

Concepts and technologies for ultra-short beams

A.-S. Müller for the sub-topic 3 participants DESY, FZJ, HZB, HZDR, KIT

version 23.2.2014 (H. Schlarb, M. Gensch, ASM)

Sub-topic 3 in short...

... the hunt for a photon scientist's dream beam ...

ultra-short pulse lengths

Sub-topic 3 within ARD

Cooperation with German universities, international cooperation partners and industry

Sub-topic 3 within ARD

Science with short pulses

- Short pulses of electrons and photons (X-ray to THz)
- Applications include
 - ultra-short pulse spectroscopy to study
 - catalytic reactions
 - phase transitions in solids
 - coherent imaging to:
 - make the molecular movie
 - extend protein crystallography to small crystals and individual molecules
 - follow nonlinear dynamics on the nanoscale

ASSOCIATION

Challenges & concepts

- Short-pulse accelerators
 - tailored THz mid-IR pulses with high peak and average power
 - fully coherent XUV and X-ray light with (sub-) fs pulse duration
 - injectors to plasma wakefield accelerators (
 -> ST4)
- Short-pulse beams require
 - precise and fast controls with high demands on diagnostics and instrumentation (

 DTS)
 - a deep understanding of the complex beam dynamics
 - careful numerical simulations benchmarked by experimental results
- Activities structured into three major research areas
 - beam dynamics & photon sources
 - ps-fs beam diagnostics
 - stability, controls & synchronization

Our sub-topic at work...

strong emphasis on

- education and exchange of technology & people
- sharing of test facilities (free access for students/young researchers)
- Information exchange / decision taking in topical workshops

Our sub-topic at work...

strong emphasis on

- education and exchange of technology & people
- sharing of test facilities (free access for students/young researchers)
- Information exchange / decision taking in topical workshops

Beam dynamics & photon sources - achievements

Beam dynamics & Photon Sources

Short bunches in linear accelerators

Coh. radiation & high fields in storage rings

Custom beams: bunch shape manipulation

Advanced photon sources development

Iong. phase space manipulation in storage rings

Rev. Accl. Sci. Tech., (03)165 (2010)

world-wide first fully synch.
 THz pump X-ray probe facility

Nature Photon. 3(2009), 523 Nature Photon. 5(2011), 162

 tape stacked undulator development (HTS)

T. Holubek et al., IEEE Trans. on Appl. Supercond. 4602204 Vol. 23-3 (2013)

Beam dynamics & photon sources - goals

por de la comparación de la co

- Precise modeling of collective instabilities
 - understand and control underlying physics processes

- Femtosecond control of longitudinal bunch form
 - emittance improvement by factor > 2
 - femtosecond pulse compression

High charge short bunches for multi-user operation in circular accelerators

→ stable user operation with ultra-short bunches

ps-fs beam diagnosticsachievements

ps-fs beam

diagnostics

Time domain

Frequency domain

Electron beams

Photon beams

N. Hiller, PhD Thesis (2013)

Iow charge electron bunch arrival time measurements at quasi-cw accelerators

C. Kaya et al., Appl. Phys. Lett. (2012)

ultra-fast detectors & high data throughput DAQ systems

- opens new window to beam dynamics
 DTS
- P. Thoma et al., Appl. Phys. Lett. 101, 142601 (2012)

0.4

PAGE 11

ps-fs beam diagnostics - goals

Online femtosecond arrival time diagnostics

electron and photon arrival monitors suitable for low charge and high repetition rate

Online femtosecond bunch profile diagnostics

- frequency domain approaches
- laser based monitor systems

► High data rate detector systems for high repetition rate accelerators

high speed 1D and 2D beam monitoring systems for fast transient phenomena

strong connection to sub-topic 4 and DTS

Stability, controls & synchronization

RF stabilization to femtosecond optical reference

T. Lamb, IBIC 2013

Stability, controls & synchronization

- Optical synchronization with femtosecond accuracy
 - → two approaches: accuracy vs cost efficiency
- Modern crate system MicroTCA.4 for precision controls in accelerators
 - \rightarrow establish technology, make us of high speed detectors \rightarrow DTS
 - → adapted software & firmware to specific facility control architecture

- Establish femtosecond RF controls for normal and sc accelerators
 - → precision phase and amplitude stability for ps-fs beam controls
 - typical goals 1..10fs (depending on facility layout)
- Seeding at XUV wavelength at FLASH and DELTA established

Available test facilities

development and testing of ultra-

- complementary infrastructures
- preparing the technology for next generation accelerators

Test facilities & outlook

Summary

- Short electron & photon pulses
 - enable the world-leading research in the MML program (e.g. FLASH, X-FEL)
- Short-pulse research in ARD aims at:

 - understanding of the beam dynamics
 - complimentary test facilities
- Sub-topic 3 developments have strong impact on:
 - plasma acceleration research -> ST4
 - SRF developments → ST1
 - future user facilities → MML & MU

Paving the way for the future

Backup slides

Core test facilities

TELBE (THz Electron Linac for beams with high **B**rilliance and low **E**mittance):

- test facility for quasi-cw electron beams
- pC to 1nC bunch charge
- Europe's only quasi-cw electron beams with repetition rate of up to 13 MHz

PITZ (Photo Injector Test Facility at the DESY location in Zeuthen):

- test facility for electron beams in the burst mode
- exact same burst mode pattern as FLASH and European XFEL
- unique photo-injector laser which for longitudinal bunch shaping
- transverse deflecting cavity

FLUTE (Ferninfrarot Linac- Und TestExperiment):

- test facility for single-shot diagnostics
- few pC to 3 nC bunch charge
- repetition rate of 10 Hz

nELBE

on bunches electron-laser

interaction

- achieve bunch lengths down to 1 fs
- diagnostics & dynamics for future plasma wakefield injectors

TELBE

plasma cell

photo gun

ASSOCIATION

Funding and research areas

Research areas

beam dynamics & photon sourcesps-fs beam diagnostics

stability, controls & synchronization

Funding and work packages

Work packages

ST3: ps-fs electron and photon beams

- Precise modelling of collective instabilities
- Femtosecond control of longitudinal bunch form
 Beam studies with high charge (circular acc.)
- Online fs arrival diagnostics
- Online fs bunch profile diagnostics
- High data rate fast beam monitoring detectors
- uTCA high speed precision control systems
 - Fs RF control systems
- Optical synchronisation with fs accuracy
- Seeding at short wavelength at FLASH and DELTA

