Do time-like and space-like reductions always commute?

Thomas Mohaupt

Department of Mathematical Sciences
University of Liverpool

Bad Honnef, March 2014

Motivation

Motivated by general results on time-like reductions of four-dimensional $N=2$ supergravity (c-map): V. Cortés, P. Dempster, T.M., O. Vaughan, to appear.

Here we will give a self-contained analysis of the space-like/time-like (ST) and time-like/space-like (TS) reduction of pure five-dimensional supergravity based on:
V. Cortés, P. Dempster, T.M., arXiv:1401.5672

Previous results

- Scalar geometry is locally $G_{2(2)} /(S L(2) \cdot S L(2))$ for both ST reduction and TS reduction
- ST and TS reduction are related by analytic continuation to SS reduction (and hence one another).
- Map between ST and TS reduction ((t, ψ)-flip) is related to the '4D-5D lift'.
M. Berkooz and B. Pioline, JHEP 0805 (2008) 045 [arXiv:0802.1659]
G. Compere, S. de Buyl, E. Jamsin and A. Virmani, Class. Quant. Grav. 26 (2009) 125016 [arXiv:0903.1645], G. Compere, S. de Buyl, S. Stotyn and A. Virmani, JHEP 1011 (2010) 133 [arXiv:1006.5464].

Reduction of 5d supergravity

Bosonic part of action of pure 5d supergravity.

$$
S=\int d^{5} x\left[\sqrt{\hat{g}}\left(\frac{\hat{R}}{2}-\frac{1}{4} \mathcal{F}_{\hat{\mu} \hat{\nu}} \mathcal{F}^{\hat{\mu} \hat{\nu}}\right)+\frac{1}{6 \sqrt{6}} \varepsilon^{\hat{\mu} \hat{\nu} \hat{\rho} \hat{\sigma}} \mathcal{F}_{\hat{\mu} \hat{\nu}} \mathcal{F}_{\hat{\rho} \hat{\sigma}} \mathcal{A}_{\hat{\lambda}}\right]
$$

Reduction:

$$
d s_{(5)}^{2}=-\epsilon_{1} e^{2 \sigma}\left(d x^{0}+\mathcal{A}^{0}\right)^{2}-\epsilon_{2} e^{2 \phi-\sigma}\left(d x^{4}+B\right)^{2}+e^{-2 \phi-\sigma} d s_{(3)}^{2}
$$

$\epsilon_{1}=\epsilon_{2}=-1$ space/space
$\epsilon_{1}=-1, \epsilon_{2}=1$ space/time
$\epsilon_{1}=1, \epsilon_{2}=-1$ time/space
$\epsilon:=-\epsilon_{1} \epsilon_{2}$

Three-dimensional Lagrangian:

$$
\begin{aligned}
\mathcal{L}_{3}= & \frac{R}{2}+\frac{3}{4 y^{2}} \epsilon_{1}(\partial x)^{2}-\frac{3}{4 y^{2}}(\partial y)^{2}-\frac{1}{4 \phi^{2}}(\partial \phi)^{2} \\
& +\frac{1}{4 \phi^{2}} \epsilon_{1}\left(\partial \tilde{\phi}+p^{\prime} \overleftrightarrow{\partial} s_{l}\right)^{2} \\
& +\frac{y^{3}}{12 \phi} \epsilon\left(\partial p^{0}\right)^{2}+\frac{y}{4 \phi} \epsilon_{2}\left(\partial p^{1}-x \partial p^{0}\right)^{2} \\
& +\frac{3}{y^{3} \phi} \epsilon_{2}\left(\partial s_{0}+x \partial s_{1}-\frac{1}{6} x^{3} \partial p^{0}+\frac{1}{2} x^{2} \partial p^{1}\right)^{2} \\
& +\frac{1}{y \phi} \epsilon\left(\partial s_{1}-\frac{1}{2} x^{2} \partial p^{0}+x \partial p^{1}\right)^{2}
\end{aligned}
$$

8 scalars: $\left(x, y, \phi, \tilde{\phi}, p^{0}, p^{1}, s_{0}, s_{1}\right)$.

Co-frame

$$
\left(\theta^{a}\right)=\left(\eta^{2}, \xi_{2}, \alpha, \beta, \eta^{0}, \eta^{1}, \xi_{0}, \xi_{1}\right)
$$

where

$$
\begin{aligned}
\eta^{2} & =\frac{1}{\phi}\left(d \tilde{\phi}+p^{\prime} d s_{I}-s_{l} d p^{\prime}\right), \quad \xi_{2}=\frac{d \phi}{\phi} \\
\alpha & =\frac{\sqrt{3}}{y} d x, \quad \beta=\frac{\sqrt{3}}{y} d y \\
\eta^{0} & =\sqrt{\frac{y^{3}}{3 \phi}} d p^{0}, \quad \eta^{1}=\sqrt{\frac{y}{\phi}}\left(d p^{1}-x d p^{0}\right) \\
\xi_{0} & =2 \sqrt{\frac{3}{y^{3} \phi}}\left(d s_{0}+x d s_{1}+\frac{1}{2} x^{2} d p^{1}-\frac{1}{6} x^{3} d p^{0}\right), \\
\xi_{1} & =\frac{2}{\sqrt{y \phi}}\left(d s_{1}+x d p^{1}-\frac{1}{2} x^{2} d p^{0}\right) .
\end{aligned}
$$

Scalar metric:

$$
\begin{aligned}
4 g_{S S / S T / T S}= & -\epsilon_{1} \eta^{2} \otimes \eta^{2}+\xi_{2} \otimes \xi_{2}-\epsilon_{1} \alpha \otimes \alpha+\beta \otimes \beta \\
& -\epsilon \eta^{0} \otimes \eta^{0}-\epsilon_{2} \eta^{1} \otimes \eta^{1}-\epsilon_{2} \xi_{0} \otimes \xi_{0}-\epsilon \xi_{1} \otimes \xi_{1}
\end{aligned}
$$

Lie algebra structure on the co-frame:

$$
\begin{aligned}
& d \theta^{A}=-C_{B C}^{A} \theta^{B} \wedge \theta^{C} \\
d \eta^{2} & =-\xi_{0} \wedge \eta^{0}-\xi_{1} \wedge \eta^{1}-\xi_{2} \wedge \eta^{2} \\
d \xi_{2}= & 0, \\
d \alpha= & \frac{1}{\sqrt{3}} \alpha \wedge \beta \\
d \beta= & 0 \\
d \eta^{0}= & \frac{\sqrt{3}}{2} \beta \wedge \eta^{0}-\frac{1}{2} \xi_{2} \wedge \eta^{0} \\
d \eta^{1}= & \frac{1}{2 \sqrt{3}} \beta \wedge \eta^{1}-\frac{1}{2} \xi_{2} \wedge \eta^{1}-\alpha \wedge \eta^{0}, \\
d \xi_{0}= & -\frac{\sqrt{3}}{2} \beta \wedge \xi_{0}-\frac{1}{2} \xi_{2} \wedge \xi_{0}+\alpha \wedge \xi_{1}, \\
d \xi_{1}= & -\frac{1}{2 \sqrt{3}} \beta \wedge \xi_{1}-\frac{1}{2} \xi_{2} \wedge \xi_{1}+\frac{2}{\sqrt{3}} \alpha \wedge \eta^{1} .
\end{aligned}
$$

\Rightarrow scalar metrics are left-invariant metrics on a Lie group $L \simeq \mathbb{R}^{8}$ with Lie algebra $\mathfrak{l}:\left(M_{S S}, g_{S S}\right) \cong\left(L, g_{S S}\right),\left(M_{S T}, g_{S T}\right) \cong\left(L, g_{S T}\right)$, $\left(M_{T S}, g_{T S}\right) \cong\left(L, g_{T S}\right)$.

Generators $\left(T_{a}\right)=\left(V_{2}, U^{2}, A, B, V_{0}, V_{1}, U^{0}, U^{1}\right)$.

$$
\begin{aligned}
{[B, A]=} & \frac{1}{\sqrt{3}} A, \quad\left[U^{2}, V_{2}\right]=V_{2}, \\
{\left[V_{0}, U^{0}\right]=} & -V_{2}, \quad\left[V_{1}, U^{1}\right]=-V_{2}, \\
{\left[U^{2}, V_{l}\right]=} & \frac{1}{2} V_{l} \quad \text { for } I=0,1, \quad\left[U^{2}, U^{\prime}\right]=\frac{1}{2} U^{\prime} \quad \text { for } I=0,1, \\
{\left[B, V_{0}\right]=} & -\frac{\sqrt{3}}{2} V_{0}, \quad\left[B, V_{1}\right]=-\frac{1}{2 \sqrt{3}} V_{1}, \quad\left[B, U^{0}\right]=\frac{\sqrt{3}}{2} U^{0}, \\
& {\left[B, U^{1}\right]=\frac{1}{2 \sqrt{3}} U^{1}, } \\
{\left[A, V_{0}\right]=} & V_{1}, \quad\left[A, U^{1}\right]=-U^{0}, \quad\left[A, V_{1}\right]=-\frac{2}{\sqrt{3}} U^{1} .
\end{aligned}
$$

$\Rightarrow l$ is a solvable Lie algebra.
In fact, l is the Iwasawa subalgebra of the Lie algebra \mathfrak{g} of the Lie group $G_{2(2)}$.

Iwasawa decomposition

Iwasawa decomposition of a real simple non-compact Lie group G :

$$
G=L K
$$

$L=$ Iwasawa subgroup (maximal solvable subgroup), $K=$ maximal compact subgroup.
L acts simply transitively on the symmetric space G / K :

$$
L \simeq \frac{G}{K}
$$

Example:

$$
L \simeq \frac{G_{2(2)}}{S O(4)}
$$

This Riemannian symmetric space is quaternionic-Kähler, i.e.

$$
\operatorname{Hol}(G / K) \subset S p(1)_{c} \cdot S p(n)_{c} \cong S U(2) \cdot U S p(2 n) \subset S O(4 n)
$$

Here $n=2$.

Iwasawa subgroup

If K is replaced by a non-compact real form H, then G / H is still a symmetric space, but $G \neq L H$. The Iwasawa subgroup L does not act simply transitively, but can still act with open orbit:

$$
L \subset \frac{G}{H}
$$

Example

$$
L \subset \frac{G_{2(2)}}{S L(2) \cdot S L(2)}
$$

This Riemannian symmetric space is para-quaternionic Kähler, i.e.

$$
\operatorname{Hol}(G / H) \subset S p\left(\mathbb{R}^{2}\right) \cdot S p\left(\mathbb{R}^{2 n}\right) \subset S O(2 n, 2 n)
$$

Here $n=2$.

$$
\begin{aligned}
& L \cong G / k \cong \mathbb{R}^{m} \\
& G=G_{2(2),} k=\operatorname{So}(4) \\
& m=8
\end{aligned}
$$

$L \subset G / H$

$$
H=S L(2) \cdot S L(2)
$$

Open orbits

Goal: Identify the scalar manifolds $\left(M_{S T}, g_{S T}\right)$ and $\left(M_{T S}, g_{T S}\right)$ with open orbits of L on $G_{2(2)} /(S L(2) \cdot S L(2))$.

Problem: The standard Iwasawa subgroup $L \subset G_{2(2)}$ does not act with open orbit on the standard base point $e H \in G / H=G_{2(2)} /(S L(2) \cdot S L(2))$.

Equivalent options: (i) find conjugate Iwasawa subgroups L_{1}, L_{2} which act with open orbit on $e H$. (ii) find points on G / H on which L acts with open orbit. We used (i).

Result: we have found $a_{i} \in G_{2(2)}, i=1,2$ such that $L_{i}=a_{i} L a_{i}^{-1}$ act with open orbit, with induced metrics

$$
\begin{aligned}
& g_{1} \propto \operatorname{diag}(-1,1,-1,1,-1,1,1,-1) \propto g_{T S} \\
& g_{2} \propto \operatorname{diag}(1,1,1,1,-1,-1,-1,-1) \propto g_{S T}
\end{aligned}
$$

Result: The automorphism group of L is

$$
\operatorname{Aut}(L) \cong \operatorname{Aut}(\mathfrak{l})=\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \ltimes \operatorname{Inn}(\mathfrak{l}), \text { where } \quad \operatorname{Inn}(\mathfrak{l}) \cong L
$$

Consquence: $\left(L, g_{1}\right) \cong\left(M_{T S}, g_{T S}\right)$ and $\left(L, g_{2}\right) \cong\left(M_{S T}, g_{S T}\right)$ are not related by an automorphism of L.

e-complex geometry

Almost complex structure	Almost para-complex structure
$J^{2}=-1$	$J^{2}=1$, balanced eigenvalues
$J \cong\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right) \otimes \mathbb{1}$	$J \cong\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \otimes \mathbb{1}$

- J integrable: (para-)complex structure
- J skew wrt metric: (para-)Hermitian structure
- J parallel wrt Levi-Civita connection: (para-)Kähler structure

ϵ-quaternionic geometry

Almost quaternionic structure

Almost para-quaternionic structure

\[

\]

$Q=\operatorname{span}\left\{J_{1}, J_{2}, J_{3}\right\} \epsilon$-quaternionic-Kähler structure:

- J_{1}, J_{2}, J_{3} skew wrt the metric.
- Q is parallel wrt the Levi-Civita connection
J_{1}, J_{2}, J_{3} are not separately parallel.
J_{1}, J_{2}, J_{3} are, in general, not integrable!

Para-quaternionic Kähler geometry of $M_{S T}$ and $M_{T S}$

Define the following endomorphisms on $\left(\mathfrak{l},\langle\cdot, \cdot\rangle_{\epsilon_{1}, \epsilon_{2}}\right)$:

$$
\begin{aligned}
J_{1}= & \epsilon_{2} U^{2} \wedge V_{2}-B \wedge A+\epsilon \frac{\sqrt{3}}{2} U^{1} \wedge U^{0}-\epsilon_{2} \frac{1}{2} U^{1} \wedge V_{1} \\
& +\epsilon_{2} \frac{1}{2} U^{0} \wedge V_{0}+\epsilon \frac{\sqrt{3}}{2} V_{1} \wedge V_{0}, \\
J_{2}= & \epsilon_{2} \frac{\sqrt{3}}{2} U^{1} \wedge V_{2}+\epsilon \frac{1}{2} V_{0} \wedge V_{2}-\frac{1}{2} U^{0} \wedge U^{2}-\epsilon_{1} \frac{\sqrt{3}}{2} V_{1} \wedge U^{2} \\
& -\frac{1}{2} U^{1} \wedge A-\epsilon_{1} \frac{\sqrt{3}}{2} V_{0} \wedge A-\frac{\sqrt{3}}{2} U^{0} \wedge B+\epsilon_{1} \frac{1}{2} V_{1} \wedge B, \\
J_{3}= & \epsilon_{2} \frac{1}{2} U^{0} \wedge V_{2}-\epsilon \frac{\sqrt{3}}{2} V_{1} \wedge V_{2}-\epsilon_{1} \frac{\sqrt{3}}{2} U^{1} \wedge U^{2}+\frac{1}{2} V_{0} \wedge U^{2} \\
& -\frac{\sqrt{3}}{2} U^{0} \wedge A+\epsilon_{1} \frac{1}{2} V_{1} \wedge A-\epsilon_{1} \frac{1}{2} U^{1} \wedge B-\frac{\sqrt{3}}{2} V_{0} \wedge B,
\end{aligned}
$$

Here we write endomorphisms as bivectors:

$$
(u \wedge v)(w)=u\langle v, w\rangle-\langle u, w\rangle v, \quad u, v, w, \in \mathfrak{l}
$$

Result 1

An expected result:
$Q=\operatorname{span}\left\{J_{1}, J_{2}, J_{3}\right\}$ is a left-invariant ϵ-quaternionic structure on L
$\Rightarrow\left(L, g_{1}\right) \cong\left(M_{T S}, g_{T S}\right)$ and $\left(L, g_{2}\right) \cong\left(M_{S T}, g_{S T}\right)$ are para-quaternionic Kähler manifolds.

Result 2

An unexpected extra feature:
J_{1} is an integrable left-invariant skew-symmetric ϵ_{1}-complex structure on L

$$
J_{1}^{2}=\epsilon_{1} \mathbb{1}
$$

where $\epsilon_{1}=-1$ for ST (and SS) and $\epsilon_{1}=1$ for TS reduction.
$\Rightarrow\left(L, g_{1}\right) \cong\left(M_{T S}, g_{T S}\right)$ is a para-complex manifold, while $\left(L, g_{2}\right) \cong\left(M_{S T}, g_{S T}\right)$ is a complex manifold.

TS and ST reduction lead to distinct geometrical structures on the respective scalar manifolds.

General properties of the c-map

- Temporal c-map: Time-like reduction of 4D $N=2$ supergravity with vector multiplets gives scalar manifold which is para-quaternionic Kähler with an induced integrable complex structure.
- Euclidean c-map: Reduction of Euclidean 4D $N=2$ supergravity with vector multiplets gives a scalar manifold which is para-quaternionic Kähler with an induced integrable para-complex structure.
V. Cortés, P. Dempster, T.M., O. Vaughan, to appear.
$c-m a p$
$1+3 \quad N=2$ Supergravity
N special Kähler
$J_{1}^{(N)}$

$$
\int_{V} \text { temporal }
$$

$\mathrm{O}+3$
M para-quaternionic-
Kc̈hler
$\partial_{1}^{(M)}$ integrable complex structure

O+4 $N=2$ Supergrovity N'special para-Ka" hler $\exists_{1}^{N^{\prime}}$

Eucpidean c-map
$0+3$
M' para-guaternionicKáhler
$J_{1}^{M^{\prime}}$ integrable para-complex structure

The Black String submanifold

$M_{S T}$ and $M_{T S}$ 'share' (even when including vector multiplets) the totally geodesic submanifold $N_{p K} \times \mathbb{R}$, which supports static magnetically charged black string solutions (BPS, non-BPS and non-extremal). $N_{\rho K}$ is a para-Kähler submanifold of maximal dimension.
P. Dempster and T.M., Class. Quantum Grav. 31 (2014) 045019.
q-map
1+4 supergravity, special real

Further remarks on time-like reductions

- $\left(M_{S T}, g_{S T}\right),\left(M_{T S}, g_{T S}\right)$ are not geodesically complete
- Regular black hole solutions contained in 'solv-patches', W. Chemissany, P. Fré, J. Rosseel, A. S. Sorin, M. Trigiante and T. Van Rief, JHEP 1009 (2010) 080
- Action of duality group in time-like reductions, G. Moore hep-th/9305139, G. Bossard, H. Nicolai and K.S. Stelle, JHEP 0907 (2009) 003

Related ongoing work

- Work to appear/in progress on time-like reductions $4 \rightarrow 3$ (c-map) and $5 \rightarrow 3$ (q-map), with V. Cortés, P. Dempster and O. Vaughan
- Work on non-BPS and non-extremal solutions for non-symmetric target spaces, with P. Dempster, D. Errington and O. Vaughan

