Bethe Forum

Bonn, 13.06.2014

Classifying orbifolds - technical details

Maximilian Fischer
Technische Universität München, Deutschland

Based on 1209.3906 and 1304.7742
in collaboration with S. Ramos-Sánchez, M. Ratz, J. Torrado and P. Vaudrevange

Outline

Introduction

Orbifolds

Classification

Back to Physics

Results

Strings and compact dimensions

Heterotic string theory is appealing, because ...

- it is a unified theory of gravity and gauge interactions
- it is mathematically restrained and introduces only one new parameter
- it can preserve exactly $N=1$ supersymmetry in four dimensions

However, some mysteries remain ...

Strings and compact dimensions

Heterotic string theory is appealing, because ...

- it is a unified theory of gravity and gauge interactions
- it is mathematically restrained and introduces only one new parameter
- it can preserve exactly $\mathcal{N}=1$ supersymmetry in four dimensions

However, some mysteries remain ...

Strings and compact dimensions

Heterotic string theory is appealing, because ...

- it is a unified theory of gravity and gauge interactions
- it is mathematically restrained and introduces only one new parameter
- it can preserve exactly $\mathcal{N}=1$ supersymmetry in four dimensions

Strings and compact dimensions

Heterotic string theory is appealing, because ...

- it is a unified theory of gravity and gauge interactions
- it is mathematically restrained and introduces only one new parameter
- it can preserve exactly $\mathcal{N}=1$ supersymmetry in four dimensions

However, some mysteries remain ...

- Geometric constructions predict the number of space-time dimensions to be ten
- A simple compactification on a T ${ }^{6}$ preserves too much SUSY
- To compactify, one can go for instance either the Calabi-Yau or the Orbifold way

Strings and compact dimensions

Heterotic string theory is appealing, because ...

- it is a unified theory of gravity and gauge interactions
- it is mathematically restrained and introduces only one new parameter
- it can preserve exactly $\mathcal{N}=1$ supersymmetry in four dimensions

However, some mysteries remain ...

- Geometric constructions predict the number of space-time dimensions to be ten
- A simple compactification on a T^{6} preserves too much SUSY
- To compactify, one can go for instance either the Calabi-Yau or the Orbifold way

Strings and compact dimensions

Heterotic string theory is appealing, because ...

- it is a unified theory of gravity and gauge interactions
- it is mathematically restrained and introduces only one new parameter
- it can preserve exactly $\mathcal{N}=1$ supersymmetry in four dimensions

However, some mysteries remain ...

- Geometric constructions predict the number of space-time dimensions to be ten
- A simple compactification on a T^{6} preserves too much SUSY
- To compactify, one can go for instance either the Calabi-Yau or the Orbifold way

Heterotic compactifications

- We need a six-dimensional compact topological space with SU(3)-holonomy
- Manifolds with this property are called Calabi-Yau
- However, they are very complicated and many properties remain unknown (for some recent progress on the matter, cf. Groot Nibbelink and Ruehle 2014)
- 1985, Dixon et al. proposed a different class of objects \rightarrow orbifolds
Dixon, Harvey, Vafa and Witten 19850

Heterotic compactifications

- We need a six-dimensional compact topological space with SU(3)-holonomy
- Manifolds with this property are called Calabi-Yau
- However, they are very complicated and many properties remain unknown (for some recent progress on the matter, cf. Groot Nibbelink and Ruehle 2014)
- 1985, Dixon et al. proposed a different class of objects \rightarrow orbifolds
Dixon, Harvey, Vafa and Witten 1985b

Heterotic compactifications

- We need a six-dimensional compact topological space with SU(3)-holonomy
- Manifolds with this property are called Calabi-Yau
- However, they are very complicated and many properties remain unknown (for some recent progress on the matter, cf. Groot Nibbelink and Ruehle 2014)
- 1985, Dixon et al. proposed a different class of objects \rightarrow orbifolds
Dixon, Harvey, Vafa and Witten 1985b

Heterotic compactifications

- We need a six-dimensional compact topological space with SU(3)-holonomy
- Manifolds with this property are called Calabi-Yau
- However, they are very complicated and many properties remain unknown (for some recent progress on the matter, cf. Groot Nibbelink and Ruehle 2014)
- 1985, Dixon et al. proposed a different class of objects \rightarrow orbifolds
Dixon, Harvey, Vafa and Witten 1985b

Why orbifolds

- Orbifolds admit an exact CFT description on the world-sheet
- Modular invariance conditions for the partition function can be explicitly stated
- Same for the mass equations

Spectrum
 \Rightarrow whole spectrum (in principle) computable

Pheno
Target orbifolds which preserve $\mathcal{N}=1$ SUSY in four dimensions

Why orbifolds

- Orbifolds admit an exact CFT description on the world-sheet
- Modular invariance conditions for the partition function can be explicitly stated
- Same for the mass equations

Spectrum
\Rightarrow whole spectrum (in principle) computable
Pheno
Target orbifolds which preserve $\mathcal{N}=1$ SUSY in four dimensions

Why orbifolds

- Orbifolds admit an exact CFT description on the world-sheet
- Modular invariance conditions for the partition function can be explicitly stated
- Same for the mass equations

Why orbifolds

- Orbifolds admit an exact CFT description on the world-sheet
- Modular invariance conditions for the partition function can be explicitly stated
- Same for the mass equations

Spectrum

\Rightarrow whole spectrum (in principle) computable
Pheno
Target orbifolds which preserve $\mathcal{N}=1$ SUSY in four dimensions

Why orbifolds

- Orbifolds admit an exact CFT description on the world-sheet
- Modular invariance conditions for the partition function can be explicitly stated
- Same for the mass equations

Spectrum

\Rightarrow whole spectrum (in principle) computable

Pheno

Target orbifolds which preserve $\mathcal{N}=1$ SUSY in four dimensions

Ingredients of an orbifold

Ingredients of an orbifold

Ingredients of an orbifold

Ingredients of an orbifold

Ingredients of an orbifold

Ingredients of an orbifold

Ingredients of an orbifold

$\Downarrow P$

Ingredients of an orbifold

Ingredients of an orbifold

The classification story so far

(excerpt)

- The first paper on orbifolds already classified all Abelian point groups which admit $\mathcal{N}=1$ SUSY in 4D
Dixon, Harvey, Vafa and Witten 1985b
- Abelian orbifolds had been studied quite well, mostly omitting roto-translations and focussing on Lie root lattices

Bailin and Love 1999; Donagi and Faraggi 2004

- $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ orbifolds had been studied extensively with roto-translations - but only $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ Donagi and Wendland 2009
- No thorough classification of all possible geometries had been tried - but it should be possible, right?

The classification story so far

(excerpt)

- The first paper on orbifolds already classified all Abelian point groups which admit $\mathcal{N}=1$ SUSY in 4D
Dixon, Harvey, Vafa and Witten 1985b
- Abelian orbifolds had been studied quite well, mostly omitting roto-translations and focussing on Lie root lattices
- Why is this a bad idea?

Bailin and Love 1999; Donagi and Faraggi 2004

- $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ orbifolds had been studied extensively with
roto-translations - but only $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ Donagi and Wendland 2009
- No thorough classification of all possible geometries had been tried - but it should be possible, right?

The classification story so far

(excerpt)

- The first paper on orbifolds already classified all Abelian point groups which admit $\mathcal{N}=1$ SUSY in 4D
Dixon, Harvey, Vafa and Witten 1985b
- Abelian orbifolds had been studied quite well, mostly omitting roto-translations and focussing on Lie root lattices

```
- Why is this a bad idea?
```

Bailin and Love 1999; Donagi and Faraggi 2004

- $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ orbifolds had been studied extensively with roto-translations - but only $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
Donagi and Wendland 2009
- No thorough classification of all possible geometries had been tried - but it should be possible, right?

The classification story so far

(excerpt)

- The first paper on orbifolds already classified all Abelian point groups which admit $\mathcal{N}=1$ SUSY in 4D
Dixon, Harvey, Vafa and Witten 1985b
- Abelian orbifolds had been studied quite well, mostly omitting roto-translations and focussing on Lie root lattices

```
Why is this a bad idea?
```

Bailin and Love 1999; Donagi and Faraggi 2004

- $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ orbifolds had been studied extensively with roto-translations - but only $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
Donagi and Wendland 2009
- No thorough classification of all possible geometries had been tried - but it should be possible, right?

The classification story so far

(excerpt)

- The first paper on orbifolds already classified all Abelian point groups which admit $\mathcal{N}=1$ SUSY in 4D
Dixon, Harvey, Vafa and Witten 1985b
- Abelian orbifolds had been studied quite well, mostly omitting roto-translations and focussing on Lie root lattices

```
-Why is this a bad idea?
```

Bailin and Love 1999; Donagi and Faraggi 2004

- $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ orbifolds had been studied extensively with roto-translations - but only $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
Donagi and Wendland 2009
- No thorough classification of all possible geometries had been tried - but it should be possible, right?

\Rightarrow Yes it is!

Definition

Let M be a manifold and G a discrete group which acts on M. Then, the quotient $\mathcal{O}=M / G$ has the structure of an orbifold.

In our cases, M will be \mathbb{R}^{6} and G will be a crystallographic space

Definition

Let M be a manifold and G a discrete group which acts on M. Then, the quotient $\mathcal{O}=M / G$ has the structure of an orbifold.

In our cases, M will be \mathbb{R}^{6} and G will be a crystallographic space group.

- Complete definition

Space groups

A space group S is a discrete subgroup of the Euclidean group in \mathbb{R}^{n} which contains n linearly independent translations.

- The elements $g \in S$ have the structure (ϑ, λ), where ϑ is a rotation/reflection and λ a translation: $g \cdot v \equiv \vartheta \cdot v+\lambda$

Augmented matrix notation

Space groups

A space group S is a discrete subgroup of the Euclidean group in \mathbb{R}^{n} which contains n linearly independent translations.

- The elements $g \in S$ have the structure (ϑ, λ), where ϑ is a rotation/reflection and λ a translation: $g \cdot v \equiv \vartheta \cdot v+\lambda$
- Let $h=(\omega, \tau) \in S$; then $h \circ g=(\omega \vartheta, \omega \lambda+\tau)$ Augmented matrix notation

Space groups

A space group S is a discrete subgroup of the Euclidean group in \mathbb{R}^{n} which contains n linearly independent translations.

- The elements $g \in S$ have the structure (ϑ, λ), where ϑ is a rotation/reflection and λ a translation: $g \cdot v \equiv \vartheta \cdot v+\lambda$
- Let $h=(\omega, \tau) \in S$; then $h \circ g=(\omega \vartheta, \omega \lambda+\tau)$

Augmented matrix notation

$$
\begin{gathered}
g=\left(\begin{array}{c|c}
\vartheta & \lambda \\
\hline \mathbf{0} & 1
\end{array}\right) \\
\left(\begin{array}{c|c}
\omega & \tau \\
\hline \mathbf{0} & 1
\end{array}\right) \cdot\left(\begin{array}{c|c}
\vartheta & \lambda \\
\hline \mathbf{0} & 1
\end{array}\right)=\left(\begin{array}{c|c}
\omega \vartheta & \omega \lambda+\tau \\
\hline \mathbf{0} & 1
\end{array}\right)
\end{gathered}
$$

The lattice

- The subset $\Lambda=\{(\mathrm{id}, \lambda)\} \subseteq S$ is called the lattice of the space group.
- In general, for $g=(\vartheta, \lambda) \in S, \lambda$ needs not to be an element of the lattice. Elements of this form are called roto-translations.
- Every lattice Λ defines an equivalence relation on vectors from $\mathbb{R}^{n}: v \approx w: \Leftrightarrow v-w \in \Lambda$.
- The fundamental domain is the unit cell of the lattice, with i. e. a torus $\mathbb{T}:=\mathbb{R}^{n} / \Lambda$.

The lattice

- The subset $\Lambda=\{(\mathrm{id}, \lambda)\} \subseteq S$ is called the lattice of the space group.
- In general, for $g=(\vartheta, \lambda) \in S, \lambda$ needs not to be an element of the lattice. Elements of this form are called roto-translations.
- The fundamental domain is the unit cell of the lattice, with i.e. a torus $\mathbb{T}:=\mathbb{R}^{n} / \Lambda$.

The lattice

- The subset $\Lambda=\{(\mathrm{id}, \lambda)\} \subseteq S$ is called the lattice of the space group.
- In general, for $g=(\vartheta, \lambda) \in S, \lambda$ needs not to be an element of the lattice. Elements of this form are called roto-translations.
- Every lattice Λ defines an equivalence relation on vectors from $\mathbb{R}^{n}: v \approx w: \Leftrightarrow v-w \in \Lambda$.

The lattice

- The subset $\Lambda=\{(\mathrm{id}, \lambda)\} \subseteq S$ is called the lattice of the space group.
- In general, for $g=(\vartheta, \lambda) \in S, \lambda$ needs not to be an element of the lattice. Elements of this form are called roto-translations.
- Every lattice Λ defines an equivalence relation on vectors from $\mathbb{R}^{n}: v \approx w: \Leftrightarrow v-w \in \Lambda$.
- The fundamental domain is the unit cell of the lattice, with i.e. a torus $\mathbb{T}:=\mathbb{R}^{n} / \Lambda$.

The lattice

- The subset $\Lambda=\{(\mathrm{id}, \lambda)\} \subseteq S$ is called the lattice of the space group.
- In general, for $g=(\vartheta, \lambda) \in S, \lambda$ needs not to be an element of the lattice. Elements of this form are called roto-translations.
- Every lattice Λ defines an equivalence relation on vectors from $\mathbb{R}^{n}: v \approx w: \Leftrightarrow v-w \in \Lambda$.
- The fundamental domain is the unit cell of the lattice, with i.e. a torus $\mathbb{T}:=\mathbb{R}^{n} / \Lambda$.

The point group

- For $S=\{(\vartheta, \lambda)\}$, the point group is $P=\{\vartheta\}$.
- In general, P is a discrete subgroup of $O(6)$.
- Λ always is a normal subgroup of $S \Longrightarrow S$ is a semi-direct product iff P is a subgroup of it. Then, $S=P \ltimes \Lambda$.
- In general, one has roto-translations (ϑ, τ) with $\tau \notin \Lambda$!
- In that case, one yields $\mathcal{O}=\mathbb{T} / G$ from the torus by modding out the orbifolding group: $G=\left\langle\left(\vartheta, n_{i} e_{i}\right)\right\rangle$ where $\left(e_{i}\right)_{i \in\{1, \ldots, 6\}}$ is a basis for Λ and $0 \leq n_{i}<1$.

The point group

- For $S=\{(\vartheta, \lambda)\}$, the point group is $P=\{\vartheta\}$.
- In general, P is a discrete subgroup of $\mathrm{O}(6)$.
- Λ always is a normal subgroup of $S \Longrightarrow S$ is a semi-direct product iff P is a subgroup of it. Then, $S=P \ltimes \Lambda$.
- In general, one has roto-translations (ϑ, τ) with $\tau \notin \Lambda$!
- In that case, one yields $\mathcal{O}=\mathbb{T} / \mathrm{G}$ from the torus by modding out the orbifolding group: $G=\left\langle\left(\vartheta, n_{i} e_{i}\right)\right\rangle$ where $\left(e_{i}\right)_{i \in\{1, \ldots, 6\}}$ is a basis for Λ and $0 \leq n_{i}<1$.

The point group

- For $S=\{(\vartheta, \lambda)\}$, the point group is $P=\{\vartheta\}$.
- In general, P is a discrete subgroup of $\mathrm{O}(6)$.
- Λ always is a normal subgroup of $S \Longrightarrow S$ is a semi-direct product iff P is a subgroup of it. Then, $S=P \ltimes \Lambda$.
- In general, one has roto-translations (ϑ, τ) with $\tau \notin \Lambda$!
- In that case, one yields $\mathcal{O}=\mathbb{T} / \mathrm{G}$ from the torus by modding out the orbifolding group: $G=\left\langle\left(\vartheta, n_{i} e_{i}\right)\right\rangle$ where $\left(e_{i}\right)_{i \in\{1, \ldots, 6\}}$ is a basis for Λ and $0 \leq n_{i}<1$.

The point group

- For $S=\{(\vartheta, \lambda)\}$, the point group is $P=\{\vartheta\}$.
- In general, P is a discrete subgroup of $\mathrm{O}(6)$.
- Λ always is a normal subgroup of $S \Longrightarrow S$ is a semi-direct product iff P is a subgroup of it. Then, $S=P \ltimes \Lambda$.
- In general, one has roto-translations (ϑ, τ) with $\tau \notin \Lambda$!
- In that case, one yields $\mathcal{O}=\mathbb{T} / \mathrm{G}$ from the torus by modding out the orbifolding group: $G=\left\langle\left(\vartheta, n_{i} e_{i}\right)\right\rangle$ where $\left(e_{i}\right)_{i \in\{1, \ldots, 6\}}$ is a

The point group

- For $S=\{(\vartheta, \lambda)\}$, the point group is $P=\{\vartheta\}$.
- In general, P is a discrete subgroup of $\mathrm{O}(6)$.
- Λ always is a normal subgroup of $S \Longrightarrow S$ is a semi-direct product iff P is a subgroup of it. Then, $S=P \ltimes \Lambda$.
- In general, one has roto-translations (ϑ, τ) with $\tau \notin \Lambda$!
- In that case, one yields $\mathcal{O}=\mathbb{T} / \mathrm{G}$ from the torus by modding out the orbifolding group: $G=\left\langle\left(\vartheta, n_{i} e_{i}\right)\right\rangle$ where $\left(e_{i}\right)_{i \in\{1, \ldots, 6\}}$ is a basis for Λ and $0 \leq n_{i}<1$.

-

$$
\left(\begin{array}{c}
0 \\
\hline
\end{array} \frac{1}{2} \begin{array}{l}
0 \\
\hline
\end{array} 0\right.
$$

\diamond

Bringing order to chaos

Alice Krige. Picture: http://de.eonline.com

Bringing order to chaos

- For any S, the short exact sequence $\mathbf{0} \rightarrow \Lambda \rightarrow S \rightarrow P \rightarrow \mathbf{1}$ holds. Thus, P maps Λ to itself.
- Consequently, when changing from Euclidean to lattice basis, the point group becomes a subgroup of $G L(n, \mathbb{Z})$.

Let S and S^{\prime} be two space groups of the same degree n. Let P and P^{\prime} be their point groups. They belong to the same

Bringing order to chaos

- For any S, the short exact sequence $\mathbf{0} \rightarrow \Lambda \rightarrow S \rightarrow P \rightarrow \mathbf{1}$ holds. Thus, P maps Λ to itself.
- Consequently, when changing from Euclidean to lattice basis, the point group becomes a subgroup of $\mathrm{GL}(n, \mathbb{Z})$.

Let S and S^{\prime} be two space groups of the same degree n. Let P and P^{\prime} be their point groups. They belong to the same

Bringing order to chaos

- For any S, the short exact sequence $\mathbf{0} \rightarrow \Lambda \rightarrow S \rightarrow P \rightarrow \mathbf{1}$ holds. Thus, P maps Λ to itself.
- Consequently, when changing from Euclidean to lattice basis, the point group becomes a subgroup of $\mathrm{GL}(n, \mathbb{Z})$.

Let S and S^{\prime} be two space groups of the same degree n. Let P and P^{\prime} be their point groups. They belong to the same ...

[^0]
Bringing order to chaos

- For any S, the short exact sequence $\mathbf{0} \rightarrow \Lambda \rightarrow S \rightarrow P \rightarrow \mathbf{1}$ holds. Thus, P maps Λ to itself.
- Consequently, when changing from Euclidean to lattice basis, the point group becomes a subgroup of $\mathrm{GL}(n, \mathbb{Z})$.

Let S and S^{\prime} be two space groups of the same degree n. Let P and P^{\prime} be their point groups. They belong to the same ...

1. affine class, iff they are isomorphic, i. e. if there is an affine mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $f^{-1} S f=S^{\prime}$.

Plesken and Schulz 2000

Bringing order to chaos

- For any S, the short exact sequence $\mathbf{0} \rightarrow \Lambda \rightarrow S \rightarrow P \rightarrow \mathbf{1}$ holds. Thus, P maps Λ to itself.
- Consequently, when changing from Euclidean to lattice basis, the point group becomes a subgroup of $\operatorname{GL}(n, \mathbb{Z})$.

Let S and S^{\prime} be two space groups of the same degree n. Let P and P^{\prime} be their point groups. They belong to the same ...

1. affine class, iff they are isomorphic, i. e. if there is an affine mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $f^{-1} S f=S^{\prime}$.
2. \mathbb{Z}-class, iff P and P^{\prime} are conjugate in $\operatorname{GL}(n, \mathbb{Z})$, i. e. if there is a matrix $V \in \mathrm{GL}(n, \mathbb{Z})$ such that $V^{-1} P V=P^{\prime}$.

Plesken and Schulz 2000

Bringing order to chaos

- For any S, the short exact sequence $\mathbf{0} \rightarrow \Lambda \rightarrow S \rightarrow P \rightarrow \mathbf{1}$ holds. Thus, P maps Λ to itself.
- Consequently, when changing from Euclidean to lattice basis, the point group becomes a subgroup of $\mathrm{GL}(n, \mathbb{Z})$.

Let S and S^{\prime} be two space groups of the same degree n. Let P and P^{\prime} be their point groups. They belong to the same ...

1. affine class, iff they are isomorphic, i. e. if there is an affine mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $f^{-1} S f=S^{\prime}$.
2. \mathbb{Z}-class, iff P and P^{\prime} are conjugate in $\operatorname{GL}(n, \mathbb{Z})$, i. e. if there is a matrix $V \in \mathrm{GL}(n, \mathbb{Z})$ such that $V^{-1} P V=P^{\prime}$.
3. Q-class, iff P and P^{\prime} are conjugate in $\mathrm{GL}(n, \mathbb{Q})$, ie. if there is a matrix $V \in \mathrm{GL}(n, \mathbb{Q})$ such that $V^{-1} P V=P^{\prime}$.

Plesken and Schulz 2000

Form spaces

- The space of invariant forms, or short the form space of P, is

$$
\begin{equation*}
\mathcal{F}(P)=\left\{F \in \mathbb{R}_{\text {sym }}^{n \times n} \mid \forall p \in P: p^{T} F p=F\right\} . \tag{1}
\end{equation*}
$$

- Point groups P and P^{\prime} belong to the same \mathbb{Z}-class, iff $\exists V \in \mathrm{GL}(n, \mathbb{Z})$, such that $V^{-1} P V=P^{\prime}$
- V lying in $\operatorname{GL}(n, \mathbb{Z})$ implies that lattice vectors get mapped to lattice vectors.
- \Rightarrow space groups in the same \mathbb{Z}-class possess the same lattice (they share the same form space \mathcal{F}).

Form spaces

- The space of invariant forms, or short the form space of P, is

$$
\begin{equation*}
\mathcal{F}(P)=\left\{F \in \mathbb{R}_{\text {sym }}^{n \times n} \mid \forall p \in P: p^{T} F p=F\right\} \tag{1}
\end{equation*}
$$

- Point groups P and P^{\prime} belong to the same \mathbb{Z}-class, iff $\exists V \in \mathrm{GL}(n, \mathbb{Z})$, such that $V^{-1} P V=P^{\prime}$
- V lying in $\mathrm{GL}(n, \mathbb{Z})$ implies that lattice vectors get mapped to lattice vectors.
- \Rightarrow space groups in the same \mathbb{Z}-class possess the same lattice (they share the same form space \mathcal{F}).

Form spaces

- The space of invariant forms, or short the form space of P, is

$$
\begin{equation*}
\mathcal{F}(P)=\left\{F \in \mathbb{R}_{\mathrm{sym}}^{n \times n} \mid \forall p \in P: p^{T} F p=F\right\} \tag{1}
\end{equation*}
$$

- Point groups P and P^{\prime} belong to the same \mathbb{Z}-class, iff $\exists V \in \mathrm{GL}(n, \mathbb{Z})$, such that $V^{-1} P V=P^{\prime}$
- V lying in $\operatorname{GL}(n, \mathbb{Z})$ implies that lattice vectors get mapped to lattice vectors.
$-\Rightarrow$ space groups in the same \mathbb{Z}-class possess the same lattice
(they share the same form space \mathcal{F}).

Form spaces

- The space of invariant forms, or short the form space of P, is

$$
\begin{equation*}
\mathcal{F}(P)=\left\{F \in \mathbb{R}_{\text {sym }}^{n \times n} \mid \forall p \in P: p^{T} F p=F\right\} . \tag{1}
\end{equation*}
$$

- Point groups P and P^{\prime} belong to the same \mathbb{Z}-class, iff $\exists V \in \mathrm{GL}(n, \mathbb{Z})$, such that $V^{-1} P V=P^{\prime}$
- V lying in $\mathrm{GL}(n, \mathbb{Z})$ implies that lattice vectors get mapped to lattice vectors.
- \Rightarrow space groups in the same \mathbb{Z}-class possess the same lattice (they share the same form space \mathcal{F}).

Carat \& CrystCat

Plesken and Schulz 2000

- Carat ("Crystallographic Algorithms And Tables") is a software suite designed to solve crystallographic problems in dimensions up to six
- It can be accessed through the UNIX-shell, i. e. no programming language must be learned
- CrystCat is an interface to CARAT for the GAP system

Carat \& CrystCat

Plesken and Schulz 2000

- Carat ("Crystallographic Algorithms And Tables") is a software suite designed to solve crystallographic problems in dimensions up to six
- It can be accessed through the UNIX-shell, i.e. no programming language must be learned
- CrystCat is an interface to CARAT for the GAP system

Carat \& CrystCat

Plesken and Schulz 2000

- Carat ("Crystallographic Algorithms And Tables") is a software suite designed to solve crystallographic problems in dimensions up to six
- It can be accessed through the UNIX-shell, i.e. no programming language must be learned
- CrystCat is an interface to CARAT for the GAP system

Carat \& CrystCat

Plesken and Schulz 2000

- Carat ("Crystallographic Algorithms And Tables") is a software suite designed to solve crystallographic problems in dimensions up to six
- It can be accessed through the UNIX-shell, i.e. no programming language must be learned
- CrystCat is an interface to CARAT for the GAP system

CARAT provides...

- a full catalogue of \mathbb{Q}-classes up to degree 6
- Routines for splitting \mathbb{Q} - to \mathbb{Z} - and into affine classes
- Normalizers, Form spaces, Bravais groups and Crystal families

Carat \& CrystCat

Plesken and Schulz 2000

- CARAT ("Crystallographic Algorithms And Tables") is a software suite designed to solve crystallographic problems in dimensions up to six
- It can be accessed through the UNIX-shell, i. e. no programming language must be learned
- CrystCat is an interface to CARAT for the GAP system

CARAT provides...

- a full catalogue of \mathbb{Q}-classes up to degree 6
- Routines for splitting Q- to \mathbb{Z} - and into affine classes
- Normalizers, Form spaces, Bravais groups and Crystal families

Carat \& CrystCat

Plesken and Schulz 2000

- Carat ("Crystallographic Algorithms And Tables") is a software suite designed to solve crystallographic problems in dimensions up to six
- It can be accessed through the Unix-shell, i. e. no programming language must be learned
- CrystCat is an interface to CARAT for the GAP system

Carat provides...

- a full catalogue of \mathbb{Q}-classes up to degree 6
- Routines for splitting \mathbb{Q} - to \mathbb{Z} - and into affine classes
- Normalizers, Form spaces, Bravais groups and Crystal families

Technical details: inside CARAT

- Skip
i. m. f. groups
- The ultimate building blocks for crystallographic groups are irreducible maximal finite subgroups of $\mathrm{GL}(n, \mathbb{Z})$.
- These are known for low dimensions Plesken and Pohst 1976
- From these, subgroups can be calculated and tested for Q-equivalence; here, some invariants (e. g. crystal family, group order, ...) are helpful
- At present, CARAT does not test properly for \mathbb{Q}-equivalence, but splits into \mathbb{Z}-classes and tests for \mathbb{Z}-equivalence
- This is done by utilising the sublattice algorithm
- Affine extensions are calculated using the Zassenhaus algorithm

Technical details: inside CARAT

, Skip
i. m. f. groups

- The ultimate building blocks for crystallographic groups are irreducible maximal finite subgroups of $\mathrm{GL}(n, \mathbb{Z})$.
- These are known for low dimensions Plesken and Pohst 1976
- From these, subgroups can be calculated and tested for Q-equivalence; here, some invariants (e. g. crystal family, group order, ...) are helpful
- At present, CARAT does not test properly for \mathbb{Q}-equivalence, but splits into \mathbb{Z}-classes and tests for \mathbb{Z}-equivalence
- This is done by utilising the sublattice algorithm
- Affine extensions are calculated using the Zassenhaus algorithm

Technical details: inside CARAT

, Skip
i. m. f. groups

- The ultimate building blocks for crystallographic groups are irreducible maximal finite subgroups of $\mathrm{GL}(n, \mathbb{Z})$.
- These are known for low dimensions Plesken and Pohst 1976
- From these, subgroups can be calculated and tested for Q-equivalence; here, some invariants (e. g. crystal family, group order, ...) are helpful
- At present, CARAT does not test properly for \mathbb{Q}-equivalence, but splits into \mathbb{Z}-classes and tests for \mathbb{Z}-equivalence
- This is done by utilising the sublattice algorithm
- Affine extensions are calculated using the Zassenhaus
algorithm

Technical details: inside CARAT

, Skip
i. m. f. groups

- The ultimate building blocks for crystallographic groups are irreducible maximal finite subgroups of $\mathrm{GL}(n, \mathbb{Z})$.
- These are known for low dimensions Plesken and Pohst 1976
- From these, subgroups can be calculated and tested for Q-equivalence; here, some invariants (e. g. crystal family, group order, ...) are helpful
- At present, Carat does not test properly for \mathbb{Q}-equivalence, but splits into \mathbb{Z}-classes and tests for \mathbb{Z}-equivalence
- This is done by utilising the sublattice algorithm
- Affine extensions are calculated using the Zassenhaus
algorithm

Technical details: inside CARAT

- Skip
i. m. f. groups
- The ultimate building blocks for crystallographic groups are irreducible maximal finite subgroups of $\mathrm{GL}(n, \mathbb{Z})$.
- These are known for low dimensions Plesken and Pohst 1976
- From these, subgroups can be calculated and tested for Q-equivalence; here, some invariants (e. g. crystal family, group order, ...) are helpful
- At present, Carat does not test properly for \mathbb{Q}-equivalence, but splits into \mathbb{Z}-classes and tests for \mathbb{Z}-equivalence
- This is done by utilising the sublattice algorithm
- Affine extensions are calculated using the Zassenhaus
algorithm

Technical details: inside CARAT

- Skip
i. m. f. groups
- The ultimate building blocks for crystallographic groups are irreducible maximal finite subgroups of $\mathrm{GL}(n, \mathbb{Z})$.
- These are known for low dimensions Plesken and Pohst 1976
- From these, subgroups can be calculated and tested for Q-equivalence; here, some invariants (e. g. crystal family, group order, ...) are helpful
- At present, Carat does not test properly for \mathbb{Q}-equivalence, but splits into \mathbb{Z}-classes and tests for \mathbb{Z}-equivalence
- This is done by utilising the sublattice algorithm
- Affine extensions are calculated using the Zassenhaus algorithm

Technical details: inside CARAT

The sublattice algorithm

Opgenorth, Plesken and Schulz 1998
Start with a finite unimodular group $G \leq G L(n, \mathbb{Z})$ and compute G-sublattices of the natural lattice $L_{0}=\mathbb{Z}^{n \times 1}$.

- Preprocessing: take the action of G on L_{0} modulo a prime p which divides $|G|$
- Save the irreducible constituents U of the resulting representation $G \rightarrow G L(n, \mathbb{Z} / p \mathbb{Z})$
- Now keep a list of lattices L (starting with L_{0}) and compute sublattices which are kernels of homomorphisms $\varphi: L \rightarrow U$ for each U obtained as above
- This amounts to solving a set of linear equations over $\mathbb{Z} / p \mathbb{Z}$
- Perform LLL reduction on the resulting lattices
- Circumstance-dependent choice which lattices are to be kept

Technical details: inside CARAT

The sublattice algorithm

Opgenorth, Plesken and Schulz 1998
Start with a finite unimodular group $G \leq G L(n, \mathbb{Z})$ and compute G-sublattices of the natural lattice $L_{0}=\mathbb{Z}^{n \times 1}$.

- Preprocessing: take the action of G on L_{0} modulo a prime p which divides $|G|$
- Save the irreducible constituents U of the resulting representation $G \rightarrow \operatorname{GL}(n, \mathbb{Z} / p \mathbb{Z})$
- Now keep a list of lattices L (starting with L_{0}) and compute sublattices which are kernels of homomorphisms $\varphi: L \rightarrow U$ for each U obtained as above
- This amounts to solving a set of linear equations over $\mathbb{Z} / p \mathbb{Z}$
- Perform LLL reduction on the resulting lattices
- Circumstance-dependent choice which lattices are to be kept

Technical details: inside CARAT

The sublattice algorithm

Opgenorth, Plesken and Schulz 1998

Start with a finite unimodular group $G \leq G L(n, \mathbb{Z})$ and compute G-sublattices of the natural lattice $L_{0}=\mathbb{Z}^{n \times 1}$.

- Preprocessing: take the action of G on L_{0} modulo a prime p which divides $|G|$
- Save the irreducible constituents U of the resulting representation $G \rightarrow \mathrm{GL}(n, \mathbb{Z} / p \mathbb{Z})$
- Now keep a list of lattices L (starting with L_{0}) and compute sublattices which are kernels of homomorphisms $\varphi: L \rightarrow U$ for each U obtained as above
- This amounts to solving a set of linear equations over $\mathbb{Z} / p \mathbb{Z}$
- Perform LLL reduction on the resulting lattices
- Circumstance-dependent choice which lattices are to be kept

Technical details: inside CARAT

The sublattice algorithm

Opgenorth, Plesken and Schulz 1998

Start with a finite unimodular group $G \leq G L(n, \mathbb{Z})$ and compute G-sublattices of the natural lattice $L_{0}=\mathbb{Z}^{n \times 1}$.

- Preprocessing: take the action of G on L_{0} modulo a prime p which divides $|G|$
- Save the irreducible constituents U of the resulting representation $G \rightarrow \mathrm{GL}(n, \mathbb{Z} / p \mathbb{Z})$
- Now keep a list of lattices L (starting with L_{0}) and compute sublattices which are kernels of homomorphisms $\varphi: L \rightarrow U$ for each U obtained as above
- This amounts to solving a set of linear equations over $\mathbb{Z} / p \mathbb{Z}$
- Perform LLL reduction on the resulting lattices
- Circumstance-dependent choice which lattices are to be kept

Technical details: inside CARAT

The sublattice algorithm

Opgenorth, Plesken and Schulz 1998

Start with a finite unimodular group $G \leq G L(n, \mathbb{Z})$ and compute G-sublattices of the natural lattice $L_{0}=\mathbb{Z}^{n \times 1}$.

- Preprocessing: take the action of G on L_{0} modulo a prime p which divides $|G|$
- Save the irreducible constituents U of the resulting representation $G \rightarrow \mathrm{GL}(n, \mathbb{Z} / p \mathbb{Z})$
- Now keep a list of lattices L (starting with L_{0}) and compute sublattices which are kernels of homomorphisms $\varphi: L \rightarrow U$ for each U obtained as above
- This amounts to solving a set of linear equations over $\mathbb{Z} / p \mathbb{Z}$
- Perform LLL reduction on the resulting lattices
- Circumstance-dependent choice which lattices are to be kept

Technical details: inside CARAT

The sublattice algorithm

Opgenorth, Plesken and Schulz 1998

Start with a finite unimodular group $G \leq G L(n, \mathbb{Z})$ and compute G-sublattices of the natural lattice $L_{0}=\mathbb{Z}^{n \times 1}$.

- Preprocessing: take the action of G on L_{0} modulo a prime p which divides $|G|$
- Save the irreducible constituents U of the resulting representation $G \rightarrow \mathrm{GL}(n, \mathbb{Z} / p \mathbb{Z})$
- Now keep a list of lattices L (starting with L_{0}) and compute sublattices which are kernels of homomorphisms $\varphi: L \rightarrow U$ for each U obtained as above
- This amounts to solving a set of linear equations over $\mathbb{Z} / p \mathbb{Z}$
- Perform LLL reduction on the resulting lattices
- Circumstance-dependent choice which lattices are to be kept

Technical details:inside CARAT

The Zassenhaus algorithm

Zassenhaus 1948; Holt and Plesken 1989
Start with a finite unimodular group $G \leq \mathrm{GL}(n, \mathbb{Z})$ and compute affine extensions.

- Compute vector systems $\widetilde{\operatorname{Der}}\left(G, \mathbb{Q}^{n} / \mathbb{Z}^{n}\right)$ consisting of all $v: G \rightarrow \mathbb{Q}^{n}$ that satisfy $(g h) v=(g v) h+h v \bmod \mathbb{Z}^{n}$ for all $g, h \in G$
- Then factor out the submodule $\operatorname{Inn} \operatorname{Der}\left(G, \mathbb{Q}^{n} / \mathbb{Z}^{n}\right)$ consisting of all $v_{w}: G \rightarrow \mathbb{Q}^{n}$ with $g v_{w}=w(1-g)$ for $g \in G$ which is the biggest \mathbb{Q}-subspace of $\operatorname{Der}\left(G, \mathbb{Q}^{n} / \mathbb{Z}^{n}\right)$
- Lastly, decide which vector systems are still equivalent. This boils down to a orbit calculation in the normalizer of G in $G L(n, \mathbb{Z})$

Technical details:inside CARAT

The Zassenhaus algorithm

Zassenhaus 1948; Holt and Plesken 1989
Start with a finite unimodular group $G \leq \mathrm{GL}(n, \mathbb{Z})$ and compute affine extensions.

- Compute vector systems $\widetilde{\operatorname{Der}}\left(G, \mathbb{Q}^{n} / \mathbb{Z}^{n}\right)$ consisting of all $v: G \rightarrow \mathbb{Q}^{n}$ that satisfy $(g h) v=(g v) h+h v \bmod \mathbb{Z}^{n}$ for all $g, h \in G$
- Then factor out the submodule $\operatorname{Inn} \widetilde{\operatorname{Der}}\left(G, \mathbb{Q}^{n} / \mathbb{Z}^{n}\right)$ consisting of all $v_{w}: G \rightarrow \mathbb{Q}^{n}$ with $g v_{w}=w(1-g)$ for $g \in G$ which is the biggest \mathbb{Q}-subspace of $\widehat{\operatorname{Der}\left(G, \mathbb{Q}^{n} / \mathbb{Z}^{n}\right)}$
- Lastly, decide which vector systems are still equivalent. This boils down to a orbit calculation in the normalizer of G in $\operatorname{GL}(n, \mathbb{Z})$

Technical details:inside CARAT

The Zassenhaus algorithm

Zassenhaus 1948; Holt and Plesken 1989

Start with a finite unimodular group $G \leq \mathrm{GL}(n, \mathbb{Z})$ and compute affine extensions.

- Compute vector systems $\widetilde{\operatorname{Der}}\left(G, \mathbb{Q}^{n} / \mathbb{Z}^{n}\right)$ consisting of all $v: G \rightarrow \mathbb{Q}^{n}$ that satisfy $(g h) v=(g v) h+h v \bmod \mathbb{Z}^{n}$ for all $g, h \in G$
- Then factor out the submodule $\operatorname{Inn} \widetilde{\operatorname{Der}}\left(G, \mathbb{Q}^{n} / \mathbb{Z}^{n}\right)$ consisting of all $v_{w}: G \rightarrow \mathbb{Q}^{n}$ with $g v_{w}=w(1-g)$ for $g \in G$ which is the biggest \mathbb{Q}-subspace of $\operatorname{Der}\left(G, \mathbb{Q}^{n} / \mathbb{Z}^{n}\right)$
- Lastly, decide which vector systems are still equivalent. This boils down to a orbit calculation in the normalizer of G in $G L(n, \mathbb{Z})$

How to preserve $\mathcal{N}=1$ SUSY

Theory

- The point group generator is an element of $\mathrm{SO}(6) \approx \mathrm{SU}(4) \nsupseteq \mathrm{SU}(3)$
- Demand exactly one surviving spinor $\Rightarrow \mathrm{SU}(3)$ holonomy
- \Rightarrow At most three independent rotations, two in the Abelian case (coming from the Cartan of $\mathrm{SU}(3)$)

An example

How to preserve $\mathcal{N}=1$ SUSY

Theory

- The point group generator is an element of $\mathrm{SO}(6) \approx \mathrm{SU}(4) \nsupseteq \mathrm{SU}(3)$
- Demand exactly one surviving spinor $\Rightarrow \mathrm{SU}(3)$ holonomy
- \Rightarrow At most three independent rotations, two in the Abelian case (coming from the Cartan of $\mathrm{SU}(3)$)

An example

How to preserve $\mathcal{N}=1$ SUSY

Theory

- The point group generator is an element of $\mathrm{SO}(6) \approx \mathrm{SU}(4) \nsupseteq \mathrm{SU}(3)$
- Demand exactly one surviving spinor $\Rightarrow \mathrm{SU}(3)$ holonomy
- \Rightarrow At most three independent rotations, two in the Abelian case (coming from the Cartan of $\mathrm{SU}(3)$)

How to preserve $\mathcal{N}=1$ SUSY

Theory

- The point group generator is an element of $\mathrm{SO}(6) \approx \mathrm{SU}(4) \supseteq \mathrm{SU}(3)$
- Demand exactly one surviving spinor $\Rightarrow \mathrm{SU}(3)$ holonomy
- \Rightarrow At most three independent rotations, two in the Abelian case (coming from the Cartan of $\mathrm{SU}(3)$)

An example

$\left(\begin{array}{cccccc}\cos (\pi / 3) & -\sin (\pi / 3) & 0 & 0 & 0 & 0 \\ \sin (\pi / 3) & \cos (\pi / 3) & 0 & 0 & 0 & 0 \\ 0 & 0 & \cos (2 \pi / 3) & -\sin (2 \pi / 3) & 0 & 0 \\ 0 & 0 & \sin (2 \pi / 3) & \cos (2 \pi / 3) & 0 & 0 \\ 0 & 0 & 0 & 0 & \cos (\pi) & -\sin (\pi) \\ 0 & 0 & 0 & 0 & \sin (\pi) & \cos (\pi)\end{array}\right)$

How to preserve $\mathcal{N}=1$ SUSY

Representations

Take P as a discrete subgroup of the 6 of $\mathrm{SO}(6) \cong \mathrm{SU}(4)$ and break to $\mathrm{SU}(3)$:

$$
\mathbf{6} \rightarrow \boldsymbol{a} \oplus \boldsymbol{b} \oplus \cdots
$$

Group characters

- $\sigma \rightarrow \bigoplus_{i=1}^{c} n_{i} \rho_{i}$ with $n_{i}=\frac{1}{p \mid} \sum_{g \in p} \chi_{\rho_{i}}(g) \overline{\chi_{\sigma}(g)}$
- Iff $\mathbf{6} \rightarrow \boldsymbol{a} \oplus \bar{a}$ plus, possibly, some singlets, then $P \subsetneq \mathrm{U}(3)$.
- To check $P \subsetneq \mathrm{SU}(3)$, produce explicit matrix representations with GAP and check their determinants.

How to preserve $\mathcal{N}=1$ SUSY

Representations

Take P as a discrete subgroup of the 6 of $\mathrm{SO}(6) \cong \mathrm{SU}(4)$ and break to $\mathrm{SU}(3)$:

$$
\mathbf{6} \rightarrow \boldsymbol{a} \oplus \boldsymbol{b} \oplus \cdots
$$

Group characters

- $\mathbf{6} \rightarrow \oplus_{i=1}^{c} n_{i} \boldsymbol{\rho}_{i}$ with $n_{i}=\frac{1}{|P|} \sum_{g \in P} \chi_{\boldsymbol{\rho}_{i}}(g) \overline{\chi_{\mathbf{6}}(g)}$
- Iff $\mathbf{6} \rightarrow \boldsymbol{a} \oplus \overline{\boldsymbol{a}}$ plus, possibly, some singlets, then $P \subsetneq \mathrm{U}(3)$.
- To check $P \subsetneq \mathrm{SU}(3)$, produce explicit matrix representations with GAP and check their determinants.

Hodge numbers

MF, Ramos-Sanchez and Vaudrevange 2013
Untwisted sector

- Use the three-dimensional representation ρ used in the SUSY-checking

Twisted sectors

Hodge numbers

MF, Ramos-Sanchez and Vaudrevange 2013
Untwisted sector

- Use the three-dimensional representation ρ used in the SUSY-checking
- Then, $\boldsymbol{\rho} \otimes \overline{\boldsymbol{\rho}} \rightarrow h_{\mathrm{U}}^{(1,1)} \mathbf{1} \oplus \cdots$ and $\boldsymbol{\rho} \otimes \boldsymbol{\rho} \rightarrow h_{\mathrm{U}}^{(2,1)} \mathbf{1} \oplus \cdots$

Hodge numbers

MF, Ramos-Sanchez and Vaudrevange 2013
Untwisted sector

- Use the three-dimensional representation ρ used in the SUSY-checking
- Then, $\boldsymbol{\rho} \otimes \overline{\boldsymbol{\rho}} \rightarrow h_{\mathrm{U}}^{(1,1)} \mathbf{1} \oplus \cdots$ and $\boldsymbol{\rho} \otimes \boldsymbol{\rho} \rightarrow h_{\mathrm{U}}^{(2,1)} \mathbf{1} \oplus \cdots$

Twisted sectors

- Construct conjugacy classes $[g]$ of constructing elements of space group elements with fundamental domain on the torus
- If the null-space of g is zero-dimensional, this yields one twisted
27-plet and thus 1 to $h_{\mathrm{T}}^{(1,1)}$
- If the null-space is two-dimensional, this yields one twisted
27-plet and one twisted 27 -plet, thus giving $\left(h_{\mathrm{T}}^{(1,1)}, h_{\mathrm{T}}^{(1,0)}\right)$ of $(1,1)$

Hodge numbers

MF, Ramos-Sanchez and Vaudrevange 2013

Untwisted sector

- Use the three-dimensional representation ρ used in the SUSY-checking
- Then, $\boldsymbol{\rho} \otimes \overline{\boldsymbol{\rho}} \rightarrow h_{\mathrm{U}}^{(1,1)} \mathbf{1} \oplus \cdots$ and $\boldsymbol{\rho} \otimes \boldsymbol{\rho} \rightarrow h_{\mathrm{U}}^{(2,1)} \mathbf{1} \oplus \cdots$

Twisted sectors

- Construct conjugacy classes $[g]$ of constructing elements of space group elements with fundamental domain on the torus
- If the null-space of g is zero-dimensional, this yields one twisted 27-plet and thus 1 to $h_{\mathrm{T}}^{(1,1)}$
- If the null-space is two-dimensional, this yields one twisted 27-plet and one twisted $\overline{27}$-plet, thus giving $\left(h_{\mathrm{T}}^{(1,1)}, h_{\mathrm{T}}^{(1,0)}\right)$ of $(1,1)$

Hodge numbers

MF, Ramos-Sanchez and Vaudrevange 2013

Untwisted sector

- Use the three-dimensional representation ρ used in the SUSY-checking
- Then, $\boldsymbol{\rho} \otimes \overline{\boldsymbol{\rho}} \rightarrow h_{\mathrm{U}}^{(1,1)} \mathbf{1} \oplus \cdots$ and $\boldsymbol{\rho} \otimes \boldsymbol{\rho} \rightarrow h_{\mathrm{U}}^{(2,1)} \mathbf{1} \oplus \cdots$

Twisted sectors

- Construct conjugacy classes $[g]$ of constructing elements of space group elements with fundamental domain on the torus
- If the null-space of g is zero-dimensional, this yields one twisted 27-plet and thus 1 to $h_{\mathrm{T}}^{(1,1)}$
- If the null-space is two-dimensional, this yields one twisted 27-plet and one twisted $\overline{27}$-plet, thus giving $\left(h_{\mathrm{T}}^{(1,1)}, h_{\mathrm{T}}^{(1,0)}\right)$ of $(1,1)$

Fundamental groups

Dixon, Harvey, Vafa and Witten 1985a; Dixon, Harvey, Vafa and Witten 1986; Brown and Higgins 2002

- $\pi_{1}(\mathcal{O})$ measures the "connectedness" of the orbifold
- A non-trivial π_{1} is a prerequisite for non-local GUT breaking schemes
- To compute π_{1}, first generate $\left\{g \in S \mid \exists x \in \mathbb{R}^{6}: g x=x\right\}=F \subsetneq S$ of all elements that leave a point fixed
- Then, $\langle F\rangle$ is a normal subgroup of S
- $\pi_{1}=S /\langle F\rangle$

Fundamental groups

Dixon, Harvey, Vafa and Witten 1985a; Dixon, Harvey, Vafa and Witten 1986; Brown and Higgins 2002

- $\pi_{1}(\mathcal{O})$ measures the "connectedness" of the orbifold
- A non-trivial π_{1} is a prerequisite for non-local GUT breaking schemes
- To compute π_{1}, first generate $\left\{g \in S \mid \exists x \in \mathbb{R}^{6}: g x=x\right\}=F \subsetneq S$ of all elements that leave a point fixed
- Then, $\langle F\rangle$ is a normal subgroup of S
- $\pi_{1}=S /\langle F\rangle$

Fundamental groups

Dixon, Harvey, Vafa and Witten 1985a; Dixon, Harvey, Vafa and Witten 1986; Brown and Higgins 2002

- $\pi_{1}(\mathcal{O})$ measures the "connectedness" of the orbifold
- A non-trivial π_{1} is a prerequisite for non-local GUT breaking schemes
- To compute π_{1}, first generate $\left\{g \in S \mid \exists x \in \mathbb{R}^{6}: g x=x\right\}=F \subsetneq S$ of all elements that leave a point fixed
- Then, $\langle F\rangle$ is a normal subgroup of S

Fundamental groups

Dixon, Harvey, Vafa and Witten 1985a; Dixon, Harvey, Vafa and Witten 1986; Brown
and Higgins 2002

- $\pi_{1}(\mathcal{O})$ measures the "connectedness" of the orbifold
- A non-trivial π_{1} is a prerequisite for non-local GUT breaking schemes
- To compute π_{1}, first generate $\left\{g \in S \mid \exists x \in \mathbb{R}^{6}: g x=x\right\}=F \subsetneq S$ of all elements that leave a point fixed
- Then, $\langle F\rangle$ is a normal subgroup of S

Fundamental groups

Dixon, Harvey, Vafa and Witten 1985a; Dixon, Harvey, Vafa and Witten 1986; Brown and Higgins 2002

- $\pi_{1}(\mathcal{O})$ measures the "connectedness" of the orbifold
- A non-trivial π_{1} is a prerequisite for non-local GUT breaking schemes
- To compute π_{1}, first generate $\left\{g \in S \mid \exists x \in \mathbb{R}^{6}: g x=x\right\}=F \subsetneq S$ of all elements that leave a point fixed
- Then, $\langle F\rangle$ is a normal subgroup of S
- $\pi_{1}=S /\langle F\rangle$

Complete Classification (abelian)

Q-class	\mathbb{Z}-cl.	aff. cl.	\mathbb{Q}-class	\mathbb{Z}-cl.	aff. cl.
\mathbb{Z}_{3}	1	1	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	12	35
\mathbb{Z}_{4}	3	3	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}$	10	41
$\mathbb{Z}_{6}-I$	2	2	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{6}$	2	4
$\mathbb{Z}_{6}-I I$	4	4	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{6}^{\prime}$	4	4
\mathbb{Z}_{7}	1	1	$\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$	5	15
$\mathbb{Z}_{8}-I$	3	3	$\mathbb{Z}_{3} \oplus \mathbb{Z}_{6}$	2	4
$\mathbb{Z}_{8}-I I$	2	2	$\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}$	5	15
$\mathbb{Z}_{12}-I$	2	2	$\mathbb{Z}_{6} \oplus \mathbb{Z}_{6}$	1	1
$\mathbb{Z}_{12}-I I$	1	1			

Complete Classification (abelian)

\mathbb{Q}-class	\mathbb{Z}-cl.	aff. cl.	\mathbb{Q}-class	\mathbb{Z}-cl.	aff. cl.
\mathbb{Z}_{3}	1	1	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	12	35
\mathbb{Z}_{4}	3	3	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}$	10	41
$\mathbb{Z}_{6}-I$	$2(1)$	$2(1)$	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{6}$	2	4
$\mathbb{Z}_{6}-I I$	$4(3)$	$4(3)$	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{6}^{\prime}$	4	4
\mathbb{Z}_{7}	1	1	$\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$	5	15
$\mathbb{Z}_{8}-I$	$3(1)$	$3(1)$	$\mathbb{Z}_{3} \oplus \mathbb{Z}_{6}$	2	4
$\mathbb{Z}_{8}-I I$	2	2	$\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}$	5	15
$\mathbb{Z}_{12}-I$	2	2	$\mathbb{Z}_{6} \oplus \mathbb{Z}_{6}$	1	1
$\mathbb{Z}_{12}-I I$	1	1			

Previous work

These are known in the literature, e. g. Bailin and Love 1999

Complete Classification (abelian)

\mathbb{Q}-class	\mathbb{Z}-cl.	aff. cl.	\mathbb{Q}-class	\mathbb{Z}-cl.	aff. cl.
\mathbb{Z}_{3}	1	1	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	12	35
\mathbb{Z}_{4}	3	3	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}$	10	41
$\mathbb{Z}_{6}-I$	2	2	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{6}$	2	4
$\mathbb{Z}_{6}-I I$	4	4	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{6}^{\prime}$	4	4
\mathbb{Z}_{7}	1	1	$\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$	5	15
$\mathbb{Z}_{8}-I$	3	3	$\mathbb{Z}_{3} \oplus \mathbb{Z}_{6}$	2	4
$\mathbb{Z}_{8}-I I$	2	2	$\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}$	5	15
$\mathbb{Z}_{12}-I$	2	2	$\mathbb{Z}_{6} \oplus \mathbb{Z}_{6}$	1	1
$\mathbb{Z}_{12}-I I$	1	1			

Previous work

Förste et al. missed four lattices, Donagi \& Wendland got almost the correct number of affine classes Förste, Kobayashi, Ohki and Takahashi 2007;
Donagi and Wendland 2009

Complete Classification (abelian)

\mathbb{Q}-class	\mathbb{Z}-cl.	aff. cl.	\mathbb{Q}-class	\mathbb{Z}-cl.	aff. cl.
\mathbb{Z}_{3}	1	1	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	12	35
\mathbb{Z}_{4}	3	3	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}$	10	41
$\mathbb{Z}_{6}-I$	2	2	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{6}$	2	4
$\mathbb{Z}_{6}-I I$	4	4	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{6}^{\prime}$	4	4
\mathbb{Z}_{7}	1	1	$\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$	5	15
$\mathbb{Z}_{8}-I$	3	3	$\mathbb{Z}_{3} \oplus \mathbb{Z}_{6}$	2	4
$\mathbb{Z}_{8}-I I$	2	2	$\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}$	5	15
$\mathbb{Z}_{12}-I$	2	2	$\mathbb{Z}_{6} \oplus \mathbb{Z}_{6}$	1	1
$\mathbb{Z}_{12}-I I$	1	1			

Previous work

To the best of our knowledge, these are new!

Complete Classification (non-abelian)

Q-class	\mathbb{Z}-cl.	aff. cl.	Q-class	\mathbb{Z}-cl.	aff. cl.
S_{3}	6	11	$\mathbb{Z}_{3} \times\left(\mathbb{Z}_{3} \rtimes \mathbb{Z}_{4}\right)$	1	1
D_{4}	9	48	$\mathbb{Z}_{3} \times A_{4}$	3	3
A_{4}	9	15	$\mathbb{Z}_{6} \times S_{3}$	2	4
D_{6}	2	8	$\Delta(48)$	4	8
$\mathbb{Z}_{8} \rtimes \mathbb{Z}_{2}$	6	18	$\mathrm{GL}(2,3)$	1	4
$Q D_{16}$	4	14	$\mathrm{SL}(2,3) \rtimes \mathbb{Z}_{2}$	1	3
$\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}$	5	55	$\Delta(54)$	3	10
$\mathbb{Z}_{3} \times S_{3}$	6	16	$\mathbb{Z}_{3} \times$ SL $(2,3)$	1	2
Frobenius T_{7}	3	3	$\mathbb{Z}_{3} \times\left(\left(\mathbb{Z}_{6} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}\right)$	1	1
$\mathbb{Z}_{3} \rtimes \mathbb{Z}_{8}$	1	1	$\mathbb{Z}_{3} \times S_{4}$	3	3
$\mathrm{SL}^{(2,3)-1}$	4	7	$\Delta(96)$	4	12
$\mathbb{Z}_{4} \times S_{3}$	1	2	$\mathrm{SL}(2,3) \rtimes \mathbb{Z}_{4}$	1	2
$\left(\mathbb{Z}_{6} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}$	2	6	$\Sigma(36 \phi)$	2	4
$\mathbb{Z}_{3} \times D_{4}$	2	2	$\Delta(108)$	1	1
$\mathbb{Z}_{3} \times Q_{8}$	2	2	$\operatorname{PSL}(3,2)$	1	3
S_{4}	6	19	$\Sigma(72 \phi)$	2	2
$S_{4}(27)$	3	10	$\Delta(216)$	1	1
$\left(\mathbb{Z}_{4} \times \mathbb{Z}_{4}\right) \rtimes \mathbb{Z}_{2}$	5	30			

Some statistics

	$\mathcal{N}=1$			$\mathcal{N}=2$			$\mathcal{N}=4$				\sum	
	\mathbb{Q}	\mathbb{Z}	aff.									
Abelian	17	60	138	4	10	23	1	1	1	22	71	162
Non-Abelian	35	108	331	3	7	27	0	0	0	38	115	358
\sum	52	168	469	7	17	50	1	1	1	$\mathbf{6 0}$	$\mathbf{1 8 6}$	$\mathbf{5 2 0}$

Outlook

Narain, Sarmadi and Vafa 1987

- In recent years, asymmetric orbifolds found heightened interest
- There, right- and left-movers are compactified on different geometries
- In this framework, one matrix describes the whole geometry and all Wilson lines
- A classification of space groups in $n=22$ dimensions would be desirable

Limitations of CARAT
The i.m. f. groups in $n=22$ are known. However, the current
implementation of CARAT, especially $\mathbb{Q} \rightarrow \mathbb{Z}$ is built on the
assumption $n \leq 6$ and does not simply generalise.
A new implementation could fix this.

Outlook

Narain, Sarmadi and Vafa 1987

- In recent years, asymmetric orbifolds found heightened interest
- There, right- and left-movers are compactified on different geometries
- In this framework, one matrix describes the whole geometry and all Wilson lines
- A classification of space groups in $n=22$ dimensions would be desirable

Limitations of CARAT
The i.m. f. aroups in $n=22$ are known. However, the current
implementation of CARAT, especially $\mathbb{Q} \rightarrow \mathbb{Z}$ is built on the
assumption $n \leq 6$ and does not simply generalise.
A new implementation could fix this.

Outlook

Narain, Sarmadi and Vafa 1987

- In recent years, asymmetric orbifolds found heightened interest
- There, right- and left-movers are compactified on different geometries
- In this framework, one matrix describes the whole geometry and all Wilson lines
- A classification of space groups in $n=22$ dimensions would be desirable

Limitations of CaRAT
The i.m. f. groups in $n=22$ are known. However, the current
implementation of CARAT, especially $\mathbb{Q} \rightarrow \mathbb{Z}$ is built on the
assumption $n \leq 6$ and does not simply generalise.
A new implementation could fix this.

Outlook

Narain, Sarmadi and Vafa 1987

- In recent years, asymmetric orbifolds found heightened interest
- There, right- and left-movers are compactified on different geometries
- In this framework, one matrix describes the whole geometry and all Wilson lines
- A classification of space groups in $n=22$ dimensions would be desirable

Limitations of CARAT
The i.m. f. groups in $n=22$ are known. However, the current
implementation of CARAT, especially $\mathbb{Q} \rightarrow \mathbb{Z}$ is built on the
assumption $n \leq 6$ and does not simply generalise.
A new implementation could fix this.

Outlook

Narain, Sarmadi and Vafa 1987

- In recent years, asymmetric orbifolds found heightened interest
- There, right- and left-movers are compactified on different geometries
- In this framework, one matrix describes the whole geometry and all Wilson lines
- A classification of space groups in $n=22$ dimensions would be desirable

Limitations of CARAT

The i.m.f. groups in $n=22$ are known. However, the current implementation of CARAT, especially $\mathbb{Q} \rightarrow \mathbb{Z}$ is built on the assumption $n \leq 6$ and does not simply generalise.
A new implementation could fix this.

Outlook

- Feasibility: the orders of the involved groups explode
- The size of the first Q-class of i.m. f. groups in $n=22$ is $2^{41} \times 3^{9} \times 5^{4} \times 7^{3} \times 11^{2} \times 13 \times 17 \times 19\left(\mathcal{O}\left(10^{27}\right)\right)$ GAP - Groups, Algorithms, and Programming, Version 4.5.5 2012 - \Rightarrow Out of reach of current age computers!

Outlook

- Feasibility: the orders of the involved groups explode
- The size of the first \mathbb{Q}-class of i. m. f. groups in $n=22$ is $2^{41} \times 3^{9} \times 5^{4} \times 7^{3} \times 11^{2} \times 13 \times 17 \times 19\left(\mathcal{O}\left(10^{27}\right)\right)$
GAP - Groups, Algorithms, and Programming, Version 4.5.5 2012

Outlook

- Feasibility: the orders of the involved groups explode
- The size of the first \mathbb{Q}-class of i.m. f. groups in $n=22$ is $2^{41} \times 3^{9} \times 5^{4} \times 7^{3} \times 11^{2} \times 13 \times 17 \times 19\left(\mathcal{O}\left(10^{27}\right)\right)$
GAP - Groups, Algorithms, and Programming, Version 4.5.5 2012
- \Rightarrow Out of reach of current age computers!

Conclusion

- There is only a finite number of affine classes of space groups for a given degree n (cf. CY spaces)
- A complete classification of six-dimensional space groups is readily available through an easy to use computer program, Carat
- We tested these for $\mathcal{N} \leq 1$ SUSY in four dimensions and compiled a complete list
- Hodge numbers and Fundamental groups are available
- A generalisation for asymmetric orbifolds seems out of reach at the moment

Conclusion

- There is only a finite number of affine classes of space groups for a given degree n (cf. CY spaces)
- A complete classification of six-dimensional space groups is readily available through an easy to use computer program, Carat
- We tested these for $\mathcal{N} \leq 1$ SUSY in four dimensions and compiled a complete list
- Hodge numbers and Fundanental groups are available
- A generalisation for asymmetric orbifolds seems out of reach at the moment

Conclusion

- There is only a finite number of affine classes of space groups for a given degree n (cf. CY spaces)
- A complete classification of six-dimensional space groups is readily available through an easy to use computer program, Carat
- We tested these for $\mathcal{N} \leq 1$ SUSY in four dimensions and compiled a complete list
- Hodge numbers and Fundamental groups are available
- A generalisation for asymmetric orbifolds seems out of reach at the moment

Conclusion

- There is only a finite number of affine classes of space groups for a given degree n (cf. CY spaces)
- A complete classification of six-dimensional space groups is readily available through an easy to use computer program, Carat
- We tested these for $\mathcal{N} \leq 1$ SUSY in four dimensions and compiled a complete list
- Hodge numbers and Fundamental groups are available
- A generalisation for asymmetric orbifolds seems out of reach at the moment

Conclusion

- There is only a finite number of affine classes of space groups for a given degree n (cf. CY spaces)
- A complete classification of six-dimensional space groups is readily available through an easy to use computer program, Carat
- We tested these for $\mathcal{N} \leq 1$ SUSY in four dimensions and compiled a complete list
- Hodge numbers and Fundamental groups are available
- A generalisation for asymmetric orbifolds seems out of reach at the moment

Conclusion

- There is only a finite number of affine classes of space groups for a given degree n (cf. CY spaces)
- A complete classification of six-dimensional space groups is readily available through an easy to use computer program, Carat
- We tested these for $\mathcal{N} \leq 1$ SUSY in four dimensions and compiled a complete list
- Hodge numbers and Fundamental groups are available
- A generalisation for asymmetric orbifolds seems out of reach at the moment

Thank you!

References

Bailin, D. and A. Love (1999). "Orbifold compactifications of string theory". In: Phys.Rept. 315, pp. 285-408. DOI: 10.1016/S0370-1573 (98) 00126-4.

Brown, Ronald and Philip J. Higgins (2002). The fundamental groupoid of the quotient of a Hausdorff space by a discontinuous action of a discrete group is the orbit groupoid of the induced action. Available online at
http://arxiv.org/abs/math/0212271v1;
Dixon, Lance J. et al. (1985a). "STRINGS ON ORBIFOLDS". In: Nucl. Phys. B261, pp. 678-686.

- (1985b). "Strings on Orbifolds". In: Nucl. Phys. B261, pp. 678-686. DOI: 10.1016/0550-3213 (85) 90593-0.
- (1986). "STRINGS ON ORBIFOLDS. 2". In: Nucl. Phys. B274, pp. 285-314.

Donagi, Ron and Alon E. Faraggi (2004). "On the number of chiral generations in $Z(2) \times Z(2)$ orbifolds". In: Nucl. Phys. B694, pp. 187-205.
DOI: $10.1016 /$ j.nuclphysb.2004.06.009. arXiv:hep-th/0403272.
Donagi, Ron and Katrin Wendland (2009). "On orbifolds and free fermion constructions". In: J. Geom. Phys. 59, pp. 942-968. DOI:
10.1016/j.geomphys.2009.04.004. arXiv:0809.0330 [hep-th].

Förste, Stefan et al. (2007). "Non-Factorisable Z(2) times Z(2) Heterotic Orbifold Models and Yukawa Couplings". In: JHEP 0703, p. 011. DOI: $10.1088 / 1126-6708 / 2007 / 03 / 011$. arXiv:hep-th/0612044 [hep-th].
GAP - Groups, Algorithms, and Programming, Version 4.5.5 (2012). The GAP Group. URL:
\verb+(http://www.gap-system.org) +.
Groot Nibbelink, Stefan and Fabian Ruehle (2014). "Torus partition functions and spectra of gauged linear sigma models". In: arXiv:1403.2380 [hep-th].
Holt, D.F. and W. Plesken (1989). Perfect groups. Oxford mathematical monographs. Clarendon Press. ISBN: 9780198535591. URL:
http://books.google.de/books?id=Nf7uAAAAMAAJ.
MF, Saul Ramos-Sanchez and Patrick K. S. Vaudrevange (2013). "Heterotic non-Abelian orbifolds". In: arXiv:1304.7742 [hep-th].
Narain, K.S., M.H. Sarmadi and C. Vafa (1987). "Asymmetric Orbifolds". In: Nucl.Phys. B288, p. 551. DOI:
10.1016/0550-3213(87) 90228-8.

Opgenorth, J., W. Plesken and T. Schulz (1998). "Crystallographic Algorithms and Tables". In: Acta Crystallographica Section A 54.5, pp. 517-531. DOI: 11.1107/S010876739701547X. URL: http://dx.doi.org/10.1107/S010876739701547X.
Plesken, Wilhelm and Michael Pohst (Sept. 1976). "On maximal finite irreducible subgroups of GL (n, \mathbf{Z}). I: The five and seven dimensional case. II: The six dimensional case". In: Bulletin of the American Mathematical Society 82.5, pp. 757-758. URL:
http://projecteuclid.org/euclid.bams/1183538234.
Plesken, Wilhelm and Tilman Schulz (2000). "Counting Crystallographic Groups in Low Dimensions". In: Experimental Mathematics 9, pp. 407-411.
Thurston, William P. (2002). The Geometry and Topology of Three-Manifolds. Website. Available online at
http://www.msri.org/publications/books/gt3m/;
Zassonhaus, Hans (1948). "Übor oinon_Algorithmus zur Boctimmung dor Raumgruppon". Gorman. In: Commentarii Mathomatici

Untwisted Hodge numbers

Untwisted moduli $\left(h_{\mathrm{U}}^{(1,1)}, h_{\mathrm{U}}^{(2,1)}\right)$	non-Abelian point groups
$(2,2)$	S_{3}, D_{4}, D_{6}
$(2,1)$	$Q D_{16},\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}, \mathbb{Z}_{4} \times S_{3},\left(\mathbb{Z}_{6} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}$,
	$\mathrm{GL}(2,3), \mathrm{SL}(2,3) \rtimes \mathbb{Z}_{2}$
$(2,0)$	$\mathbb{Z}_{8} \rtimes \mathbb{Z}_{2}, \mathbb{Z}_{3} \times S_{3}, \mathbb{Z}_{3} \rtimes \mathbb{Z}_{8}, \mathrm{SL}(2,3)-\mathrm{I}, \mathbb{Z}_{3} \times D_{4}$,
	$\mathbb{Z}_{3} \times Q_{8},\left(\mathbb{Z}_{4} \times \mathbb{Z}_{4}\right) \rtimes \mathbb{Z}_{2}, \mathbb{Z}_{3} \times\left(\mathbb{Z}_{3} \rtimes \mathbb{Z}_{4}\right), \mathbb{Z}_{6} \times S_{3}$,
	$\mathbb{Z}_{3} \times \mathrm{SL}(2,3), \mathbb{Z}_{3} \times\left(\left(\mathbb{Z}_{6} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}\right), \mathrm{SL}(2,3) \rtimes \mathbb{Z}_{4}$
$(1,1)$	A_{4}, S_{4}
$(1,0)$	$T_{7}, \Delta(27), \mathbb{Z}_{3} \times A_{4}, \Delta(48), \Delta(54), \mathbb{Z}_{3} \times S_{4}, \Delta(96)$,
	$\Sigma(36 \phi), \Delta(108), \operatorname{PSL}(3,2), \Sigma(72 \phi), \Delta(216)$

Strict orbifold definition

Thurston 2002

An orbifold \mathcal{O} is a topological Hausdorff space X_{0} with the following structure data: $\left\{U_{i}, \Gamma_{i}, \tilde{U}_{i}, \varphi_{i}\right\}_{i \in I}$, such that:

1. $\left\{U_{i}\right\}_{i \in I}$ is an open covering of X_{O} which is closed under finite intersections,
2. $\forall i \in I, \Gamma_{i}$ is a discrete group with an action on an open subset $\tilde{U}_{i} \subseteq \mathbb{R}^{n}$,
3. $\forall i \in I, \varphi_{i}: U_{i} \rightarrow \tilde{U}_{i} / \Gamma_{i}$ is a homeomorphism; $\tilde{U}_{i} / \Gamma_{i}$ means the set of equivalence classes one gets from identifying each point in U_{i} with its orbit under the action of Γ_{i},
4. $\forall i, j \in I$ with $U_{i} \subseteq U_{j}$ there is an injective homomorphism $f_{i j}: \Gamma_{i} \hookrightarrow \Gamma_{j}$ and an embedding $\tilde{\varphi}_{i j}: \tilde{U}_{i} \hookrightarrow \tilde{U}_{j}$ such that the following diagram commutes.

Strict orbifold definition

The problem with Lie lattices

Bravais groups and crystal families

Let $G \leq G L(n, \mathbb{Z})$ be a finite unimodular group and

$$
\mathcal{F}(G)=\left\{F \in \mathbb{R}_{\text {sym }}^{n \times n} \mid \forall g \in G . g^{T} F g=F\right\}
$$

its form space. Then

$$
B(\mathcal{F})=\left\{g \in \mathrm{GL}(n, \mathbb{Z}) \mid \forall F \in \mathcal{F} \cdot g^{T} F g=F\right\}
$$

is the Bravais group of \mathcal{F}.

The Bravais group of G is $B(G)=B(\mathcal{F}(G))$.

Two finite subgroups $G, H \leq G L(n, \mathbb{Z})$ belong to the same crystal family, iff there exist subgroups $G^{\prime} \leq G$ and $H^{\prime} \leq H$ with $\mathcal{F}\left(G^{\prime}\right)=\mathcal{F}(G)$ and $\mathcal{F}\left(H^{\prime}\right)=\mathcal{F}(H)$ and G^{\prime} and H^{\prime} Q-equivalent

Normalizers

- The normalizer of U in G is $\left\{g \in G: g U g^{-1}=U\right\}$
- The normalizer of $G \leq G L(n, \mathbb{Z})$ is the stabilizer of G in the conjugation action of $N(B)$ on the set of subgroups of \mathbf{B}
- $N(B)$ is the normalizer of the Bravais group of G
- $N(B)=\left\{g \in \operatorname{GL}(n, \mathbb{Z}): g^{T} \mathcal{F}(B) g=\mathcal{F}(B)\right\}$

[^0]: Plesken and Schulz 2000

