right) = \theta \qquad \qquad \frac{\Delta\mu^2 L}{\omega} = \frac{\sqrt{\left(2g\mathcal{B}\omega\right)^2 + \left(m^2 - {\omega_{\mathrm{p}}}^2\right)^2 L}}{\omega}$$

 $\sim
u$ oscillations with 2 species (but $\Delta \mu^2(\omega)$) [Raffelt, Stodolsky (1988)]

NB: also holds for all Stokes parameters [AP, Cudell, Hutsemekers (2011)]

for a given ALP, mixing \rightarrow more efficient with

- ullet \uparrow transverse field strength ${\cal B}$
- \quad momentum transfert: i.e. \(\sigma \omega_p \sigma_p \sigma \sqrt{n_e} \)

If "hints" really due to ALPs → same dependencies expected

Soft X-ray excess in galaxy clusters

Galaxy clusters

X-ray continuum: thermal bremsstrahlung (T \sim 7 keV)

What's the surprise?

Excess observed in soft X-rays (~ 0.1 –1 keV)

- first in Coma [Lieu et al. (1996)], Virgo [Bowyer et al. (1996)]
- seen soon after in several clusters
- and by various instruments:
 EUVE, ROSAT, XMM, CHANDRA, SUZAKU, BeppoSAX
 (note: full agreement only for Coma)

Long-standing puzzle difficult to explain with conventional astrophysics (thermal and non-thermal processes)

Soft X-ray excess in galaxy clusters

A Cosmic ALP Background Radiation from moduli decay ($m_{\Phi} \sim 10^6$ GeV) would have a spectrum in the extreme-UV, soft X-ray range today

[Conlon, Marsh (2013)], [Angus et al. (2013)]

ALPs would convert in magnetic fields, in particular in cluster magnetic fields (over Mpc scales, and $\mathcal{B}\sim 1-10~\mu\text{G})$

They give
$$g \gtrsim \sqrt{0.5/\Delta N_{\rm eff}} \times 1.4 \times 10^{-13} \ {\rm GeV}^{-1}$$
, $m \lesssim 10^{-12} \ {\rm eV}$

- Clear predictions from a Cosmic ALP Background Radiation
 - excess should formally exist in all clusters (not only Coma)
 - follow only ${\cal B}$ field/electron density, not ICM
 - flux also only function of these
- $\Delta N_{\rm eff}$ preferred (2.7 σ) when combining Planck+WP with HST

Universe transparency to gamma rays

Universe is not transparent to gamma rays at high-z: interactions with Extragalactic Background Light (EBL)

$$\gamma_{\rm HE/VHE} + \gamma_{\rm EBL} \rightarrow {\rm e^+} + {\rm e^-}$$

see e.g. [Dwek, Krennrich (2013)]

What's the surprise?

Observations by Cherenkov telescopes (e.g. MAGIC, VERITAS, HESS) would indicate an anomalous transparency of the Universe to TeV γ

see e.g. [Aharonian et al. (2006)], [Aliu et al. (2008)], ...

Note: still an open question! see e.g. [Biteau (2013)]

Some astrophysical solutions; see e.g. [Dwek, Krennrich (2013)]

- less EBL? (not resolved, but lower limit)
- revise blazar model to make spectrum harder: e.g. hadronic jet

Universe transparency to gamma rays

```
Various ALP-photon mixing scenarios: mixing on the way/near the source + back-conversion in the Milky Way [de Angelis, Roncadelli, Mansutti (2007)], [Sánchez-Conde et al. (2009)], [Meyer, Horns (2012)], ...
```

```
Would indicate g\sim 10^{-11}–10^{-10} GeV^{-1}, m\lesssim 10^{-8} eV [Horns et al. (2012)] NB: other GeV–TeV observations, same ALPs [Mena, Razzaque (2013)], [Tavecchio et al. (2012)], ...
```

Prediction: transparency of the Universe would then follow $\mathcal B$ field in the Galaxy Could be checked with CTA [Wouters, Brun (2013)]

ALPS-II, IAXO: future experiments interested in this region

No prompt γ burst from SN1987A—in a nutshell

When a very massive star undergoes a core-collapse (SN type II) proto-neutron star quickly radiates lots of neutrinos \rightarrow short, intense ν burst (optical flash comes hours later)

Light axion-like particles

- would be copiously produced as well
- 2 would subsequently convert in the Galactic magnetic field
- $\Rightarrow \gamma$ -ray burst (core temperature) coincidental with the ν one

SN1987A (only 50 kpc away)

- ν burst seen (great success!) by Kamiokande, IMB, and Baksan detectors
- Upper limit from Gamma-Ray Spectrometer Total fluence of photons with energies 25–100 MeV: $< 0.6 \ \gamma \ cm^{-2} \ @ 95\% \ C.L.$

No prompt γ burst from SN1987A—in a nutshell

When a very massive star undergoes a core-collapse (SN type II) proto-neutron star quickly radiates lots of neutrinos \rightarrow short, intense ν burst (optical flash comes hours later)

Light axion-like particles

- would be copiously produced as well
- 2 would subsequently convert in the Galactic magnetic field
- $\Rightarrow \gamma$ -ray burst (core temperature) coincidental with the ν one

SN1987A (only 50 kpc away)

- ν burst seen (great success!) by Kamiokande, IMB, and Baksan detectors
- Upper limit from Gamma-Ray Spectrometer Total fluence of photons with energies 25–100 MeV: $< 0.6 \ \gamma \ cm^{-2} \ @ 95\% \ C.L.$

No prompt γ burst from SN1987A—in a nutshell

When a very massive star undergoes a core-collapse (SN type II)

proto-neutron star quickly radiates lots of neutrinos \rightarrow short, intense ν burst (optical flash comes hours later)

Light axion-like particles

- would be copiously produced as well
- 2 would subsequently convert in the Galactic magnetic field
- $\Rightarrow \gamma$ -ray burst (core temperature) coincidental with the ν one

SN1987A (only 50 kpc away)

- ν burst seen (great success!) by Kamiokande, IMB, and Baksan detectors
- Upper limit from Gamma-Ray Spectrometer Total fluence of photons with energies 25–100 MeV:

$$<$$
 0.6 γ cm $^{-2}$ @ 95% C.L.

No prompt γ burst from SN1987A—fresh look on the limit

Not observed \rightarrow gives the most stringent bound for a wide range of masses

Important limit for the astrophysical window

- $g \lesssim 3 \times 10^{-12} \text{ GeV}^{-1}$ [Grifols, Massó, Toldrà (1996)]
- $g \lesssim 10^{-11} \text{ GeV}^{-1}$ [Brockway, Carlson, Raffelt (1996)]

both for $m \lesssim 10^{-9}$ eV

Criticism found in the literature; this bound is sometimes simply dismissed

- mass limit
- model for $\vec{\mathcal{B}}$ field
- SN simulations

We are revisiting this limit (A. Mirizzi, A. Ringwald, SN model by T. Fischer).

Stay tuned.

Summary

Axion-like particles

- can be expected to appear in extensions of the SM
- have very interesting and rather unique properties

Astrophysical puzzles jointly explained by the existence of a light ALP?

- observational status not always clear
- ullet but again ALPs typically offer clear predictions o either discovery or limits

Important to know what's left of the parameter space in that low-mass region

- revisiting SN1987A bound
- upgraded experiments will provide a further check

Thank you

Cosmography of the local Universe

[Courtois et al. (2013)]