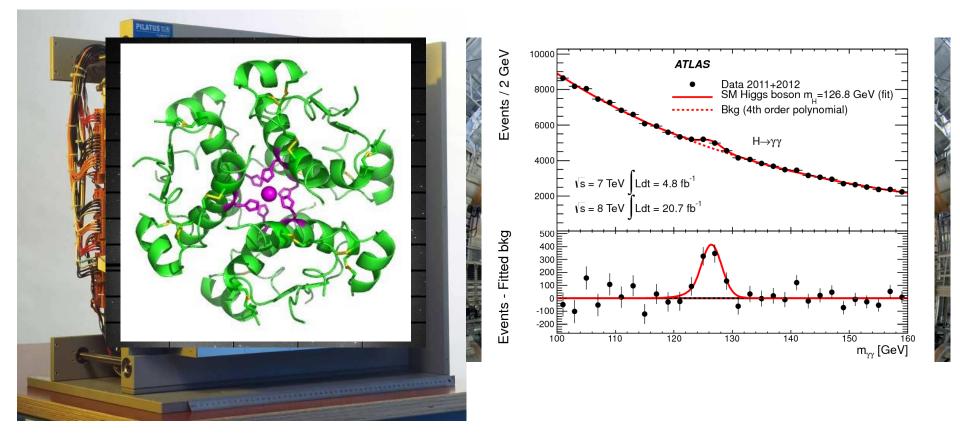


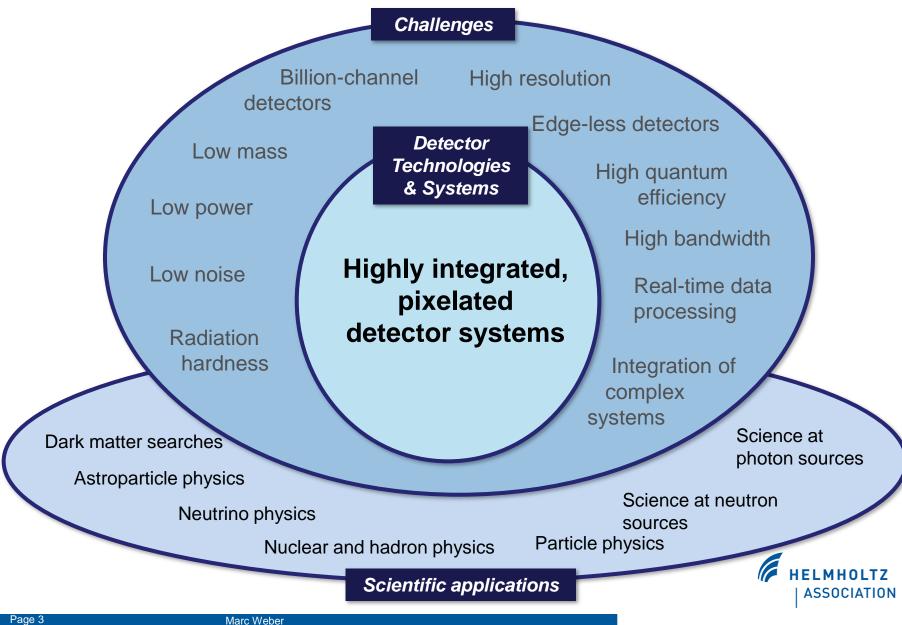
Matter and


Technologies

DESY

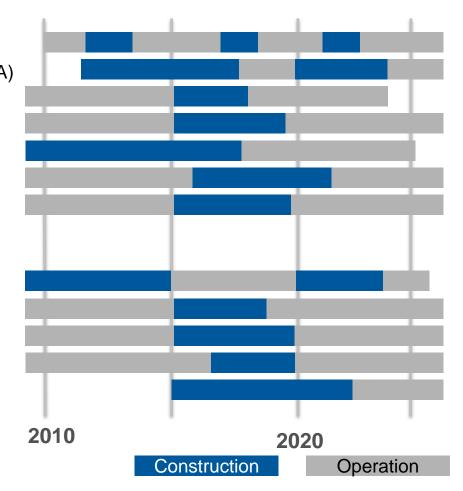
Detectors driven by science

Photon science


Particle physics

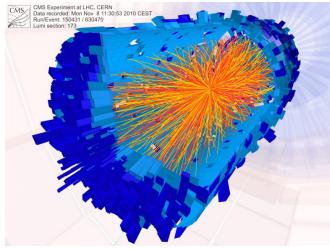
Science enabled by technology

Focus and challenges


Anticipated large-scale facilities

Matter and the Universe

LHC, HL-LHC (ATLAS, CMS, ALICE) FAIR (APPA, CBM/HADES, NUSTAR, PANDA) Pierre Auger Observatory IceCube, PINGU KATRIN Edelweiss, EURECA/SuperCDMS H.E.S.S., MAGIC, VERITAS, CTA


From Matter to Materials and Life

European XFEL PETRA III, FLASH BESSY, BESSY^{VSR} ANKA ESS

Cutting-edge detectors are needed for all facilities and for all science fields in "Matter"

Example: LHC tracker upgrades

How to deal with ~400 billion tracks/second ?

- five- to tenfold increase in track density and thus channels number
- massive power distribution and cooling challenge
- tenfold increase in radiation levels
- Need a first level trigger decision within ~6 μs to do the science.

We are close to the experiments and the science. Detectors and technologies are **not** available off-the-shelf.

How to cope with these challenges?

Successful detector instrumentation demands:

- Deep understanding of underlying physics principles
- Broad technological expertise and multidisciplinary approaches
- Access to sophisticated and expensive technological processes
- Experience to combine technological building blocks into complex systems
- Understanding of the science detectors will deliver
- Creativity and originality

Detector technology and systems (DTS)

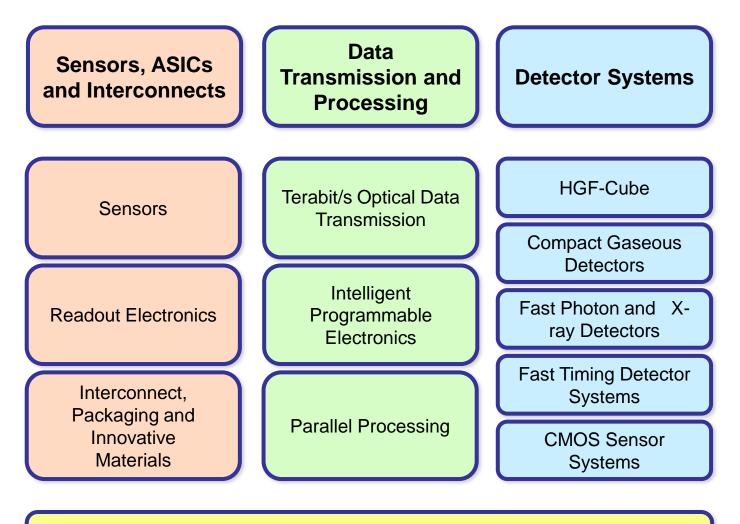
• 5 Helmholtz centers/institutes

- Demonstrated history in detector conception, design and delivery
- Multi-disciplinary teams of scientists, engineers and technicians
- Access to major technical facilities and infrastructures
- Well-embedded in international instrumentation community and experimental collaborations
- Numerous national and international leadership positions

DTS is an ambitious attempt to exploit synergies between centers *and* disciplines.

Philosophy and choices

For "best value for money", we were guided by:


- Which are the key technologies to enable the science?
- Which detector types offers the highest science return?

 Where are synergies largest and where is collaboration most rewarding?

 Where is DTS world-leading and where should its technical portfolio be enhanced?

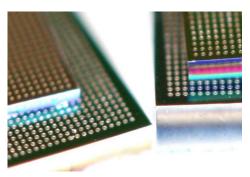
Topic structure

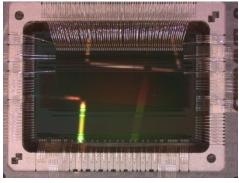
Networking, Outreach and Applications beyond "Matter"

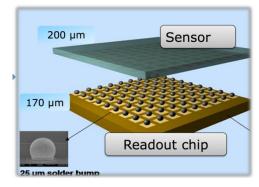
HELMHOLTZ ASSOCIATION

Page 9

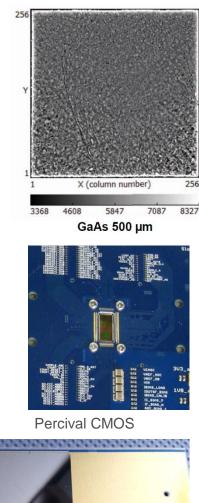
Sensors, ASICs and Interconnects

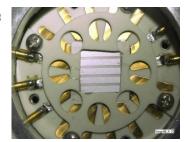

Objectives:


- technologies for unprecedented efficiency, resolution and fluences
- mass- and edge-less detectors
- transition from millions to billions of pixels


Challenges:

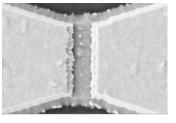
- extreme environmental requirements
- extreme integration density and functionality
- analog design for shrinking transistor size
- transition from hybrid pixels to 3D and monolithic technologies





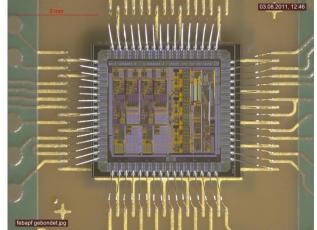
Competence and breadth in sensors

- Our sensor portfolio ranges from CdZnTe, diamond, GaAs, Ge, Si to cryogenic YBCO sensors.
- We host and have access to unique irradiation facilities at DESY, GSI, KIT.
- Our sensor specialists are driving the field and hold key positions in various experiments.


Helmholtz cube with CdTe and GaAs

Diamond on Iridium 962

GEM-TPC



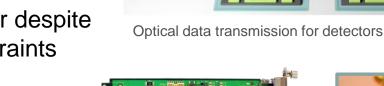
Cryogenic YBCO

Sharing of expensive technologies

- Advances in microelectronics will enable detectors of unprecedented functionality.
- Custom microchips (ASICs) are a must.
- However costs for modern IC technology (< 65 nm CMOS, 3D, etc.) become prohibitive.
 Design process is getting involved and lengthy.

=> We combine forces, share designs and submissions, develop common building blocks between DESY, FZJ, GSI and KIT.

=> We strengthen overall expertise by creating a new ASIC design group at FZJ and a new ASIC professorship at KIT.


Data Transmission and Processing

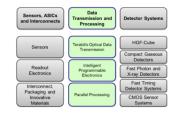
Objectives:

 Coping with unprecedented detector data rates and volumes

Challenges:

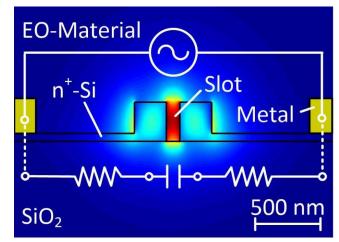
- Moving electronic intelligence (FPGAs) closer to detector despite radiation and power constraints
- Tb/s optical links for data transmission out of detector volume
- Innovative DAQ and trigger architectures.
- Detector-related advanced algorithms and computing.

Lase

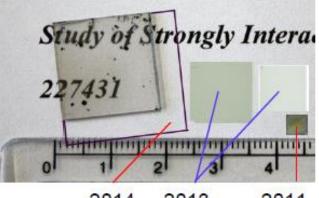


Helmholtz MTCA.4 AMC

Picosecond sampling



Original and high-gain research


- Our portfolio includes selected high-risk/high gain elements
- We adapt technologies from elsewhere (e.g. telecommunication) to detectors
- We support others moving from prove-of-concept to production systems

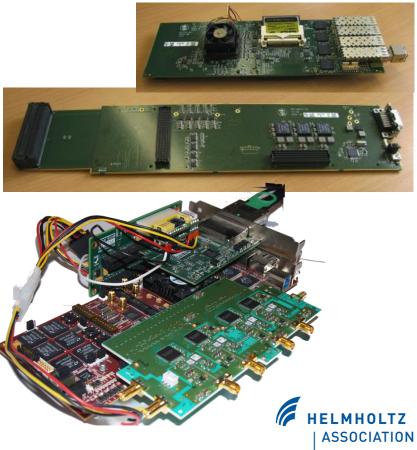
Example 1: Electro-Optical-Modulation (see talk of C. Koos)

Example 2: Large-area diamond detectors (University Augsburg: Diamond-on-Irridium)

Principle: Electro-Optical-Modulation

201420132011DOI samples produced in Augsburg

High-tech systems at fast R&D cycles


- Long lead times are a nuisance and costly
- Our approach is: modular frameworks, common platforms and synergetic collaboration

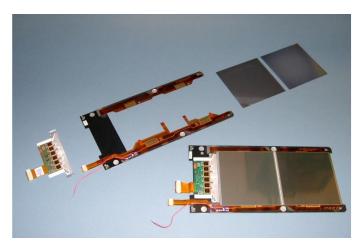
Example 1: Readout for HGF cube

Readout, ADC, 10GbE links

Example 2: UFO High-throughput DAQ framework

High speed detectors, FPGA, PCIe links, GPUs

Detector Systems


Sensors, ASICs and Interconnects	Data Transmission and Processing	Detector Systems
Sensors	Terabit/s Optical Data Transmission	HGF-Cube
		Compact Gaseous Detectors
Readout Electronics	Intelligent Programmable Electronics	Fast Photon and X- ray Detectors
Interconnect, Packaging and Innovative Materials	Parallel Processing	Fast Timing Detector Systems
		CMOS Sensor Systems

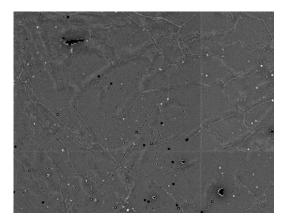
Objectives:

 Demonstrate cutting-edge technologies in complex, functional and scalable systems

Challenges:

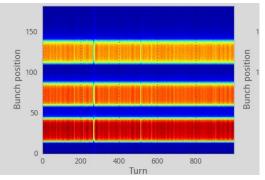
- Need to be selective
- Find balance between systems ready for use and prototypes
- Be ambitious while avoiding blue sky research

Smart tomography camera

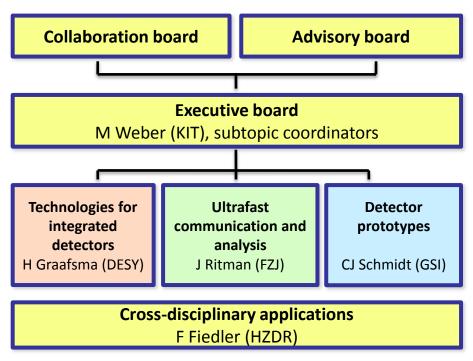


Demonstrators for science

 We aim to develop modular demonstrator systems ready for use at beam line or test beam.


Example 1: Helmholtz cube Image with CdTe sensor

Example 2: Beam diagnostics with superconducting THz sensor



Organisation

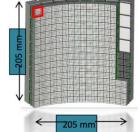
- Precursor of DTS was established in 2012.
- Since then, we have a lean but proven organisational structure.
- Experienced subtopic coordinators are assigned and have been active since 2012.
- Goals, milestones and responsibilities are well-defined.

 We are, however, prepared to accommodate the unexpected and to react to opportunities not obvious today.

ASSOCIATION

Page 19

From Helmholtz to Universities and Society


- Close collaboration with many major research centers and universities
 - within experiments
 - through Helmholtz Alliances (HAP, Terascale) and "MUTLink"
- Topical workshops
- WE Heraeus seminar
- Applications in other field
- Support of spin-offs / industry

Marc Weber

Solenoid experiment at

CERN's LHC

n a n d a

image reconstruction for medicine and engineering" Dresden, Germany, 10. - 12.09.2012 HZDR

European

Helmholtz Alliance

PHYSICS

AT THE

HELMHOLTZ

Alliance for Astroparticle Physics

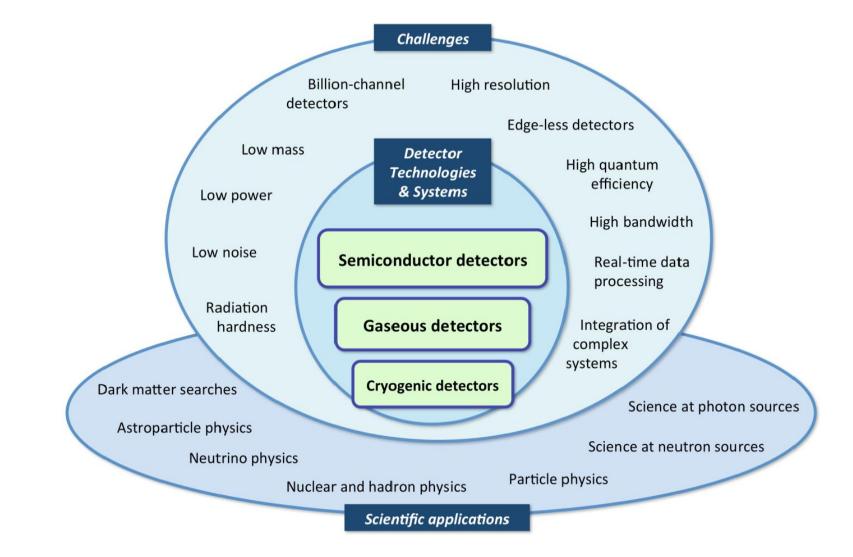
First topical workshop within the framework of the Helmholtz portfolio project "Detector technologies and systems platform"

http://indico.scc.kit.edu/indico/event/ws_tomography

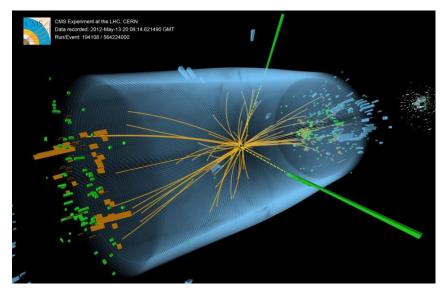
Summary

- "Detector technology and systems" is fully aligned with the strategy of "Matter"
- DTS raises the level of cooperation between the HGF center and partners to a new level

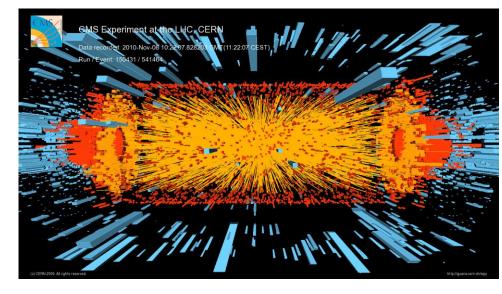
We believe:


- to have compiled a coherent research portfolio that fits our competences and scientific needs
- that DTS will be a major player in the international community
- that DTS will be a leader in shaping detector systems of unprecedented performance and complexity for the large-scale facilities of tomorrow.

Detector challenges in "Matter" are extreme



Our detectors and technologies are not available off-the-shelf.



Marc Weber

Vom LHC zum High-Luminosity-LHC

p-p-Kollisionen: ~ 1000 Spuren/Ereignis

Pb-Pb –Kollisionen: ~ 10000 Spuren/Ereignis \triangleq HL-LHC

- LHC sollte > 20 Jahre Daten liefern
- statistische Messfehler sinkt nur mit $1/\sqrt{N}$
- daher Umbau des LHC in verschiedenen Phasen

