

Ultra-fast data acquisition system for ps – fs beam diagnostic

IPE: M. Caselle, S. Cilingaryan, A. Kopmann, M. Schleicher, M. Vogelgesang, M. Weber

IMS: J. Raasch, S. Wuensch, M. Siegel

LAS – ANKA: M. Brosi, V. Judin, A.-S. Müller, N. J. Smale, J. Steinmann

2th ARD ST3 Workshop: fs-ps electron and photon beams, 26-27 February 2014 - HZDR

Detector technology and systems

Requirements for CSR measurements

To detect and study of the emission characteristics of CSR in the THz range → requires very fast detector operating in a spectrum range of hundred GHz -> Terahertz

IR1 - ANKA

Cryogenic detectors:

- ✓ HEB (niobium nitride detectors)
- ✓ YBCO (Yttrium barium copper oxide)

Room temperature detectors:

✓ Zero Biased Schottky Diode @ different spectrum ranges (200, 400 GHz ..)

Picosecond time resolution → Very wideband electronic

Turn-to-turn & bunch-to-bunch measurements of CSR with high energy & temporal resolutions

Requirements for CSR measurements

To detect and study of the emission characteristics of CSR in the THz range → requires very fast detector operating in a spectrum range of hundred GHz -> Terahertz

Cryogenic HEB detector IR1 - ANKA

Cryogenic detectors:

- ✓ HEB (niobium nitride detectors)
- ✓ YBCO (Yttrium barium copper oxide)

Room temperature detectors:

 Zero Biased Schottky Diode @ different spectrum ranges (200, 400 GHz ..)

Picosecond time resolution → Very wideband electronic

Turn-to-turn & bunch-to-bunch measurements of CSR with high energy & temporal resolutions

What about readout electronic and acquisition system ?

CSR – Readout system and requirements

- Incoming pulse @ 500MHz (ANKA RF system)
- > Turn-to-turn & bunch-to-bunch CRS measurements (minutes/hours)
- Wideband DC- 50/60 GHz

CSR – Readout system and requirements

- Incoming pulse @ 500MHz (ANKA RF system)
- Turn-to-turn & bunch-to-bunch CRS measurements (minutes/hours)
- Wideband DC- 50/60 GHz

Fast Pulse Sampling board (FPS board)

Performance:

- ✓ Minimum sampling time: 3 psec →
- >300GS/s
- √ 12 bit ADC resolution
- ✓ Configurable for the readout of up to 4 ultra-fast detectors in parallel

FPS board: characteristic & performance

ADC characterization with square waveform @ 500 MHz

- ✓ Bipolar analog signal,
- ✓ Wide dynamical range
- ✓ High linearity
- ✓ ADC noise < 1mV</p>
- ✓ <u>Total time jitter</u> SrdDev < 1.7 psec

- PCB 10 layers metal stuck-up (Roger 4003), analog & digital layers/circuitries → fully decoupled
- ➤ Fully differential circuitries (analog and clock distribution) → to reject the noise conditions, thermal & voltage oscillations
- ▶ Layout design for RF/Microwave applications: via fences, guard ring → to avoid the cross-talk and EMI

Wideband LNA (Low Noise Amplifier) & power splitter

MCM-D technology, new PCB materials for microwave/RF design, MMIC based on GaAs technology. **Flat gain: 12 dB, from DC -48 GHz**

Wideband power splitter

High-throughput FPGA architecture

- ✓ PCIe-Bus Master DMA readout architecture operating @ 32Gb/s [with 8 lanes PCIe @ Gen2] → DMA detals
- ✓ Multi-port high speed DDR3 interface @ 51Gb/s
- ✓ PCI Express/DMA Linux 32-64 bits driver
- ✓ Integration in the parallel GPU computing framework

Real-time GPU data analysis

40.000 turns

Real-time GPUs data analysis

- Fast pulse reconstruction with "Gaussian shape" by GPU
- Fast real-time FFT both amplitude & time oscillations
- Histograms (buckets, turn, etc..)

Turn-to-turn & bunch-to-bunch - long observation time.

- Graphic User Interface
- Board control & calibration routines
 - See M. Brosi's talk
 "Analysis of CSR multibunch studies"

Multi-bunches environments

A spectrometer for single shot electro-optical bunch

length measurements

See N. Hiller's talk, "Electro-optic sampling for electron bunch diagnostic @ ANKA and FLUTE"

A spectrometer for single shot electro-optical bunch

length measurements

See N. Hiller's talk, "Electro-optic sampling for electron bunch diagnostic @ ANKA and FLUTE"

Spectrometer requirements:

- 256/512 InGaAs pixels linear array
- Frame rate of Mfps (resp. ANKA → 2.7Mfps)

Available sensor & front-end electronics on the market:

- ☐ Xlin 1.7: 512,
- ANDANTA I DA
- Hamamatsu G12231
- ...
- Goodrich SU1024LE-1.7

- 1024 pixels
- 512 pixels
- 1024 pixels

1024 pixels

@ 97Kfps

@ 40kfps

@ 97Kfps

@ 123 kfps

Developing of a 512 (InGaAs) pixel linear array with a continuous turn-to-turn bunch length measurement in the range of Mfps

New spectrometer concept

Solution 1: FEE - GOTTHARD - PSI (Gain Optimizing microsTrip sysTem with Analog ReaDout) → charge integrating readout - IBM 0.13um for XFEL strip-detectors

Calculated frame rate: > 2 Mfps @ 512 pixels

Solution 2: FEE - HIPPO - Lawrence Berkeley National Laboratory (High-Speed Image Preprocessor with Oversampling) → charge sensitive amplifier- 65 nm for Fast X-ray imaging

➤ Calculated frame rate: 10 Mfps @ 512 pixels

Conclusion & what's next

- ✓ FSP board → tested and qualified with different beam conditions and different detectors (see also M. Brosi's talk)
- ✓ First system will be delivery to ANKA-Terahertz group, this include a main readout box + GPU-DAQ with touch screen monitor for a easy user handling
- ✓ System is configurable to match others synchrotron light sources → fully programmable PLL clock tree and we benefit of advance/customs data analysis in the FPGA side.
- ✓ First prototype of InGaAs spectrometer for the shot electro-optical bunch length measurements operating at several Mfps, will be available the next months

Thank you for your attention

Back up slides

FSP board: Time jitters measurements

Jitter is composed of: both deterministic (DJ) and Gaussian (random) (RJ) content.

Cross talk, EMI radiation, noisy reference plane, Simultaneous Switching Outputs (SSO), etc.

Thermal and shot noise, etc.

NO deterministic component → NO digital crosstalk in the analog circuitries, EMI or SSO, etc..

Total noise time jitter StDev < 1.7 psec

N.B. The time resolution measured on the most advanced ASICs based on CFDs is of the order **of 5 ps rms**.

PCIe-Bus Master DMA readout architecture

- ✓ Bus Master DMA operating with 8lanes PCIe @ Gen2 (250MHz)
- √ Two individual engines for write/read from FPGA (User logic) to PC centre memory
- ✓ IN and OUT FIFO-like interface (for User logic)
- ✓ FIFO used to decouple the time domain between DMA and User custom logic

Comparison (NW-DMA vs. KIT-DMA)

Fast sampling prototype board – time characterization

Fall pulse acquired by equivalent time sampling method (both oscilloscope and sampling prototype board)

(When the pulse occurs, a minimum settable sampling time is added by the delay chip in order to move the sampling time with a minimum time step)

The pulse profile was obtained by 32 samples, one for each delay chip setting.

We recorded the pulse fall time by 30 samples inside 90 ps → a time accuracy of ~ 3 ps

High linearity between the sampling time (set by FPGA) and the real sampling time → Very low deterministic jitter on the board

Picosecond time jitter estimation between bunches

Procedure:

Fast reconstruction of the analog pulse by the 4 samples (FPGA or GPU)

- → Measuring of the peak pulse amplitude
- → Measuring of the time jitter between bunches by the position of the samples in the reconstructed pulse