# **Programme Matter and Technologies Development of Edgeless Silicon Pixel Sensors**

DTS - Edgeless Detectors for Photon Science at Synchrotrons and XFELs



Jiaguo Zhang (DESY) in collaboration with SINTEF, Advacam/VTT, CERN and IZM

1. Motivation

**Drawback of conventional hybrid pixel detectors:** 

• information missing within dead space  $\rightarrow$  problems in image reconstruction

Single module of conventional A conventional detector with 12 modules showing large dead area hybrid pixel detector Silicon pixel sensor ASIC chip ASIC chip Low Temperature Co-fired Ceramic (LTCC) board High-speed IO

dead

#### 2. From conventional to edgeless sensor

to edgeless



Edgeless







Goal: Development of edgeless hybrid pixel detectors using

- edgeless silicon sensors with active edges
- ASIC chips with through-silicon-vias (TSV)
- circuit board and ASIC chips integrated with ball grid array



Additional processes for edgeless sensor:

- silicon wafer bonding to support wafer
- deep trench by Deep Reactive Ion Etching
- edge implantation
- support wafer removal

**Cross section of edgeless sensor** active edge active pixels no dead space!

**Potential foundries** 



### 3. Model development for edgeless sensors

Model developed for charge collection of edgeless sensors:

- electric field & potential distribution (Synopsys TCAD)
- drift, diffusion and collection of e-h pairs produced by X-rays (Python)

#### **Results of model calculation and compared to measurement:**

## 4. Modeling charge-collection behavior

**Results for thicker edgeless sensors predicted by developed model:** 

simulation result



• backside scan of edgeless sensor (150 µm thick, 55 µm pitch & 50 µm last pixel-to-edge distance, produced by VTT/Advacam) with X-rays

**Electric field & potential simulation result** Pixel index: 10 150 µm thick n<sup>+</sup>n sensor ElectrostaticPotential (V) 5.259e-01 -1.631e+01 3.314e+01 -4.997e+01 -8.363e+01 15 keV X-rays, FWHM=11 µm 1.005e+02

position scan starting from sensor edge



#### Main features/conclusions:

• bending of electric field close to sensor edge

- non-uniform charge collection for edge pixels

• sensor thickness, X-ray energy and last pixel-to-edge distance dependence charge collection in HEP applications compatible with results from >15 keV X-rays

Hint for sensor design: Last pixel-to-edge distance should be kept at least 50% of the sensor thickness to obtain the optimized charge collection for edge pixels!

| Summar |  |
|--------|--|
| Ourman |  |
|        |  |

#### • Edgeless sensor development in progress:

- model developed for understanding recent measurement results
- charge-collection behavior for photon science and HEP applications predicted by model calculation

### 6. Outlook

- Optimization of sensor layout started and to be continued
- Photon-counting ASIC chips (Medipix) with TSV design ready
- Design of compatible circuit board will start soon

• First module of edgeless detector expected in 2015



