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Introduction

Strings and compact dimensions
Heterotic string theory is appealing, because . . .

• it is a unified theory of gravity and gauge interactions
• it is mathematically restrained and introduces only one new

parameter
• it can preserve exactly N = 1 supersymmetry in four dimensions

However, some mysteries remain . . .

• Geometric constructions predict the number of space-time
dimensions to be ten

• A simple compactification on a T6 preserves too much SUSY
• To compactify, one can go for instance either the Calabi-Yau or

the Orbifold way
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Introduction

Heterotic compactifications

• We need a six-dimensional compact topological space with
SU(3)-holonomy

• Manifolds with this property are called Calabi-Yau
• However, they are very complicated and many properties remain

unknown (for some recent progress on the matter, cf.
Groot Nibbelink and Ruehle 2014)

• 1985, Dixon et al. proposed a different class of objects
→ orbifolds
Dixon, Harvey, Vafa and Witten 1985b
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Introduction

Why orbifolds
• Orbifolds admit an exact CFT description on the world-sheet
• Modular invariance conditions for the partition function can be

explicitly stated
• Same for the mass equations

Spectrum

⇒ whole spectrum (in principle) computable

Pheno

Target orbifolds which preserve N = 1 SUSY in four dimensions
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Introduction

Ingredients of an orbifold
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Introduction

Ingredients of an orbifold
Rn

How many possibilities?

Λ
=⇒

Λ
=⇒

P ⇓ ⇓ P
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Introduction

The classification story so far
(excerpt)

• The first paper on orbifolds already classified all Abelian point
groups which admit N = 1 SUSY in 4D
Dixon, Harvey, Vafa and Witten 1985b

• Abelian orbifolds had been studied quite well, mostly omitting
roto-translations and focussing on Lie root lattices

Why is this a bad idea?

Bailin and Love 1999; Donagi and Faraggi 2004

• Z2 ⊕Z2 orbifolds had been studied extensively with
roto-translations – but only Z2 ⊕Z2
Donagi and Wendland 2009

• No thorough classification of all possible geometries had been
tried – but it should be possible, right?
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• Z2 ⊕Z2 orbifolds had been studied extensively with
roto-translations – but only Z2 ⊕Z2
Donagi and Wendland 2009

• No thorough classification of all possible geometries had been
tried – but it should be possible, right?

⇒ Yes it is!
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Orbifolds

Definition

Let M be a manifold and G a discrete group which acts on M. Then,
the quotient O = M/G has the structure of an orbifold.

In our cases, M will be R6 and G will be a crystallographic space
group.

Complete definition
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Orbifolds

Space groups
A space group S is a discrete subgroup of the Euclidean group in Rn

which contains n linearly independent translations.
• The elements g ∈ S have the structure (ϑ, λ), where ϑ is a

rotation/reflection and λ a translation: g · v ≡ ϑ · v + λ

• Let h = (ω, τ) ∈ S; then h ◦ g = (ωϑ, ωλ + τ)

Augmented matrix notation

g =

(
ϑ λ
0 1

)
(

ω τ
0 1

)
·
(

ϑ λ
0 1

)
=

(
ωϑ ωλ + τ
0 1

)
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Orbifolds

The lattice
• The subset Λ = {(id, λ)} ⊆ S is called the lattice of the space

group.
• In general, for g = (ϑ, λ) ∈ S, λ needs not to be an element of

the lattice. Elements of this form are called roto-translations.
• Every lattice Λ defines an equivalence relation on vectors from
Rn: v ≈ w :⇔ v− w ∈ Λ.

• The fundamental domain is the unit cell of the lattice, with i. e. a
torus T := Rn/Λ.

⇒
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Orbifolds

The point group
• For S = {(ϑ, λ)}, the point group is P = {ϑ}.
• In general, P is a discrete subgroup of O(6).
• Λ always is a normal subgroup of S =⇒ S is a semi-direct

product iff P is a subgroup of it. Then, S = P nΛ.
• In general, one has roto-translations (ϑ, τ) with τ /∈ Λ!
• In that case, one yields O = T/G from the torus by modding out

the orbifolding group: G = 〈(ϑ, niei)〉 where (ei)i∈{1,...,6} is a
basis for Λ and 0 ≤ ni < 1.
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Classification

Bringing order to chaos

Alice Krige. Picture: http://de.eonline.com
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Classification

Bringing order to chaos
• For any S, the short exact sequence 0→ Λ→ S→ P→ 1 holds.

Thus, P maps Λ to itself.
• Consequently, when changing from Euclidean to lattice basis, the

point group becomes a subgroup of GL(n,Z).

Let S and S′ be two space groups of the same degree n. Let P and P′

be their point groups. They belong to the same . . .
1. affine class, iff they are isomorphic, i. e. if there is an affine

mapping f : Rn → Rn such that f−1S f = S′.
2. Z-class, iff P and P′ are conjugate in GL(n,Z), i. e. if there is a

matrix V ∈ GL(n,Z) such that V−1PV = P′.
3. Q-class, iff P and P′ are conjugate in GL(n,Q), i e. if there is a

matrix V ∈ GL(n,Q) such that V−1PV = P′.
Plesken and Schulz 2000
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Classification

Form spaces
• The space of invariant forms, or short the form space of P, is

F (P) =
{

F ∈ Rn×n
sym | ∀p ∈ P : pT Fp = F

}
. (1)

• Point groups P and P′ belong to the same Z-class, iff
∃V ∈ GL(n,Z), such that V−1PV = P′

• V lying in GL(n,Z) implies that lattice vectors get mapped to
lattice vectors.

• ⇒ space groups in the same Z-class possess the same lattice
(they share the same form space F ).
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Classification

CARAT & CrystCat
Plesken and Schulz 2000

• CARAT (“Crystallographic Algorithms And Tables”) is a software
suite designed to solve crystallographic problems in dimensions
up to six

• It can be accessed through the UNIX-shell, i. e. no programming
language must be learned

• CrystCat is an interface to CARAT for the GAP system

CARAT provides . . .

• a full catalogue of Q-classes up to degree 6
• Routines for splitting Q- to Z- and into affine classes
• Normalizers, Form spaces, Bravais groups and Crystal families
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Classification

Technical details: inside CARAT
Skip

i. m. f. groups

• The ultimate building blocks for crystallographic groups are
irreducible maximal finite subgroups of GL(n,Z).

• These are known for low dimensions Plesken and Pohst 1976

• From these, subgroups can be calculated and tested for
Q-equivalence; here, some invariants (e. g. crystal family, group
order, . . . ) are helpful

• At present, CARAT does not test properly for Q-equivalence, but
splits into Z-classes and tests for Z-equivalence

• This is done by utilising the sublattice algorithm
• Affine extensions are calculated using the Zassenhaus

algorithm
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Classification

Technical details: inside CARAT

The sublattice algorithm

Opgenorth, Plesken and Schulz 1998
Start with a finite unimodular group G ≤ GL(n,Z) and compute
G-sublattices of the natural lattice L0 = Zn×1.

• Preprocessing: take the action of G on L0 modulo a prime p
which divides |G|

• Save the irreducible constituents U of the resulting
representation G → GL(n,Z/pZ)

• Now keep a list of lattices L (starting with L0) and compute
sublattices which are kernels of homomorphisms ϕ : L→ U for
each U obtained as above

• This amounts to solving a set of linear equations over Z/pZ
• Perform LLL reduction on the resulting lattices
• Circumstance-dependent choice which lattices are to be kept
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Classification

Technical details:inside CARAT

The Zassenhaus algorithm

Zassenhaus 1948; Holt and Plesken 1989
Start with a finite unimodular group G ≤ GL(n,Z) and compute affine
extensions.

• Compute vector systems D̃er(G,Qn/Zn) consisting of all
v : G → Qn that satisfy (gh)v = (gv)h + hv mod Zn for all
g, h ∈ G

• Then factor out the submodule InnD̃er(G,Qn/Zn) consisting of
all vw : G → Qn with gvw = w(1− g) for g ∈ G which is the
biggest Q-subspace of D̃er(G,Qn/Zn)

• Lastly, decide which vector systems are still equivalent. This boils
down to a orbit calculation in the normalizer of G in GL(n,Z)
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Back to Physics

How to preserve N = 1 SUSY
Theory

• The point group generator is an element of
SO(6) ≈ SU(4) ! SU(3)

• Demand exactly one surviving spinor⇒ SU(3) holonomy
• ⇒ At most three independent rotations, two in the Abelian case

(coming from the Cartan of SU(3))

An example


cos(π/3) − sin(π/3) 0 0 0 0
sin(π/3) cos(π/3) 0 0 0 0

0 0 cos(2π/3) − sin(2π/3) 0 0
0 0 sin(2π/3) cos(2π/3) 0 0
0 0 0 0 cos(π) − sin(π)
0 0 0 0 sin(π) cos(π)


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Back to Physics

How to preserve N = 1 SUSY
Representations

Take P as a discrete subgroup of the 6 of SO(6) ∼= SU(4) and break
to SU(3):

6→ a⊕ b⊕ · · · .

Group characters

• 6→ ⊕c
i=1 niρi with ni =

1
|P| ∑g∈P χρi

(g)χ6(g)

• Iff 6→ a⊕ a plus, possibly, some singlets, then P ( U(3).
• To check P ( SU(3), produce explicit matrix representations with

GAP and check their determinants.

Maximilian Fischer: Classifying orbifolds – technical details

bctp, Bonn, 13.06.2014 21/29



Back to Physics

How to preserve N = 1 SUSY
Representations

Take P as a discrete subgroup of the 6 of SO(6) ∼= SU(4) and break
to SU(3):

6→ a⊕ b⊕ · · · .

Group characters

• 6→ ⊕c
i=1 niρi with ni =

1
|P| ∑g∈P χρi

(g)χ6(g)

• Iff 6→ a⊕ a plus, possibly, some singlets, then P ( U(3).
• To check P ( SU(3), produce explicit matrix representations with

GAP and check their determinants.

Maximilian Fischer: Classifying orbifolds – technical details

bctp, Bonn, 13.06.2014 21/29



Back to Physics

Hodge numbers
MF, Ramos-Sanchez and Vaudrevange 2013

Untwisted sector

• Use the three-dimensional representation ρ used in the
SUSY-checking

• Then, ρ⊗ ρ→ h(1,1)
U 1⊕ · · · and ρ⊗ ρ→ h(2,1)

U 1⊕ · · ·

Twisted sectors

• Construct conjugacy classes [g] of constructing elements of
space group elements with fundamental domain on the torus

• If the null-space of g is zero-dimensional, this yields one twisted
27-plet and thus 1 to h(1,1)

T
• If the null-space is two-dimensional, this yields one twisted

27-plet and one twisted 27-plet, thus giving (h(1,1)
T , h(1,0)

T ) of (1, 1)
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U 1⊕ · · ·

Twisted sectors

• Construct conjugacy classes [g] of constructing elements of
space group elements with fundamental domain on the torus

• If the null-space of g is zero-dimensional, this yields one twisted
27-plet and thus 1 to h(1,1)

T
• If the null-space is two-dimensional, this yields one twisted

27-plet and one twisted 27-plet, thus giving (h(1,1)
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T ) of (1, 1)
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Back to Physics

Fundamental groups
Dixon, Harvey, Vafa and Witten 1985a; Dixon, Harvey, Vafa and Witten 1986; Brown
and Higgins 2002

• π1(O) measures the “connectedness” of the orbifold
• A non-trivial π1 is a prerequisite for non-local GUT breaking

schemes
• To compute π1, first generate
{g ∈ S| ∃x ∈ R6 : gx = x} = F ( S of all elements that leave a
point fixed

• Then, 〈F〉 is a normal subgroup of S
• π1 = S/〈F〉
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Results

Complete Classification (abelian)

Q-class Z-cl. aff. cl. Q-class Z-cl. aff. cl.
Z3 1 1 Z2 ⊕Z2 12 35
Z4 3 3 Z2 ⊕Z4 10 41

Z6 − I 2 2 Z2 ⊕Z6 2 4
Z6 − I I 4 4 Z2 ⊕Z′6 4 4
Z7 1 1 Z3 ⊕Z3 5 15

Z8 − I 3 3 Z3 ⊕Z6 2 4
Z8 − I I 2 2 Z4 ⊕Z4 5 15
Z12 − I 2 2 Z6 ⊕Z6 1 1
Z12 − I I 1 1

Previous work
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Complete Classification (abelian)

Q-class Z-cl. aff. cl. Q-class Z-cl. aff. cl.
Z3 1 1 Z2 ⊕Z2 12 35
Z4 3 3 Z2 ⊕Z4 10 41

Z6 − I 2 (1) 2 (1) Z2 ⊕Z6 2 4
Z6 − I I 4 (3) 4 (3) Z2 ⊕Z′6 4 4
Z7 1 1 Z3 ⊕Z3 5 15

Z8 − I 3 (1) 3 (1) Z3 ⊕Z6 2 4
Z8 − I I 2 2 Z4 ⊕Z4 5 15
Z12 − I 2 2 Z6 ⊕Z6 1 1
Z12 − I I 1 1

Previous work

These are known in the literature, e. g. Bailin and Love 1999
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Complete Classification (abelian)

Q-class Z-cl. aff. cl. Q-class Z-cl. aff. cl.
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Z8 − I 3 3 Z3 ⊕Z6 2 4
Z8 − I I 2 2 Z4 ⊕Z4 5 15
Z12 − I 2 2 Z6 ⊕Z6 1 1
Z12 − I I 1 1

Previous work

Förste et al. missed four lattices, Donagi & Wendland got almost the
correct number of affine classes Förste, Kobayashi, Ohki and Takahashi 2007;
Donagi and Wendland 2009
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Complete Classification (abelian)

Q-class Z-cl. aff. cl. Q-class Z-cl. aff. cl.
Z3 1 1 Z2 ⊕Z2 12 35
Z4 3 3 Z2 ⊕Z4 10 41

Z6 − I 2 2 Z2 ⊕Z6 2 4
Z6 − I I 4 4 Z2 ⊕Z′6 4 4
Z7 1 1 Z3 ⊕Z3 5 15

Z8 − I 3 3 Z3 ⊕Z6 2 4
Z8 − I I 2 2 Z4 ⊕Z4 5 15
Z12 − I 2 2 Z6 ⊕Z6 1 1
Z12 − I I 1 1

Previous work

To the best of our knowledge, these are new!
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Complete Classification (non-abelian)
Q-class Z-cl. aff. cl. Q-class Z-cl. aff. cl.

S3 6 11 Z3 × (Z3 oZ4) 1 1
D4 9 48 Z3 × A4 3 3
A4 9 15 Z6 × S3 2 4
D6 2 8 ∆(48) 4 8

Z8 oZ2 6 18 GL(2, 3) 1 4
QD16 4 14 SL(2, 3)oZ2 1 3

(Z4 ×Z2)oZ2 5 55 ∆(54) 3 10
Z3 × S3 6 16 Z3 × SL(2, 3) 1 2

Frobenius T7 3 3 Z3 × ((Z6 ×Z2)oZ2) 1 1
Z3 oZ8 1 1 Z3 × S4 3 3

SL(2, 3)–I 4 7 ∆(96) 4 12
Z4 × S3 1 2 SL(2, 3)oZ4 1 2

(Z6 ×Z2)oZ2 2 6 Σ(36φ) 2 4
Z3 × D4 2 2 ∆(108) 1 1
Z3 ×Q8 2 2 PSL(3, 2) 1 3

S4 6 19 Σ(72φ) 2 2
∆(27) 3 10 ∆(216) 1 1

(Z4 ×Z4)oZ2 5 30



Some statistics
N = 1 N = 2 N = 4 ∑

Q Z aff. Q Z aff. Q Z aff. Q Z aff.
Abelian 17 60 138 4 10 23 1 1 1 22 71 162

Non-Abelian 35 108 331 3 7 27 0 0 0 38 115 358
∑ 52 168 469 7 17 50 1 1 1 60 186 520



Results

Outlook
Narain, Sarmadi and Vafa 1987

• In recent years, asymmetric orbifolds found heightened interest
• There, right- and left-movers are compactified on different

geometries
• In this framework, one matrix describes the whole geometry and

all Wilson lines
• A classification of space groups in n = 22 dimensions would be

desirable

Limitations of CARAT

The i. m. f. groups in n = 22 are known. However, the current
implementation of CARAT, especially Q→ Z is built on the
assumption n ≤ 6 and does not simply generalise.
A new implementation could fix this.
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Results

Outlook
• Feasibility: the orders of the involved groups explode
• The size of the first Q-class of i. m. f. groups in n = 22 is

241 × 39 × 54 × 73 × 112 × 13× 17× 19 (O(1027))
GAP – Groups, Algorithms, and Programming, Version 4.5.5 2012

• ⇒ Out of reach of current age computers!
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Results

Conclusion
• There is only a finite number of affine classes of space groups for

a given degree n (cf. CY spaces)
• A complete classification of six-dimensional space groups is

readily available through an easy to use computer program,
CARAT

• We tested these for N ≤ 1 SUSY in four dimensions and
compiled a complete list

• Hodge numbers and Fundamental groups are available
• A generalisation for asymmetric orbifolds seems out of reach at

the moment
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Results

Conclusion
• There is only a finite number of affine classes of space groups for

a given degree n (cf. CY spaces)
• A complete classification of six-dimensional space groups is

readily available through an easy to use computer program,
CARAT

• We tested these for N ≤ 1 SUSY in four dimensions and
compiled a complete list

• Hodge numbers and Fundamental groups are available
• A generalisation for asymmetric orbifolds seems out of reach at

the moment

Thank you!
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Untwisted Hodge numbers
Untwisted moduli
(h(1,1)

U , h(2,1)
U ) non-Abelian point groups

(2,2) S3, D4, D6
(2,1) QD16, (Z4 ×Z2)oZ2, Z4 × S3, (Z6 ×Z2)oZ2,

GL(2, 3), SL(2, 3)oZ2
(2,0) Z8 oZ2, Z3 × S3, Z3 oZ8, SL(2, 3)−I, Z3 × D4,

Z3 ×Q8, (Z4 ×Z4)oZ2, Z3 × (Z3 oZ4), Z6 × S3,
Z3 × SL(2, 3), Z3 × ((Z6 ×Z2)oZ2), SL(2, 3)oZ4

(1,1) A4, S4
(1,0) T7, ∆(27), Z3 × A4, ∆(48), ∆(54), Z3 × S4, ∆(96),

Σ(36φ), ∆(108), PSL(3, 2), Σ(72φ), ∆(216)
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Strict orbifold definition
Thurston 2002
An orbifold O is a topological Hausdorff space X0 with the following
structure data:

{
Ui, Γi, Ũi, ϕi

}
i∈I , such that:

1. {Ui}i∈I is an open covering of XO which is closed under finite
intersections,

2. ∀i ∈ I, Γi is a discrete group with an action on an open subset
Ũi ⊆ Rn,

3. ∀i ∈ I, ϕi : Ui → Ũi/Γi is a homeomorphism; Ũi/Γi means the
set of equivalence classes one gets from identifying each point in
Ui with its orbit under the action of Γi,

4. ∀i, j ∈ I with Ui ⊆ Uj there is an injective homomorphism
fij : Γi ↪→ Γj and an embedding ϕ̃ij : Ũi ↪→ Ũj such that the
following diagram commutes.
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Strict orbifold definition
ϕ̃ij

Ũi Ũj

ϕij = ϕ̃ij/Γi

Ũi/Γi Ũj/Γi

Ũj/Γiϕi

ϕj

fij

Ui ⊆ Uj

Back
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The problem with Lie lattices

Back



Bravais groups and crystal families
Let G ≤ GL(n,Z) be a finite unimodular group and

F (G) = {F ∈ Rn×n
sym |∀g ∈ G. gT Fg = F}

its form space. Then

B(F ) = {g ∈ GL(n,Z)|∀F ∈ F . gT Fg = F}

is the Bravais group of F .

The Bravais group of G is B(G) = B(F (G)).

Two finite subgroups G, H ≤ GL(n,Z) belong to the same crystal
family, iff there exist subgroups G′ ≤ G and H′ ≤ H with
F (G′) = F (G) and F (H′) = F (H) and G′ and H′ Q-equivalent

Maximilian Fischer: Classifying orbifolds – technical details

bctp, Bonn, 13.06.2014 35/29



Normalizers
• The normalizer of U in G is {g ∈ G : gUg−1 = U}
• The normalizer of G ≤ GL(n,Z) is the stabilizer of G in the

conjugation action of N(B) on the set of subgroups of B
• N(B) is the normalizer of the Bravais group of G
• N(B) = {g ∈ GL(n,Z) : gTF (B)g = F (B)}
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