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Introduction TI-ITI

Strings and compact dimensions
Heterotic string theory is appealing, because ...

e it is a unified theory of gravity and gauge interactions
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Introduction

Strings and compact dimensions
Heterotic string theory is appealing, because ...

e itis a unified theory of gravity and gauge interactions

o it is mathematically restrained and introduces only one new
parameter

e it can preserve exactly A/ = 1 supersymmetry in four dimensions

However, some mysteries remain ...

o Geometric constructions predict the number of space-time
dimensions to be ten

« A simple compactification on a T® preserves too much SUSY

¢ To compactify, one can go for instance either the Calabi-Yau or
the Orbifold way
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Introduction TI-ITI

Heterotic compactifications

o We need a six-dimensional compact topological space with
SU(3)-holonomy

o Manifolds with this property are called Calabi-Yau

o However, they are very complicated and many properties remain
unknown (for some recent progress on the matter, cf.
Groot Nibbelink and Ruehle 2014)

e 1985, Dixon et al. proposed a different class of objects
— orbifolds
Dixon, Harvey, Vafa and Witten 1985b
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Introduction TI-ITI

Why orbifolds

¢ Orbifolds admit an exact CFT description on the world-sheet

e Modular invariance conditions for the partition function can be
explicitly stated

o Same for the mass equations

Spectrum

= whole spectrum (in principle) computable

Pheno
Target orbifolds which preserve A" = 1 SUSY in four dimensions
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Introduction TI.ITI

Ingredients of an orbifold
A Rn

How many possibilities?
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The classification story so far
(excerpt)
o The first paper on orbifolds already classified all Abelian point
groups which admit A/ = 1 SUSY in 4D
Dixon, Harvey, Vafa and Witten 1985b
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Introduction TI-ITI

The classification story so far
(excerpt)

o The first paper on orbifolds already classified all Abelian point
groups which admit A/ = 1 SUSY in 4D
Dixon, Harvey, Vafa and Witten 1985b

o Abelian orbifolds had been studied quite well, mostly omitting
roto-translations and focussing on Lie root lattices

Bailin and Love 1999; Donagi and Faraggi 2004

e 7, ® 7, orbifolds had been studied extensively with
roto-translations — but only Z, ® Z»,
Donagi and Wendland 2009

e No thorough classification of all possible geometries had been
tried — but it should be possible, right?

= Yes it is!
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Orbifolds TI-ITI

Definition

Let M be a manifold and G a discrete group which acts on M. Then,
the quotient © = M/ G has the structure of an orbifold.
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Orbifolds TI-ITI

Definition

Let M be a manifold and G a discrete group which acts on M. Then,
the quotient © = M/ G has the structure of an orbifold.

In our cases, M will be R® and G will be a crystallographic space
group.
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Orbifolds TI-ITI

Space groups
A space group S is a discrete subgroup of the Euclidean group in R"
which contains n linearly independent translations.

» The elements g € S have the structure (¢, 1), where ¢ is a
rotation/reflection and A a translation: g-v=9-v+ A
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Orbifolds TI-ITI

Space groups
A space group S is a discrete subgroup of the Euclidean group in R"
which contains n linearly independent translations.

» The elements g € S have the structure (¢, 1), where ¢ is a
rotation/reflection and A a translation: g-v=9-v+ A

o leth=(w,7)€S;thenhog = (wd,wA + 1)

Augmented matrix notation
(O] A
8= o1
[T (9| A\ _ [ wd|wA+T
1 oj1) o0 1
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Orbifolds

The lattice

e The subset A = {(id,A)} C S is called the lattice of the space

group.
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The lattice
e The subset A = {(id,A)} C S is called the lattice of the space
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Orbifolds TI-ITI

The point group
e For S = {(9,A)}, the point group is P = {d}.
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The point group

e For S = {(9,A)}, the point group is P = {4}.

e In general, P is a discrete subgroup of O(6).
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The point group
e For S = {(9,A)}, the point group is P = {4}.
e In general, P is a discrete subgroup of O(6).

e A always is a normal subgroup of S = S is a semi-direct
product iff P is a subgroup of it. Then, S = P x A.
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The point group
For S = {(8,A)}, the point group is P = {4}.
In general, P is a discrete subgroup of O(6).

A always is a normal subgroup of S = S is a semi-direct
product iff P is a subgroup of it. Then, S = P x A.

In general, one has roto-translations (9, t) with T ¢ A!
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Orbifolds TI-ITI

The point group

e For S = {(9,A)}, the point group is P = {4}.

e In general, P is a discrete subgroup of O(6).
A always is a normal subgroup of S = S is a semi-direct
product iff P is a subgroup of it. Then, S = P x A.
In general, one has roto-translations (9, t) with T ¢ A!
In that case, one yields © = T/G from the torus by modding out
the orbifolding group: G = ((9, n;e;)) where (ei)ie{lwé} is a
basis for Aand 0 < n; < 1.
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Classification TI-ITI

Bringing order to chaos

Alice Krige. Picture: http://de.eonline.com
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Classification TI-ITI

Bringing order to chaos

e For any S, the short exact sequence 0 - A — S — P — 1 holds.
Thus, P maps A to itself.
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e For any S, the short exact sequence 0 - A — S — P — 1 holds.
Thus, P maps A to itself.

e Consequently, when changing from Euclidean to lattice basis, the
point group becomes a subgroup of GL(#,Z).

Let S and S’ be two space groups of the same degree n. Let P and P’
be their point groups. They belong to the same ...

Plesken and Schulz 2000
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Bringing order to chaos
e For any S, the short exact sequence 0 - A — S — P — 1 holds.
Thus, P maps A to itself.

e Consequently, when changing from Euclidean to lattice basis, the
point group becomes a subgroup of GL(#,Z).

Let S and S’ be two space groups of the same degree n. Let P and P’
be their point groups. They belong to the same ...

1. affine class, iff they are isomorphic, i. e. if there is an affine
mapping f : R” — R" such that f !Sf = 5.

Plesken and Schulz 2000
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Classification

Bringing order to chaos
e For any S, the short exact sequence 0 - A — S — P — 1 holds.
Thus, P maps A to itself.

e Consequently, when changing from Euclidean to lattice basis, the
point group becomes a subgroup of GL(#,Z).

Let S and S’ be two space groups of the same degree n. Let P and P’
be their point groups. They belong to the same ...

1. affine class, iff they are isomorphic, i. e. if there is an affine
mapping f : R" — R" such that f~1Sf = §'.

2. Z-class, iff P and P’ are conjugate in GL(n,Z), i.e. if there is a
matrix V € GL(n,Z) such that V-1PV = P’

Plesken and Schulz 2000
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Bringing order to chaos
e For any S, the short exact sequence 0 - A — S — P — 1 holds.
Thus, P maps A to itself.

e Consequently, when changing from Euclidean to lattice basis, the
point group becomes a subgroup of GL(#,Z).

Let S and S’ be two space groups of the same degree n. Let P and P’
be their point groups. They belong to the same ...
1. affine class, iff they are isomorphic, i. e. if there is an affine
mapping f : R" — R" such that f~1Sf = §'.
2. Z-class, iff P and P’ are conjugate in GL(n,Z), i.e. if there is a
matrix V € GL(n,Z) such that V-1PV = P’

3. Q-class, iff P and P’ are conjugate in GL(n,Q), ie. if there is a
matrix V € GL(n, Q) such that V-1PV = P'.

Plesken and Schulz 2000
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Classification TI-ITI

Form spaces

e The space of invariant forms, or short the form space of P, is

F(P) = {Fe]ngX,;prep : pTPp:F} . (1)
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F(P) = {Felﬁg;;:wpep : pTPp:F} . (1)

e Point groups P and P’ belong to the same Z-class, iff
3V € GL(n,Z), such that V-1PV = P’

e V lying in GL(n, Z) implies that lattice vectors get mapped to
lattice vectors.
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Classification TI-ITI

Form spaces

e The space of invariant forms, or short the form space of P, is
F(P) = {FEIRZYXnHVpeP : pTPp:F} . (1)

e Point groups P and P’ belong to the same Z-class, iff
3V € GL(n,Z), such that V-1PV = P’

e V lying in GL(n, Z) implies that lattice vectors get mapped to
lattice vectors.

e = space groups in the same Z-class possess the same lattice
(they share the same form space F).

Maximilian Fischer: Classifying orbifolds — technical details
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CARAT & CrystCat
Plesken and Schulz 2000
o CARAT (“Crystallographic Algorithms And Tables”) is a software
suite designed to solve crystallographic problems in dimensions
up to six
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language must be learned
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o CARAT (“Crystallographic Algorithms And Tables”) is a software
suite designed to solve crystallographic problems in dimensions
up to six

o It can be accessed through the UNIX-shell, i. e. no programming
language must be learned

o CrystCat is an interface to CARAT for the GAP system
CARAT provides ...

o a full catalogue of Q-classes up to degree 6
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Plesken and Schulz 2000

o CARAT (“Crystallographic Algorithms And Tables”) is a software
suite designed to solve crystallographic problems in dimensions
up to six

o It can be accessed through the UNIX-shell, i. e. no programming
language must be learned

o CrystCat is an interface to CARAT for the GAP system
CARAT provides ...

o a full catalogue of Q-classes up to degree 6
o Routines for splitting Q- to Z- and into affine classes
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Classification

CARAT & CrystCat

Plesken and Schulz 2000

o CARAT (“Crystallographic Algorithms And Tables”) is a software
suite designed to solve crystallographic problems in dimensions
up to six

o It can be accessed through the UNIX-shell, i. e. no programming
language must be learned

o CrystCat is an interface to CARAT for the GAP system
CARAT provides ...

o a full catalogue of Q-classes up to degree 6
o Routines for splitting Q- to Z- and into affine classes
e Normalizers, Form spaces, Bravais groups and Crystal families

Maximilian Fischer: Classifying orbifolds — technical details
bctp, Bonn, 13.06.2014

16/29



Classification TI-ITI

Technical details: inside CARAT

i. m.f. groups

e The ultimate building blocks for crystallographic groups are
irreducible maximal finite subgroups of GL (1, Z).
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Technical details: inside CARAT

i. m.f. groups

e The ultimate building blocks for crystallographic groups are
irreducible maximal finite subgroups of GL (1, Z).

e These are known for low dimensions Plesken and Pohst 1976

e From these, subgroups can be calculated and tested for
Q-equivalence; here, some invariants (e. g. crystal family, group
order, ...) are helpful
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Technical details: inside CARAT

i. m.f. groups

e The ultimate building blocks for crystallographic groups are
irreducible maximal finite subgroups of GL (1, Z).

e These are known for low dimensions Plesken and Pohst 1976

e From these, subgroups can be calculated and tested for

Q-equivalence; here, some invariants (e. g. crystal family, group
order, ...) are helpful

o At present, CARAT does not test properly for Q-equivalence, but
splits into Z-classes and tests for Z-equivalence
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Technical details: inside CARAT

i. m.f. groups

e The ultimate building blocks for crystallographic groups are
irreducible maximal finite subgroups of GL (1, Z).

e These are known for low dimensions Plesken and Pohst 1976

e From these, subgroups can be calculated and tested for
Q-equivalence; here, some invariants (e. g. crystal family, group
order, ...) are helpful

o At present, CARAT does not test properly for Q-equivalence, but
splits into Z-classes and tests for Z-equivalence

e This is done by utilising the sublattice algorithm
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Classification

Technical details: inside CARAT

i. m.f. groups

The ultimate building blocks for crystallographic groups are
irreducible maximal finite subgroups of GL (1, Z).

These are known for low dimensions Plesken and Pohst 1976

From these, subgroups can be calculated and tested for
Q-equivalence; here, some invariants (e. g. crystal family, group
order, ...) are helpful

At present, CARAT does not test properly for Q-equivalence, but
splits into Z-classes and tests for Z-equivalence

This is done by utilising the sublattice algorithm

Affine extensions are calculated using the Zassenhaus
algorithm
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Classification TI-ITI

Technical details: inside CARAT
The sublattice algorithm

Opgenorth, Plesken and Schulz 1998

Start with a finite unimodular group G < GL(n,Z) and compute
G-sublattices of the natural lattice Ly = Z"*1.

e Preprocessing: take the action of G on Ly modulo a prime p
which divides |G|
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Technical details: inside CARAT
The sublattice algorithm

Opgenorth, Plesken and Schulz 1998
Start with a finite unimodular group G < GL(n,Z) and compute
G-sublattices of the natural lattice Ly = Z"*1.
e Preprocessing: take the action of G on Ly modulo a prime p
which divides |G|

o Save the irreducible constituents U of the resulting
representation G — GL(n,Z/pZ)
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Technical details: inside CARAT

The sublattice algorithm

Opgenorth, Plesken and Schulz 1998
Start with a finite unimodular group G < GL(n,Z) and compute
G-sublattices of the natural lattice Ly = Z"*1.
e Preprocessing: take the action of G on Ly modulo a prime p
which divides |G|
o Save the irreducible constituents U of the resulting
representation G — GL(n,Z/pZ)
o Now keep a list of lattices L (starting with L) and compute
sublattices which are kernels of homomorphisms ¢ : L — U for
each U obtained as above
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Opgenorth, Plesken and Schulz 1998
Start with a finite unimodular group G < GL(n,Z) and compute
G-sublattices of the natural lattice Ly = Z"*1.
e Preprocessing: take the action of G on Ly modulo a prime p
which divides |G|
o Save the irreducible constituents U of the resulting
representation G — GL(n,Z/pZ)

o Now keep a list of lattices L (starting with L) and compute
sublattices which are kernels of homomorphisms ¢ : L — U for
each U obtained as above

o This amounts to solving a set of linear equations over Z/pZ
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Technical details: inside CARAT

The sublattice algorithm

Opgenorth, Plesken and Schulz 1998
Start with a finite unimodular group G < GL(n,Z) and compute
G-sublattices of the natural lattice Ly = Z"*1.

Preprocessing: take the action of G on Ly modulo a prime p
which divides |G|

Save the irreducible constituents U of the resulting
representation G — GL(n,Z/pZ)

Now keep a list of lattices L (starting with Ly) and compute
sublattices which are kernels of homomorphisms ¢ : L — U for
each U obtained as above

This amounts to solving a set of linear equations over Z/ pZ
Perform LLL reduction on the resulting lattices
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Classification

Technical details: inside CARAT

The sublattice algorithm

Opgenorth, Plesken and Schulz 1998
Start with a finite unimodular group G < GL(n,Z) and compute
G-sublattices of the natural lattice Ly = Z"*1.

Preprocessing: take the action of G on Ly modulo a prime p
which divides |G|

Save the irreducible constituents U of the resulting
representation G — GL(n,Z/pZ)

Now keep a list of lattices L (starting with Ly) and compute
sublattices which are kernels of homomorphisms ¢ : L — U for
each U obtained as above

This amounts to solving a set of linear equations over Z/ pZ
Perform LLL reduction on the resulting lattices
Circumstance-dependent choice which lattices are to be kept
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Classification TI-ITI

Technical details:inside CARAT
The Zassenhaus algorithm

Zassenhaus 1948; Holt and Plesken 1989
Start with a finite unimodular group G < GL(#,Z) and compute affine
extensions.

« Compute vector systems Der(G, Q" /Z") consisting of all
v: G — Q" that satisfy (gh)v = (gv)h + hv mod Z" for all
g heG
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The Zassenhaus algorithm

Zassenhaus 1948; Holt and Plesken 1989
Start with a finite unimodular group G < GL(#,Z) and compute affine
extensions.

« Compute vector systems Der(G, Q" /Z") consisting of all
v: G — Q" that satisfy (gh)v = (gv)h + hv mod Z" for all
g heG

« Then factor out the submodule InnDer(G, Q" /Z") consisting of
all vy, : G — Q" with gv, = w(1 — g) for ¢ € G which is the
biggest Q-subspace of Der(G, Q" /Z")
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Technical details:inside CARAT

The Zassenhaus algorithm

Zassenhaus 1948; Holt and Plesken 1989
Start with a finite unimodular group G < GL(#,Z) and compute affine
extensions.

« Compute vector systems Der(G, Q" /Z") consisting of all
v: G — Q" that satisfy (gh)v = (gv)h + hv mod Z" for all
g heG

« Then factor out the submodule InnDer(G, Q" /Z") consisting of
all vy, : G — Q" with gv, = w(1 — g) for ¢ € G which is the
biggest Q-subspace of Der(G, Q" /Z")

o Lastly, decide which vector systems are still equivalent. This boils
down to a orbit calculation in the normalizer of G in GL(n,Z)
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Back to Physics

How to preserve N/ = 1 SUSY
Theory

e The point group generator is an element of
SO(6) = SU(4) 2 SU(3)
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Theory

e The point group generator is an element of
SO(6) = SU(4) 2 SU(3)
e Demand exactly one surviving spinor = SU(3) holonomy
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Back to Physics

How to preserve N/ = 1 SUSY
Theory

e The point group generator is an element of
SO(6) = SU(4) 2 SU(3)
e Demand exactly one surviving spinor = SU(3) holonomy

e = At most three independent rotations, two in the Abelian case
(coming from the Cartan of SU(3))
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Back to Physics TI-ITI

How to preserve N/ = 1 SUSY
Theory

e The point group generator is an element of
SO(6) = SU(4) 2 SU(3)
e Demand exactly one surviving spinor = SU(3) holonomy

e = At most three independent rotations, two in the Abelian case
(coming from the Cartan of SU(3))

An example
cos(rt/3) —sin(m/3) 0 0 0 0
sin(7t/3)  cos(7t/3) 0 0 0 0
0 0 cos(27t/3) —sin(27/3) 0 0
0 0 sin(271/3)  cos(27t/3) 0 0
0 0 0 0 cos(rt) —sin(7m)
0 0 0 0 sin(rt)  cos(7)
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Back to Physics TI-ITI

How to preserve N/ = 1 SUSY

Representations
Take P as a discrete subgroup of the 6 of SO(6) = SU(4) and break
to SU(3):

6 >adbad---.

Maximilian Fischer: Cl ifying orbifolds — ical details ]
bctp, Bonn, 13.06.2014 Is 21/29



Back to Physics TI-ITI

How to preserve N/ = 1 SUSY

Representations

Take P as a discrete subgroup of the 6 of SO(6) = SU(4) and break
to SU(3):
6 >adbad---.

Group characters

* 6 = B nip; with n; = ﬁ Ygep Xp; (8)xs(g)
e Iff 6 — a @ a plus, possibly, some singlets, then P C U(3).

e To check P C SU(3), produce explicit matrix representations with
GAP and check their determinants.
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bctp, Bonn, 13.06.2014 s 21/29



Back to Physics

Hodge numbers

MF, Ramos-Sanchez and Vaudrevange 2013

Untwisted sector

o Use the three-dimensional representation p used in the
SUSY-checking
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Back to Physics TI-ITI

Hodge numbers

MF, Ramos-Sanchez and Vaudrevange 2013

Untwisted sector

o Use the three-dimensional representation p used in the
SUSY-checking
(21)

o Then,p®ﬁ—>h8’1)1@--~ andp®@p = hy 1@ ---
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Back to Physics

Hodge numbers

MF, Ramos-Sanchez and Vaudrevange 2013

Untwisted sector

e Use the three-dimensional representation p used in the
SUSY-checking
(11) (21)

e Then,p®p = hy '1®---andp®@p — hy 1D - -+

Twisted sectors

» Construct conjugacy classes [g] of constructing elements of
space group elements with fundamental domain on the torus
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Hodge numbers

MF, Ramos-Sanchez and Vaudrevange 2013
Untwisted sector

e Use the three-dimensional representation p used in the
SUSY-checking
(11) (21)

e Then,p®p = hy '1®---andp®@p — hy 1D - -+

Twisted sectors
» Construct conjugacy classes [g] of constructing elements of
space group elements with fundamental domain on the torus
o If the null-space of g is zero-dimensional, this yields one twisted
27-plet and thus 1 to h%l’l)
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Back to Physics

Hodge numbers

MF, Ramos-Sanchez and Vaudrevange 2013

Untwisted sector

e Use the three-dimensional representation p used in the
SUSY-checking
(11) (21)

e Then,p®p = hy '1®---andp®@p — hy 1D - -+

Twisted sectors

» Construct conjugacy classes [g] of constructing elements of
space group elements with fundamental domain on the torus

o If the null-space of g is zero-dimensional, this yields one twisted
27-plet and thus 1 to h%l’l)

e If the null-space is two-dimensional, this yields one twisted
27-plet and one twisted 27-plet, thus giving (h(Tl'l),h(Tl'O)) of (1,1)

Maximilian Fischer: Classifying orbifolds — technical details
bctp, Bonn, 13.06.2014
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Back to Physics TI-ITI

Fundamental groups

Dixon, Harvey, Vafa and Witten 1985a; Dixon, Harvey, Vafa and Witten 1986; Brown
and Higgins 2002

» 711(O) measures the “connectedness” of the orbifold
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Back to Physics

Fundamental groups
Dixon, Harvey, Vafa and Witten 1985a; Dixon, Harvey, Vafa and Witten 1986; Brown
and Higgins 2002

» 711(O) measures the “connectedness” of the orbifold

e A non-trivial t; is a prerequisite for non-local GUT breaking
schemes
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Back to Physics

Fundamental groups
Dixon, Harvey, Vafa and Witten 1985a; Dixon, Harvey, Vafa and Witten 1986; Brown
and Higgins 2002
e 711(O) measures the “connectedness” of the orbifold
e A non-trivial t; is a prerequisite for non-local GUT breaking
schemes

e To compute 71, first generate
{g€S|IxeR® : gx =x} =F C S of all elements that leave a
point fixed

Maximilian Fischer: Cl ifying orbifolds — ical details
bctp, Bonn, 13.06.2014

23/29



Back to Physics
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Dixon, Harvey, Vafa and Witten 1985a; Dixon, Harvey, Vafa and Witten 1986; Brown
and Higgins 2002
e 711(O) measures the “connectedness” of the orbifold
e A non-trivial t; is a prerequisite for non-local GUT breaking
schemes

e To compute 71, first generate
{g€S|IxeR® : gx =x} =F C S of all elements that leave a

point fixed
e Then, (F) is a normal subgroup of S
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Back to Physics

Fundamental groups
Dixon, Harvey, Vafa and Witten 1985a; Dixon, Harvey, Vafa and Witten 1986; Brown

and Higgins 2002
e 711(O) measures the “connectedness” of the orbifold
e A non-trivial 7r1 is a prerequisite for non-local GUT breaking
schemes

e To compute 71, first generate
{g€S|IxeR® : gx =x} =F C S of all elements that leave a

point fixed
e Then, (F) is a normal subgroup of S
o m =S/(F)
Maximilian Fischer: Cl ifying orbifolds — ical details

bctp, Bonn, 13.06.2014
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Results

Complete Classification (abelian)

Q-class | Z-cl. | aff. cl. || Q-class | Z-cl. | aff. cl.
Za 1 1 7,67, | 12 | 35
Zy 3 3 Lo 7y 10 41

Zg — I 2 2 Zo B Zg 2 4

Zo—11 | 4 i | Zoz, | 4 4

Ly 1 1 Z3 @ 23 5 15
Zg—1 3 3 Z3 ® Ze 2 4

Zg — 11 2 2 Zy D 2y 5 15

Zqp — 1 2 2 Zg P Zg 1 1

Ziy — 11 1 1
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Results TI-ITI

Complete Classification (abelian)

Q-class | Z-cl. | aff. cl. || Q-class | Z-cl. | aff. cl.
Zs 1 1 Zo®7Zy | 12 35
Zy 3 3 Zo®7Z4 | 10 41

Ze—1 | 2(1) | 2(1) Zo ® Zg 2 4

Ze— 11 | 4(3) | 4(3) 7y D7y 4 4

Vv 1 1 Zs® Zs 5 15
Zg—1 | 3(1) | 3(1) Z3®Zg 2 4

Zg — 11 2 2 Zy® 7y 5 15

Ziy — 1 2 2 Ze®Zg 1 1

Zip — 11 | 1 1

Previous work
These are known in the literature, €. g. Bailin and Love 1999
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Results TI-ITI

Complete Classification (abelian)

Q-class | Z-cl. | aff. cl. || Q-class | Z-cl. | aff. cl.
23 1 1 Zo ® 2o 12 35
Zy 3 3 Zo D7y 10 41

Zg — I 2 2 Zo B Zg 2 4

Zo—11 | 4 i | Zoz, | 4 4

Ly 1 1 Z3 @ 23 5 15
Zg—1 3 3 Z3 ® Ze 2 4

Zg — 11 2 2 Zy D 2y 5 15

Zqp — 1 2 2 Zg P Zg 1 1

Ziy — 11 1 1

Previous work

Forste et al. missed four lattices, Donagi & Wendland got almost the
correct number of affine classes Férste, Kobayashi, Ohki and Takahashi 2007;
Donagi and Wendland 2009
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Results

Complete Classification (abelian)

Q-class | Z-cl. | aff. cl. || Q-class | Z-cl. | aff. cl.
Za 1 1 7,67, | 12 | 35
Zy 3 3 Lo 7y 10 41

Zg — I 2 2 Zo B Zeg 2 4

Zo—11 | 4 i ([ Z,07, | 4 2

Ly 1 1 Zs ® 13 5 15
Zg—1 3 3 Z3 @ Ze 2 4

Zg — 11 2 2 Zy D 2y 5 15

Zqp — 1 2 2 Zig P Zg 1 1

Ziy — 11 1 1

Previous work

To the best of our knowledge, these are new!
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Complete Classification (non-abelian)

Q-class Z~cl. | aff. cl. Q-class Z~cl. | aff. cl.
S3 6 11 73 x (73 % Zy) 1 1
D4 9 48 Zg X A4 3 3
Ay 9 15 Ze % S3 2 4
Dg 2 8 A(48) 4 8
Zig X 7 6 18 GL(2,3) 1 4
QD14 4 14 SL(2,3) x Zs 1 3
(Z4 X Zz) X Zz 5 55 A(54) 3 10
Z3 X S3 6 16 Z3 x SL(2,3) 1 2
Frobenius T, 3 3 Zz x ((Ze X Zy) X Zy) 1 1
VWA 1 1 23 X S4 3 3
SL(2,3)-I 4 7 A(96) 4 12
Z4 X S3 1 2 SL(2,3) X Zy 1 2
(Z X Z) X Zn 2 6 2(36¢) 2 4
Zi3 X Dy 2 2 A(108) 1 1
Z3 x Qg 2 2 PSL(3,2) 1 3
Sy 6 19 X(72¢) 2 2
A(27) 3 10 A(216) 1 1

(Z4 X Z4) X Zp 5 30




Some statistics

N=1 N=2 N =4
Q Z aff. | Q Z aff. | Q Z aff. | Q aff.
Abelian 17 60 138 |4 10 23 | 1 1 1 22 162
Non-Abelian | 35 108 331 |3 7 27| 0 O 0 | 38 358
Y 52 168 469 | 7 17 50 | 1 1 1 60 520
15; .
L . *
10+
h2‘1 | . .
[} ° [ )
L e e
51 [ ] [ .
[ ] . [ ] )

80




Results TI-ITI

Outlook

Narain, Sarmadi and Vafa 1987
¢ In recent years, asymmetric orbifolds found heightened interest
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Outlook

Narain, Sarmadi and Vafa 1987
¢ In recent years, asymmetric orbifolds found heightened interest

e There, right- and left-movers are compactified on different
geometries
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Results

Outlook
Narain, Sarmadi and Vafa 1987
¢ In recent years, asymmetric orbifolds found heightened interest
e There, right- and left-movers are compactified on different
geometries
o |n this framework, one matrix describes the whole geometry and
all Wilson lines
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Results

Outlook
Narain, Sarmadi and Vafa 1987

¢ In recent years, asymmetric orbifolds found heightened interest

e There, right- and left-movers are compactified on different
geometries

o |n this framework, one matrix describes the whole geometry and
all Wilson lines

o A classification of space groups in n = 22 dimensions would be
desirable
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Results TI-ITI

Outlook
Narain, Sarmadi and Vafa 1987

¢ In recent years, asymmetric orbifolds found heightened interest

e There, right- and left-movers are compactified on different
geometries

o |n this framework, one matrix describes the whole geometry and
all Wilson lines

o A classification of space groups in n = 22 dimensions would be
desirable

Limitations of CARAT

The i.m.f. groups in n = 22 are known. However, the current
implementation of CARAT, especially Q — Z is built on the
assumption n < 6 and does not simply generalise.

A new implementation could fix this.
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Results TI-ITI

Outlook

o Feasibility: the orders of the involved groups explode
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Results

Outlook

o Feasibility: the orders of the involved groups explode

e The size of the first Q-class of i. m.f. groups in n = 22 is
241 % 39 x 5% x 78 x 112 x 13 x 17 x 19 (O(10%))
GAP - Groups, Algorithms, and Programming, Version 4.5.5 2012
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Results

Outlook

o Feasibility: the orders of the involved groups explode

e The size of the first Q-class of i. m.f. groups in n = 22 is
241 % 39 x 5% x 78 x 112 x 13 x 17 x 19 (O(10%))
GAP - Groups, Algorithms, and Programming, Version 4.5.5 2012

e = Qut of reach of current age computers!
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Results TI-ITI

Conclusion

e There is only a finite number of affine classes of space groups for
a given degree n (cf. CY spaces)
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Conclusion

e There is only a finite number of affine classes of space groups for
a given degree n (cf. CY spaces)

o A complete classification of six-dimensional space groups is

readily available through an easy to use computer program,
CARAT
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Results

Conclusion

e There is only a finite number of affine classes of space groups for
a given degree n (cf. CY spaces)

o A complete classification of six-dimensional space groups is
readily available through an easy to use computer program,
CARAT

o We tested these for AV < 1 SUSY in four dimensions and
compiled a complete list
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Results TI-ITI

Conclusion
e There is only a finite number of affine classes of space groups for
a given degree n (cf. CY spaces)

o A complete classification of six-dimensional space groups is
readily available through an easy to use computer program,
CARAT

o We tested these for ' < 1 SUSY in four dimensions and
compiled a complete list

e Hodge numbers and Fundamental groups are available
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Results TI-ITI

Conclusion

e There is only a finite number of affine classes of space groups for
a given degree n (cf. CY spaces)

o A complete classification of six-dimensional space groups is
readily available through an easy to use computer program,
CARAT

o We tested these for AV < 1 SUSY in four dimensions and
compiled a complete list

e Hodge numbers and Fundamental groups are available

¢ A generalisation for asymmetric orbifolds seems out of reach at
the moment
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Results TI-ITI

Conclusion
e There is only a finite number of affine classes of space groups for
a given degree n (cf. CY spaces)

o A complete classification of six-dimensional space groups is
readily available through an easy to use computer program,
CARAT

o We tested these for ' < 1 SUSY in four dimensions and
compiled a complete list

e Hodge numbers and Fundamental groups are available

o A generalisation for asymmetric orbifolds seems out of reach at
the moment

Thank you!

Maximilian Fischer: Classifying orbifolds — technical details .
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Untwisted Hodge numbers

Untwisted moduli
(hS’l),hEJz’l)) non-Abelian point groups

2,2) Ss, Dy, De

(2,1) QDlé, (Z4 X Zz) X 2, Z4 X 53, (Z(, X Z2) X 2o,
GL(2,3), SL(2,3) x Zs

(2,0) Zig X 2oy, Ziz X 53, Z3 X Zg, SL(2,3)—I, Z3 X D4,
Z3 % Qg, (Z4 X Z4) X 2o, 3 X (Z3 X Z4), Zg X 53,
Z3 X SL(2,3), Z3 X ((Z6 X Zz) X Zz), SL(Z,?)) X Z4

(1,1) Ay, Sy

(1,0) Ty, A(27), Zs x Ay, A(48), A(54), Z3 x Sy, A(96),
%(36¢), A(108), PSL(3,2), X(72¢), A(216)
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Strict orbifold definition
Thurston 2002
An orbifold O is a topological Hausdorff space X with the following
structure data: {U;, I;, U;, ¢; },.,, such that:

1. {U;}ics is an open covering of Xp which is closed under finite
intersections,

2. Vi € I, I; is a discrete group with an action on an open subset
u; C R",

3.Viel, ¢;: U — U;/I; is a homeomorphism; U;/I; means the
set of equivalence classes one gets from identifying each point in
U; with its orbit under the action of I},

4. Vi, j € Iwith U; C U, there is an injective homomorphism
fij : I; = Ij and an embedding ¢;; : U; — Uj; such that the
following diagram commutes.

iel’
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Strict orbifold definition

Pij
U; Uj
¢ij = §ij/ Ii

U,/ T; U/ I
f ij

¢; /1
P

U C U
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The problem with Lie lattices




Bravais groups and crystal families
Let G < GL(#n,7Z) be a finite unimodular group and

F(G) = {F € Ry |Vg € G. ¢'Fg = F}
its form space. Then
B(F) = {g € GL(n,Z)|VF € F.g"Fg = F}

is the Bravais group of F.
The Bravais group of G is B(G) = B(F(G)).

Two finite subgroups G, H < GL(n,Z) belong to the same crystal
family, iff there exist subgroups G’ < G and H' < H with
F(G') = F(G) and F(H') = F(H) and G’ and H' Q-equivalent

Maximilian Fischer: Classifying orbifolds — technical details .
bctp, Bonn, 13.06.2014 s 35/29



Normalizers

e The normalizer of Uin Gis {g € G : gUg™! = U}

e The normalizer of G < GL(n, Z) is the stabilizer of G in the
conjugation action of N(B) on the set of subgroups of B

e N(B) is the normalizer of the Bravais group of G
* N(B) = {g €GL(n,2) : g"F(B)g = F(B)}
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