<u>Dark radiation</u> in the non-sequestered Large Volume scenario

in collab. with **P. Mangat, F. Rompineve and L. Witkowski**(Heidelberg)

<u>Outline</u>

- Dark radiation observational hints/bounds
- Dark radiation in the sequestered LVS
- ...and in the non-sequestered LVS
- ... and in the LVS with flavor-branes
- Summary/Conclusions

Introduction

- conventional variable: N_{eff} (effective number of neutrino species; $N_{eff}^{SM}=3.046$)
- Planck + WMAP + highL + BAO:

$$N_{eff} = 3.3 \pm 0.5 \text{ (95\% CL)}$$

• Including also H_0 :

$$N_{eff} = 3.5 \pm 0.5 \ (95\% \ CL)$$

- \Rightarrow mild preference for $\Delta N_{eff} \neq 0$; Here: View this as a bound on dark radiation
- <u>Crucial</u>: Significant improvement expected in the future; Potential to exclude models with $\Delta N_{eff} \neq 0$

Introduction - continued

 Conventional picture of cosmological evolution with some extra light d.o.f. (DR):

Inflaton
$$\longrightarrow$$
 (Modulus Φ) \longrightarrow SM + DR

$$\Delta N_{eff} = \frac{43}{7} \left(\frac{10.75}{g_*(T_d)} \right)^{1/3} \frac{\rho_{DR}}{\rho_{SM}} \Big|_{T_d}$$

• Here T_d is the decay temperature of Φ and

$$\left. \frac{\rho_{DR}}{\rho_{SM}} \right|_{T_d} = \frac{\Gamma_{\Phi \to DR}}{\Gamma_{\Phi \to SM}}$$

Dark radiation in the Large Volume scenario

• Notation: $T_b = \tau_b + ia_b$; $T_s = \tau_s + ia_s$

$$K = -2 \ln \mathcal{V} = -2 \ln \left((T_b + \overline{T}_b)^{3/2} - (T_s + \overline{T}_s)^{3/2} \right)$$

• Crucial point: α' -corrections + non-pert. effects lead to stabilization at exponentially large volume

$$au_b \sim \exp(au_s) \sim \exp(-\chi)$$

• Classical shift symmetry $a_b \rightarrow a_b + \text{const.}$ is only broken non-perturbatively; $m_a = 0$ for all practical purposes.

Dark radiation in the sequestered Large Volume scenario

Cicoli, Conlon, Quevedo '12 Higaki, Nakayama, Takahashi '12...'13

- SM on fract. D3s at singularity of type-IIB CY-orientifold
- gauge-kinetic function f = f(S)
- sequestered Kähler potential:

$$K = -3 \ln \left(T_b + \overline{T}_b - \left[Q^i \overline{Q}^i + H_u \overline{H}_u + \{ z H_u H_d + \text{h.c.} \} + \cdots \right] \right)$$

see e.g. Blumenhagen, Conlon, Krippendorf, Moster, Quevedo, '09

A straightforward analysis gives:

$$\Gamma_{\Phi \to a_b a_b} = \frac{1}{48\pi} \frac{m_{\Phi}^3}{M_P^2}$$

$$2z^2 m_{\Phi}^3$$

$$\Gamma_{\Phi \to H_u H_d} = \frac{2z^2}{48\pi} \frac{m_{\Phi}^3}{M_P^2}$$

• Conclusion: Need either z > 2 or $n_H > 4$.

(Here n_H counts pairs of Higgs doublets and one assumes the bound $N_{eff} < 4$.)

• Comment: Shift symmetry singles out z = 1,

$$K_H \sim |H_u + \overline{H}_d|^2$$
.

Brignole et al. '95; Choi et al. '03; Bruemmer et al. '08-10; Ben-Dayan, Einhorn '10; AH, Knochel, Weigand '11

(It is unclear how to realize $z \gg 1$ at a fundamental level. Note that the Kähler metric becomes singular in this limit.)

Dark radiation in the non-sequestered Large Volume scenario

- The non-sequestered case has been discussed before (in a racetrack-LVS hybrid, with SM on non-pert. stablized cycles)
 Higaki, Kamada, Takahashi '12
- It is claimed that axions are not an issue at all, but stringy realizability of this specific setting is unclear
- We focus on the (in our opinion more standard)
 D-term stabilization of 4-cycle ratios
- We assume that τ_{SM}/τ_b is stabilized by $V_D=0$.

- Due to SUSY, we then have $T_{SM} = \alpha T_b$, with $\alpha \ll 1$ to be realized by the tuning of gauge fluxes.
- Now $m_{soft} \sim 1/\mathcal{V}$, while $m_{\tau_b} \sim 1/\mathcal{V}^{3/2}$.

(Thus, low-scale SUSY is difficult to realize cosmologically. But this may actually be OK nowadays...)

• The gauge kinetic function reads

$$f = T_{SM} + hS = \alpha T_b + hS$$

• Again, a straightforward analysis gives:

$$\begin{split} \Gamma_{\Phi \to a_b a_b} &= \frac{1}{48\pi} \frac{m_{\Phi}^3}{M_P^2} \\ \Gamma_{\Phi \to hh} &= \frac{\textbf{z}^2 \sin^2(2\beta)}{192\pi} \frac{m_{\Phi}^3}{M_P^2} \\ \Gamma_{\Phi \to AA} &= \frac{N_g \gamma^2}{96\pi} \frac{m_{\Phi}^3}{M_P^2} \end{split}$$

where

$$\gamma = \frac{\tau_{SM}}{\tau_{SM} + h \operatorname{Re}S}$$

The branching ratio to axions is

$$B_a \; = \; \frac{\Gamma_{aa}}{\Gamma_{aa} + \Gamma_{hh} + \Gamma_{AA}} \; = \; \frac{1}{1 + \frac{\sin^2(2\beta)}{4}z^2 + \frac{N_g}{2}\gamma^2}$$

This gives

$$\Delta N_{eff} = \frac{43}{7} \left(\frac{10.75}{g_*(T_d)} \right)^{1/3} \frac{B_a}{1 - B_a}$$

• Thus, assuming $\tan \beta = 1$ and $z \lesssim 1$ and taking $N_g = 12$ (SM), our only option for lowering B_a is to increase γ .

 $\Delta \textit{N}_{\textit{eff}}$ in non-sequestered LVS

Non-sequestered LVS, stabilization by loop corrections

Known possibility: fibre inflation

Cicoli, Burgess, Quevedo '08

$$\mathcal{V} = \sqrt{\tau_1}\tau_2 - \tau_s^{3/2}$$

- Here $\mathcal{V}_{K3}= au_1$; $\mathcal{V}_{\textit{Base}}=rac{ au_2}{\sqrt{ au_1}}$
- Loops and standard LVS naturally stabilize $\tau_2 \gg \tau_1 \gg \tau_s$.

- Here, the overall volume \mathcal{V} is not the lightest modulus
- This role is taken over by the ratio τ_2/τ_1
- Advantage: $\tau_{SM} \sim \tau_1$ is naturally much smaller than the typical volume size.
- Now we have two axions (from T_1 and T_2),

$$B_a = \frac{1}{1 + \frac{1}{5}z^2 + \frac{24}{5}\gamma^2}$$

(for tan $\beta = 1$ and $N_g = 12$)

• Numerical results are similar to the 'D-term case' above

Fundamental problem:

- ullet In both case, unavoidably $\left. \mathcal{L} \supset T_{\textit{light}} \left. W_{lpha}^{\textit{SM}} W^{\textit{SM},lpha} \right|_{ heta^2} \right|_{ heta^2}$
- Our light axion is also the QCD axion, with f_a typically too large
- Way out: Increase \mathcal{V} (But this lowers $\mathcal{T}_{reh.}$ and makes baryogenesis difficult)
- Way out: Accept fine-tuning $a_{initial} \ll a_{typical}$ (This can be justified e.g. if ρ_{DM} is anthropically bounded)

see e.g. Hertzberg, Tegmark, Wilczek '08; Freivogel '08

• Way out: Add a field-theoretic (open-string) QCD axion, with a decay constant which is set by some field-theory VEV (\ll string scale)

Yet another possibility:

"sequestered" (or "de-sequestered") LVS with flavor branes

...appearing already in Aldazabal, Ibanez, Quevedo, Uranga '00

- The SM is again at a singularity, but an extra weakly coupled gauge theory lives on a stack of flavor branes.
- This gauge theory must be spontaneously broken (Z' bounds apply)
- Cosmology: $\Phi \to DR + A'_{\mu}$; Subsequently $A'_{\mu} \to SM$
- Second decay is fast; The analysis is (essentially) as before

 ΔN_{eff} in LVS with flavor-branes

Conclusions / Summary

- Interpreting present 'dark radiation data' as bounds, the sequestered LVS may already be in trouble
 (Although this depends on T_{reh.})
- The 'non-sequestered' or 'de-sequestered' (through flavor branes) LVS provide a natural ways out
- Nevertheless, discovery of dark radiation is expected in the foreseeable future
- Otherwise, there is the potential of ruling out large parts of the LVS parameter space altogether
 - (Unless one is prepared to accept an anthropically unmotivated tuning)