Programme Matter and Technologies

Beam dynamics of short bunch operation of BESSY VSR with sc rf systems

ARD-ST3 Picosecond and Femtosecond Electron and Photon Beams

Martin Ruprecht, HZB

Present short bunch mode:

- 3 ps (rms) bunchs at low current

From BESSY II to BESSY VSR

A Variable Pulse Length Storage Ring

Bunch length vs. Current scaling

HOMs drive coupled bunch instabilities (CBIs)

Impedance thresholds calculated for BESSY II with BERLinPro cavity model

<u>Counter measures:</u>

- Adjust optics parameters (limited!)
- Landau damping
- Chromaticity
- Feedback

al., SRF 2011, p.262):

- Amplitude jitter < $1.0 \cdot 10^{-4}$
- Phase jitter < 0.02 deg
- Measured spectrum applied in *elegant* simulation
- Estimate limits: 10 x jitter
- Applied on 1.75 GHz cavity

spectrum none σ_t σ_{δ} σ_t σ_{δ} σ_t σ_{δ} x 10.34 ps8.0·10 ⁻⁴ 1.0 ps7.0·10 ⁻⁴ 9.8 ps6.9·10	noise	300 fs bunch		1 ps bunch		10 ps bunch	
none 0.33 ps 8.5·10 ⁻⁴ 1.0 ps 7.1·10 ⁻⁴ 9.8 ps 6.9·10 x 1 0.34 ps 8.0·10 ⁻⁴ 1.0 ps 7.0·10 ⁻⁴ 13 ps 9.3·10	spectrum	σ_{t}	σ_{δ}	σ_{t}	σ_{δ}	σ_{t}	σ_{δ}
x 1 0.34 ps 8.0·10 ⁻⁴ 1.0 ps 7.0·10 ⁻⁴ 13 ps 9.3·10	none	0.33 ps	8.5·10 ⁻⁴	1.0 ps	7.1·10 ⁻⁴	9.8 ps	6.9·10 ⁻⁴
	x 1	0.34 ps	8.0·10 ⁻⁴	1.0 ps	7.0·10 -4	13 ps	9.3·10 ⁻⁴
x 10 1.0 ps 19·10 ⁻⁴ <mark> 1.0 ps 7.0·10⁻⁴ 31 ps 26·10⁻</mark>	x 10	1.0 ps	19·10 -4	1.0 ps	7.0·10 -4	31 ps	26·10 ⁻⁴

Expected jitter not critical!

M. Ruprecht et al., IPAC 2013, Shanghai, China

Discussion and perspective

BESSY VSR: New domain for short pulses in storage rings; scheme also in discussion with SLAC ACCELERATOR

Development of tracking software:

- Particle-impedance interaction in 6D tracking (phasor scheme)
- Nonlinearities
- Many particles per bunch
- Transient beam loading

0.1 20

Bunch motion in time domain (60 out of 400 bunches); Fast growing CBI (*elegant* simulation)

Resonator voltage induced by point charge

- Study of beam dynamics is ongoing, cooperation with SOLEIL
- HOM driven coupled bunch instabilities need to be evaluated
 - Study of beam dynamics

 Countermeasures (Landau damping, feedback) need to be evaluated \rightarrow simulations and measurements planed

Key publications: ➢Proceedings of the BESSY VSR - Workshop "The Variable pulse length Synchrotron Radiation source" 14.10. - 15.10. 2013, Berlin. ≻G. Wüstefeld et al., 'Simultaneous Long and Short Electron Bunches in the BESSY II Storage Ring', IPAC 2011, San Sebastian, Spain, 2011. >M. Ruprecht et al., talk 'Single Particle Tracking for Simultaneous Long and Short Electron Bunches', IPAC 2013, Shanghai, China, 2013.

