Bethe Forum

Bonn, 13.06.2014

Classifying orbifolds – technical details

Maximilian Fischer

Technische Universität München, Deutschland

Based on 1209.3906 and 1304.7742

in collaboration with S. Ramos-Sánchez, M. Ratz, J. Torrado and P. Vaudrevange

◆□ > ◆母 > ◆目 > ◆目 > ●目 の < @ >

Outline

Introduction

Orbifolds

Classification

Back to Physics

Results

Heterotic string theory is appealing, because ...

- it is a unified theory of gravity and gauge interactions
- it is mathematically restrained and introduces only one new parameter
- it can preserve exactly $\mathcal{N}=1$ supersymmetry in four dimensions

- Geometric constructions predict the number of space-time dimensions to be ten
- A simple compactification on a T⁶ preserves too much SUSY
- To compactify, one can go for instance either the Calabi-Yau or the Orbifold way

Heterotic string theory is appealing, because ...

- it is a unified theory of gravity and gauge interactions
- it is mathematically restrained and introduces only one new parameter
- it can preserve exactly $\mathcal{N}=1$ supersymmetry in four dimensions

- Geometric constructions predict the number of space-time dimensions to be ten
- A simple compactification on a T⁶ preserves too much SUSY
- To compactify, one can go for instance either the Calabi-Yau or the Orbifold way

Heterotic string theory is appealing, because ...

- it is a unified theory of gravity and gauge interactions
- it is mathematically restrained and introduces only one new parameter
- it can preserve exactly $\mathcal{N}=1$ supersymmetry in four dimensions

- Geometric constructions predict the number of space-time dimensions to be ten
- A simple compactification on a T⁶ preserves too much SUSY
- To compactify, one can go for instance either the Calabi-Yau or the Orbifold way

Heterotic string theory is appealing, because ...

- it is a unified theory of gravity and gauge interactions
- it is mathematically restrained and introduces only one new parameter
- it can preserve exactly $\mathcal{N}=1$ supersymmetry in four dimensions

- Geometric constructions predict the number of space-time dimensions to be ten
- A simple compactification on a \mathbb{T}^6 preserves too much SUSY
- To compactify, one can go for instance either the Calabi-Yau or the Orbifold way

Heterotic string theory is appealing, because ...

- it is a unified theory of gravity and gauge interactions
- it is mathematically restrained and introduces only one new parameter
- it can preserve exactly $\mathcal{N}=1$ supersymmetry in four dimensions

- Geometric constructions predict the number of space-time dimensions to be ten
- A simple compactification on a \mathbb{T}^6 preserves too much SUSY
- To compactify, one can go for instance either the Calabi-Yau or the Orbifold way

Heterotic string theory is appealing, because ...

- it is a unified theory of gravity and gauge interactions
- it is mathematically restrained and introduces only one new parameter
- it can preserve exactly $\mathcal{N}=1$ supersymmetry in four dimensions

- Geometric constructions predict the number of space-time dimensions to be ten
- A simple compactification on a \mathbb{T}^6 preserves too much SUSY
- To compactify, one can go for instance either the **Calabi-Yau** or the **Orbifold** way

- We need a six-dimensional compact topological space with $\mathop{\rm SU}(3)\text{-holonomy}$
- Manifolds with this property are called Calabi-Yau
- However, they are very complicated and many properties remain unknown (for some recent progress on the matter, cf. Groot Nibbelink and Ruehle 2014)
- 1985, Dixon et al. proposed a different class of objects \rightarrow orbifolds

- We need a six-dimensional compact topological space with $\mathop{\rm SU}(3)\text{-holonomy}$
- Manifolds with this property are called Calabi-Yau
- However, they are very complicated and many properties remain unknown (for some recent progress on the matter, cf. Groot Nibbelink and Ruehle 2014)
- 1985, Dixon et al. proposed a different class of objects \rightarrow orbifolds

- We need a six-dimensional compact topological space with $\mathop{\rm SU}(3)\text{-holonomy}$
- Manifolds with this property are called Calabi-Yau
- However, they are very complicated and many properties remain unknown (for some recent progress on the matter, cf. Groot Nibbelink and Ruehle 2014)
- 1985, Dixon et al. proposed a different class of objects \rightarrow orbifolds

- We need a six-dimensional compact topological space with $\mathop{\rm SU}(3)\text{-holonomy}$
- Manifolds with this property are called Calabi-Yau
- However, they are very complicated and many properties remain unknown (for some recent progress on the matter, cf. Groot Nibbelink and Ruehle 2014)
- 1985, Dixon et al. proposed a different class of objects \rightarrow orbifolds

- Orbifolds admit an exact CFT description on the world-sheet
- Modular invariance conditions for the partition function can be explicitly stated
- Same for the mass equations

Spectrum

 \Rightarrow whole spectrum (in principle) computable

Pheno

- Orbifolds admit an exact CFT description on the world-sheet
- Modular invariance conditions for the partition function can be explicitly stated
- Same for the mass equations

Spectrum

 \Rightarrow whole spectrum (in principle) computable

Pheno

- Orbifolds admit an exact CFT description on the world-sheet
- Modular invariance conditions for the partition function can be explicitly stated
- Same for the mass equations

Spectrum

 \Rightarrow whole spectrum (in principle) computable

Pheno

- Orbifolds admit an exact CFT description on the world-sheet
- Modular invariance conditions for the partition function can be explicitly stated
- Same for the mass equations

Spectrum

 \Rightarrow whole spectrum (in principle) computable

Pheno

- Orbifolds admit an exact CFT description on the world-sheet
- Modular invariance conditions for the partition function can be explicitly stated
- Same for the mass equations

Spectrum

 \Rightarrow whole spectrum (in principle) computable

Pheno

(excerpt)

- The first paper on orbifolds already classified all Abelian point groups which admit $\mathcal{N}=1$ SUSY in 4D $_{\rm Dixon,\ Harvey,\ Vafa\ and\ Witten\ 1985b}$
- Abelian orbifolds had been studied quite well, mostly omitting roto-translations and focussing on Lie root lattices

Why is this a bad idea?

- Z₂ ⊕ Z₂ orbifolds had been studied extensively with roto-translations – but only Z₂ ⊕ Z₂
 Donagi and Wendland 2009
- No thorough classification of **all** possible geometries had been tried but it should be possible, right?

(excerpt)

- The first paper on orbifolds already classified all Abelian point groups which admit $\mathcal{N}=1$ SUSY in 4D Dixon, Harvey, Vafa and Witten 1985b
- Abelian orbifolds had been studied quite well, mostly omitting roto-translations and focussing on Lie root lattices

Why is this a bad idea?

- $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ orbifolds had been studied extensively with roto-translations but only $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ Donagi and Wendland 2009
- No thorough classification of **all** possible geometries had been tried but it should be possible, right?

(excerpt)

- The first paper on orbifolds already classified all Abelian point groups which admit $\mathcal{N}=1$ SUSY in 4D $_{\rm Dixon,\ Harvey,\ Vafa\ and\ Witten\ 1985b}$
- Abelian orbifolds had been studied quite well, mostly omitting roto-translations and focussing on Lie root lattices

Why is this a bad idea?

- Z₂ ⊕ Z₂ orbifolds had been studied extensively with roto-translations – but only Z₂ ⊕ Z₂
 Donagi and Wendland 2009
- No thorough classification of **all** possible geometries had been tried but it should be possible, right?

(excerpt)

- The first paper on orbifolds already classified all Abelian point groups which admit $\mathcal{N}=1$ SUSY in 4D Dixon, Harvey, Vafa and Witten 1985b
- Abelian orbifolds had been studied quite well, mostly omitting roto-translations and focussing on Lie root lattices

Why is this a bad idea?

- $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ orbifolds had been studied extensively with roto-translations but only $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ Donagi and Wendland 2009
- No thorough classification of **all** possible geometries had been tried but it should be possible, right?

(excerpt)

- The first paper on orbifolds already classified all Abelian point groups which admit $\mathcal{N}=1$ SUSY in 4D $_{\rm Dixon,\ Harvey,\ Vafa\ and\ Witten\ 1985b}$
- Abelian orbifolds had been studied quite well, mostly omitting roto-translations and focussing on Lie root lattices

Why is this a bad idea?

Bailin and Love 1999; Donagi and Faraggi 2004

- $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ orbifolds had been studied extensively with roto-translations but only $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ Donagi and Wendland 2009
- No thorough classification of **all** possible geometries had been tried but it should be possible, right?

\Rightarrow Yes it is!

Definition

Let *M* be a manifold and *G* a discrete group which acts on *M*. Then, the quotient $\mathcal{O} = M/G$ has the structure of an **orbifold**.

In our cases, M will be \mathbb{R}^6 and G will be a **crystallographic space** group.

Complete definition

Definition

Let *M* be a manifold and *G* a discrete group which acts on *M*. Then, the quotient $\mathcal{O} = M/G$ has the structure of an **orbifold**.

In our cases, M will be \mathbb{R}^6 and G will be a **crystallographic space** group.

Complete definition

Space groups

A **space group** *S* is a discrete subgroup of the Euclidean group in \mathbb{R}^n which contains *n* linearly independent translations.

- The elements $g \in S$ have the structure (ϑ, λ) , where ϑ is a rotation/reflection and λ a translation: $g \cdot v \equiv \vartheta \cdot v + \lambda$
- Let $h = (\omega, \tau) \in S$; then $h \circ g = (\omega \vartheta, \omega \lambda + \tau)$

Augmented matrix notation

$$g = \left(\begin{array}{c|c} \vartheta & \lambda \\ \hline \mathbf{0} & 1 \end{array}\right)$$
$$\left(\begin{array}{c|c} \omega & \tau \\ \hline \mathbf{0} & 1 \end{array}\right) \cdot \left(\begin{array}{c|c} \vartheta & \lambda \\ \hline \mathbf{0} & 1 \end{array}\right) = \left(\begin{array}{c|c} \omega \vartheta & \omega \lambda + \tau \\ \hline \mathbf{0} & 1 \end{array}\right)$$

Space groups

A **space group** *S* is a discrete subgroup of the Euclidean group in \mathbb{R}^n which contains *n* linearly independent translations.

- The elements $g \in S$ have the structure (ϑ, λ) , where ϑ is a rotation/reflection and λ a translation: $g \cdot v \equiv \vartheta \cdot v + \lambda$
- Let $h = (\omega, \tau) \in S$; then $h \circ g = (\omega \vartheta, \omega \lambda + \tau)$

Augmented matrix notation

$$g = \left(\begin{array}{c|c} \vartheta & \lambda \\ \hline \mathbf{0} & 1 \end{array} \right)$$
$$\left(\begin{array}{c|c} \omega & \tau \\ \hline \mathbf{0} & 1 \end{array} \right) \cdot \left(\begin{array}{c|c} \vartheta & \lambda \\ \hline \mathbf{0} & 1 \end{array} \right) = \left(\begin{array}{c|c} \omega \vartheta & \omega \lambda + \tau \\ \hline \mathbf{0} & 1 \end{array} \right)$$

Space groups

A **space group** *S* is a discrete subgroup of the Euclidean group in \mathbb{R}^n which contains *n* linearly independent translations.

- The elements $g \in S$ have the structure (ϑ, λ) , where ϑ is a rotation/reflection and λ a translation: $g \cdot v \equiv \vartheta \cdot v + \lambda$
- Let $h = (\omega, \tau) \in S$; then $h \circ g = (\omega \vartheta, \omega \lambda + \tau)$

Augmented matrix notation

$$g = \left(\frac{\vartheta \mid \lambda}{\mathbf{0} \mid \mathbf{1}}\right)$$
$$\left(\frac{\omega \mid \tau}{\mathbf{0} \mid \mathbf{1}}\right) \cdot \left(\frac{\vartheta \mid \lambda}{\mathbf{0} \mid \mathbf{1}}\right) = \left(\frac{\omega \vartheta \mid \omega \lambda + \tau}{\mathbf{0} \mid \mathbf{1}}\right)$$

- The subset $\Lambda = \{(\mathrm{id}, \lambda)\} \subseteq S$ is called the lattice of the space group.
- In general, for g = (ϑ, λ) ∈ S, λ needs not to be an element of the lattice. Elements of this form are called roto-translations.
- Every lattice Λ defines an equivalence relation on vectors from \mathbb{R}^n : $v \approx w : \Leftrightarrow v w \in \Lambda$.
- The fundamental domain is the unit cell of the lattice, with i. e. a torus T := ℝⁿ/Λ.

- The subset $\Lambda = \{(id, \lambda)\} \subseteq S$ is called the lattice of the space group.
- In general, for g = (ϑ, λ) ∈ S, λ needs not to be an element of the lattice. Elements of this form are called roto-translations.
- Every lattice Λ defines an equivalence relation on vectors from \mathbb{R}^n : $v \approx w : \Leftrightarrow v w \in \Lambda$.
- The fundamental domain is the unit cell of the lattice, with i. e. a torus T := ℝⁿ/Λ.

- The subset $\Lambda = \{(id, \lambda)\} \subseteq S$ is called the lattice of the space group.
- In general, for g = (θ, λ) ∈ S, λ needs not to be an element of the lattice. Elements of this form are called roto-translations.
- Every lattice Λ defines an equivalence relation on vectors from \mathbb{R}^n : $v \approx w : \Leftrightarrow v w \in \Lambda$.
- The fundamental domain is the unit cell of the lattice, with i. e. a torus T := ℝⁿ / Λ.

.

- The subset $\Lambda = \{(id, \lambda)\} \subseteq S$ is called the lattice of the space group.
- In general, for g = (ϑ, λ) ∈ S, λ needs not to be an element of the lattice. Elements of this form are called roto-translations.
- Every lattice Λ defines an equivalence relation on vectors from \mathbb{R}^n : $v \approx w : \Leftrightarrow v w \in \Lambda$.
- The fundamental domain is the unit cell of the lattice, with i. e. a torus T := Rⁿ/Λ.

- The subset $\Lambda = \{(id, \lambda)\} \subseteq S$ is called the lattice of the space group.
- In general, for g = (ϑ, λ) ∈ S, λ needs not to be an element of the lattice. Elements of this form are called roto-translations.
- Every lattice Λ defines an equivalence relation on vectors from \mathbb{R}^n : $v \approx w : \Leftrightarrow v w \in \Lambda$.
- The fundamental domain is the unit cell of the lattice, with i. e. a torus T := Rⁿ/Λ.

- For $S = \{(\vartheta, \lambda)\}$, the point group is $P = \{\vartheta\}$.
- In general, P is a discrete subgroup of O(6).
- Λ always is a normal subgroup of S ⇒ S is a semi-direct product iff P is a subgroup of it. Then, S = P κ Λ.
- In general, one has **roto-translations** (ϑ, τ) with $\tau \notin \Lambda$!
- In that case, one yields O = T/G from the torus by modding out the orbifolding group: G = ⟨(ϑ, n_ie_i)⟩ where (e_i)_{i∈{1,...,6}} is a basis for Λ and 0 ≤ n_i < 1.

- For $S = \{(\vartheta, \lambda)\}$, the point group is $P = \{\vartheta\}$.
- In general, P is a discrete subgroup of O(6).
- Λ always is a normal subgroup of S ⇒ S is a semi-direct product iff P is a subgroup of it. Then, S = P κ Λ.
- In general, one has **roto-translations** (ϑ, τ) with $\tau \notin \Lambda$!
- In that case, one yields O = T/G from the torus by modding out the orbifolding group: G = ⟨(ϑ, n_ie_i)⟩ where (e_i)_{i∈{1,...,6}} is a basis for Λ and 0 ≤ n_i < 1.

- For $S = \{(\vartheta, \lambda)\}$, the point group is $P = \{\vartheta\}$.
- In general, *P* is a discrete subgroup of O(6).
- Λ always is a normal subgroup of S ⇒ S is a semi-direct product iff P is a subgroup of it. Then, S = P κ Λ.
- In general, one has **roto-translations** (ϑ, τ) with $\tau \notin \Lambda$!
- In that case, one yields O = T/G from the torus by modding out the orbifolding group: G = ⟨(ϑ, n_ie_i)⟩ where (e_i)_{i∈{1,...,6}} is a basis for Λ and 0 ≤ n_i < 1.

- For $S = \{(\vartheta, \lambda)\}$, the point group is $P = \{\vartheta\}$.
- In general, *P* is a discrete subgroup of O(6).
- Λ always is a normal subgroup of S ⇒ S is a semi-direct product iff P is a subgroup of it. Then, S = P κ Λ.
- In general, one has **roto-translations** (ϑ, τ) with $\tau \notin \Lambda$!
- In that case, one yields O = T/G from the torus by modding out the orbifolding group: G = ⟨(ϑ, n_ie_i)⟩ where (e_i)_{i∈{1,...,6}} is a basis for Λ and 0 ≤ n_i < 1.

- For $S = \{(\vartheta, \lambda)\}$, the point group is $P = \{\vartheta\}$.
- In general, *P* is a discrete subgroup of O(6).
- Λ always is a normal subgroup of S ⇒ S is a semi-direct product iff P is a subgroup of it. Then, S = P κ Λ.
- In general, one has **roto-translations** (ϑ, τ) with $\tau \notin \Lambda$!
- In that case, one yields O = T/G from the torus by modding out the orbifolding group: G = ⟨(ϑ, n_ie_i)⟩ where (e_i)_{i∈{1,...,6}} is a basis for Λ and 0 ≤ n_i < 1.

1	0	1	0	
	1	0	0	
	0	0	1)

 $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}$

 $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}$

Alice Krige. Picture: http://de.eonline.com

Maximilian Fischer: Classifying orbifolds – technical details bctp, Bonn, 13.06.2014

- For any *S*, the short exact sequence 0 → Λ → S → P → 1 holds. Thus, *P* maps Λ to itself.
- Consequently, when changing from Euclidean to lattice basis, the point group becomes a subgroup of GL(*n*, ℤ).

Let *S* and *S'* be two space groups of the same degree *n*. Let *P* and *P'* be their point groups. They belong to the same \ldots

- affine class, iff they are isomorphic, i. e. if there is an affine mapping f : ℝⁿ → ℝⁿ such that f⁻¹Sf = S'.
- **2.** Z-class, iff P and P' are conjugate in $GL(n, \mathbb{Z})$, i. e. if there is a matrix $V \in GL(n, \mathbb{Z})$ such that $V^{-1}PV = P'$.
- **3.** Q-class, iff P and P' are conjugate in GL(n, Q), i.e. if there is a matrix $V \in GL(n, Q)$ such that $V^{-1}PV = P'$.

- For any *S*, the short exact sequence 0 → Λ → S → P → 1 holds. Thus, *P* maps Λ to itself.
- Consequently, when changing from Euclidean to lattice basis, the point group becomes a subgroup of GL(*n*, ℤ).

Let *S* and *S'* be two space groups of the same degree *n*. Let *P* and *P'* be their point groups. They belong to the same \ldots

- affine class, iff they are isomorphic, i. e. if there is an affine mapping f : ℝⁿ → ℝⁿ such that f⁻¹Sf = S'.
- **2.** Z-class, iff P and P' are conjugate in $GL(n, \mathbb{Z})$, i. e. if there is a matrix $V \in GL(n, \mathbb{Z})$ such that $V^{-1}PV = P'$.
- **3.** Q-class, iff P and P' are conjugate in GL(n, Q), i.e. if there is a matrix $V \in GL(n, Q)$ such that $V^{-1}PV = P'$.

- For any *S*, the short exact sequence $\mathbf{0} \to \Lambda \to S \to P \to \mathbf{1}$ holds. Thus, *P* maps Λ to itself.
- Consequently, when changing from Euclidean to lattice basis, the point group becomes a subgroup of GL(*n*, ℤ).

Let *S* and *S'* be two space groups of the same degree *n*. Let *P* and *P'* be their point groups. They belong to the same ...

- 1. affine class, iff they are isomorphic, i. e. if there is an affine mapping $f : \mathbb{R}^n \to \mathbb{R}^n$ such that $f^{-1}Sf = S'$.
- **2.** \mathbb{Z} -class, iff *P* and *P'* are conjugate in $GL(n, \mathbb{Z})$, i. e. if there is a matrix $V \in GL(n, \mathbb{Z})$ such that $V^{-1}PV = P'$.
- Q-class, iff P and P' are conjugate in GL(n, Q), i.e. if there is a matrix V ∈ GL(n, Q) such that V⁻¹PV = P'.

- For any *S*, the short exact sequence $\mathbf{0} \to \Lambda \to S \to P \to \mathbf{1}$ holds. Thus, *P* maps Λ to itself.
- Consequently, when changing from Euclidean to lattice basis, the point group becomes a subgroup of GL(*n*, ℤ).

Let *S* and *S'* be two space groups of the same degree *n*. Let *P* and *P'* be their point groups. They belong to the same ...

- 1. affine class, iff they are isomorphic, i. e. if there is an affine mapping $f : \mathbb{R}^n \to \mathbb{R}^n$ such that $f^{-1}Sf = S'$.
- **2.** \mathbb{Z} -class, iff *P* and *P'* are conjugate in $GL(n, \mathbb{Z})$, i. e. if there is a matrix $V \in GL(n, \mathbb{Z})$ such that $V^{-1}PV = P'$.
- Q-class, iff P and P' are conjugate in GL(n, Q), i.e. if there is a matrix V ∈ GL(n, Q) such that V⁻¹PV = P'.

- For any *S*, the short exact sequence $\mathbf{0} \to \Lambda \to S \to P \to \mathbf{1}$ holds. Thus, *P* maps Λ to itself.
- Consequently, when changing from Euclidean to lattice basis, the point group becomes a subgroup of GL(*n*, ℤ).

Let *S* and *S'* be two space groups of the same degree *n*. Let *P* and *P'* be their point groups. They belong to the same ...

- 1. affine class, iff they are isomorphic, i. e. if there is an affine mapping $f : \mathbb{R}^n \to \mathbb{R}^n$ such that $f^{-1}Sf = S'$.
- **2.** \mathbb{Z} -class, iff *P* and *P'* are conjugate in $GL(n, \mathbb{Z})$, i. e. if there is a matrix $V \in GL(n, \mathbb{Z})$ such that $V^{-1}PV = P'$.
- Q-class, iff P and P' are conjugate in GL(n, Q), i.e. if there is a matrix V ∈ GL(n, Q) such that V⁻¹PV = P'.

- For any *S*, the short exact sequence $\mathbf{0} \to \Lambda \to S \to P \to \mathbf{1}$ holds. Thus, *P* maps Λ to itself.
- Consequently, when changing from Euclidean to lattice basis, the point group becomes a subgroup of GL(*n*, ℤ).

Let *S* and *S'* be two space groups of the same degree *n*. Let *P* and *P'* be their point groups. They belong to the same ...

- 1. affine class, iff they are isomorphic, i. e. if there is an affine mapping $f : \mathbb{R}^n \to \mathbb{R}^n$ such that $f^{-1}Sf = S'$.
- **2.** \mathbb{Z} -class, iff *P* and *P'* are conjugate in $GL(n, \mathbb{Z})$, i. e. if there is a matrix $V \in GL(n, \mathbb{Z})$ such that $V^{-1}PV = P'$.
- Q-class, iff P and P' are conjugate in GL(n, Q), i.e. if there is a matrix V ∈ GL(n, Q) such that V⁻¹PV = P'.

$$\mathcal{F}(P) = \left\{ F \in \mathbb{R}_{\text{sym}}^{n \times n} \mid \forall p \in P : p^T F p = F \right\} .$$
 (1)

- Point groups P and P' belong to the same \mathbb{Z} -class, iff $\exists V \in GL(n, \mathbb{Z})$, such that $V^{-1}PV = P'$
- *V* lying in GL(*n*, ℤ) implies that lattice vectors get mapped to lattice vectors.
- \Rightarrow space groups in the same \mathbb{Z} -class possess the same lattice (they share the same form space \mathcal{F}).

$$\mathcal{F}(P) = \left\{ F \in \mathbb{R}_{\text{sym}}^{n \times n} \mid \forall p \in P : p^T F p = F \right\} .$$
 (1)

- Point groups P and P' belong to the same \mathbb{Z} -class, iff $\exists V \in GL(n, \mathbb{Z})$, such that $V^{-1}PV = P'$
- *V* lying in GL(*n*, Z) implies that lattice vectors get mapped to lattice vectors.
- \Rightarrow space groups in the same \mathbb{Z} -class possess the same lattice (they share the same form space \mathcal{F}).

$$\mathcal{F}(P) = \left\{ F \in \mathbb{R}_{\text{sym}}^{n \times n} \mid \forall p \in P : p^T F p = F \right\} .$$
 (1)

- Point groups P and P' belong to the same \mathbb{Z} -class, iff $\exists V \in GL(n, \mathbb{Z})$, such that $V^{-1}PV = P'$
- *V* lying in GL(*n*, ℤ) implies that lattice vectors get mapped to lattice vectors.
- \Rightarrow space groups in the same \mathbb{Z} -class possess the same lattice (they share the same form space \mathcal{F}).

$$\mathcal{F}(P) = \left\{ F \in \mathbb{R}_{\text{sym}}^{n \times n} \mid \forall p \in P : p^T F p = F \right\} .$$
 (1)

- Point groups P and P' belong to the same \mathbb{Z} -class, iff $\exists V \in GL(n, \mathbb{Z})$, such that $V^{-1}PV = P'$
- *V* lying in GL(*n*, ℤ) implies that lattice vectors get mapped to lattice vectors.
- ⇒ space groups in the same Z-class possess the same lattice (they share the same form space *F*).

Plesken and Schulz 2000

- CARAT ("Crystallographic Algorithms And Tables") is a software suite designed to solve crystallographic problems in dimensions up to six
- It can be accessed through the UNIX-shell, i. e. no programming language must be learned
- CrystCat is an interface to CARAT for the GAP system

CARAT **provides**

- a full catalogue of Q-classes up to degree 6
- Routines for splitting Q- to Z- and into affine classes
- Normalizers, Form spaces, Bravais groups and Crystal families

Plesken and Schulz 2000

- CARAT ("Crystallographic Algorithms And Tables") is a software suite designed to solve crystallographic problems in dimensions up to six
- It can be accessed through the UNIX-shell, i. e. no programming language must be learned
- CrystCat is an interface to CARAT for the GAP system

CARAT **provides**

- a full catalogue of Q-classes up to degree 6
- Routines for splitting Q- to Z- and into affine classes
- Normalizers, Form spaces, Bravais groups and Crystal families

Plesken and Schulz 2000

- CARAT ("Crystallographic Algorithms And Tables") is a software suite designed to solve crystallographic problems in dimensions up to six
- It can be accessed through the UNIX-shell, i. e. no programming language must be learned
- CrystCat is an interface to CARAT for the GAP system

CARAT **provides**

- a full catalogue of Q-classes up to degree 6
- Routines for splitting Q- to Z- and into affine classes
- Normalizers, Form spaces, Bravais groups and Crystal families

Plesken and Schulz 2000

- CARAT ("Crystallographic Algorithms And Tables") is a software suite designed to solve crystallographic problems in dimensions up to six
- It can be accessed through the UNIX-shell, i. e. no programming language must be learned
- CrystCat is an interface to CARAT for the GAP system

CARAT provides ...

- a full catalogue of Q-classes up to degree 6
- Routines for splitting \mathbb{Q} to \mathbb{Z} and into affine classes
- Normalizers, Form spaces, Bravais groups and Crystal families

Plesken and Schulz 2000

- CARAT ("Crystallographic Algorithms And Tables") is a software suite designed to solve crystallographic problems in dimensions up to six
- It can be accessed through the UNIX-shell, i. e. no programming language must be learned
- CrystCat is an interface to CARAT for the GAP system

CARAT **provides** ...

- a full catalogue of Q-classes up to degree 6
- Routines for splitting $\mathbb{Q}\text{-}$ to $\mathbb{Z}\text{-}$ and into affine classes
- Normalizers, Form spaces, Bravais groups and Crystal families

Plesken and Schulz 2000

- CARAT ("Crystallographic Algorithms And Tables") is a software suite designed to solve crystallographic problems in dimensions up to six
- It can be accessed through the UNIX-shell, i. e. no programming language must be learned
- CrystCat is an interface to CARAT for the GAP system

CARAT **provides** ...

- a full catalogue of Q-classes up to degree 6
- Routines for splitting $\mathbb{Q}\text{-}$ to $\mathbb{Z}\text{-}$ and into affine classes
- Normalizers, Form spaces, Bravais groups and Crystal families

Technical details: inside CARAT

i.m.f. groups

- The ultimate building blocks for crystallographic groups are **irreducible maximal finite** subgroups of GL(*n*, Z).
- These are known for low dimensions Plesken and Pohst 1976
- From these, subgroups can be calculated and tested for Q-equivalence; here, some invariants (e.g. crystal family, group order, ...) are helpful
- At present, CARAT does not test properly for ℚ-equivalence, but splits into ℤ-classes and tests for ℤ-equivalence
- This is done by utilising the sublattice algorithm
- Affine extensions are calculated using the **Zassenhaus** algorithm

Technical details: inside CARAT

i.m.f. groups

- The ultimate building blocks for crystallographic groups are **irreducible maximal finite** subgroups of GL(*n*, Z).
- These are known for low dimensions Plesken and Pohst 1976
- From these, subgroups can be calculated and tested for Q-equivalence; here, some invariants (e.g. crystal family, group order, ...) are helpful
- At present, CARAT does not test properly for Q-equivalence, but splits into Z-classes and tests for Z-equivalence
- This is done by utilising the sublattice algorithm
- Affine extensions are calculated using the **Zassenhaus** algorithm

Technical details: inside CARAT

Skip

i.m.f. groups

- The ultimate building blocks for crystallographic groups are **irreducible maximal finite** subgroups of GL(*n*, Z).
- These are known for low dimensions Plesken and Pohst 1976
- From these, subgroups can be calculated and tested for Q-equivalence; here, some invariants (e.g. crystal family, group order, ...) are helpful
- At present, CARAT does not test properly for \mathbb{Q} -equivalence, but splits into \mathbb{Z} -classes and tests for \mathbb{Z} -equivalence
- This is done by utilising the sublattice algorithm
- Affine extensions are calculated using the **Zassenhaus** algorithm

Skip

i.m.f. groups

- The ultimate building blocks for crystallographic groups are **irreducible maximal finite** subgroups of GL(*n*, Z).
- These are known for low dimensions Plesken and Pohst 1976
- From these, subgroups can be calculated and tested for Q-equivalence; here, some invariants (e.g. crystal family, group order, ...) are helpful
- At present, CARAT does not test properly for $\mathbb Q$ -equivalence, but splits into $\mathbb Z\text{-classes}$ and tests for $\mathbb Z\text{-equivalence}$
- This is done by utilising the sublattice algorithm
- Affine extensions are calculated using the **Zassenhaus** algorithm

Skip

i.m.f. groups

- The ultimate building blocks for crystallographic groups are **irreducible maximal finite** subgroups of GL(*n*, Z).
- These are known for low dimensions Plesken and Pohst 1976
- From these, subgroups can be calculated and tested for Q-equivalence; here, some invariants (e.g. crystal family, group order, ...) are helpful
- At present, CARAT does not test properly for Q-equivalence, but splits into Z-classes and tests for Z-equivalence
- This is done by utilising the sublattice algorithm
- Affine extensions are calculated using the **Zassenhaus** algorithm

Skip

i.m.f. groups

- The ultimate building blocks for crystallographic groups are **irreducible maximal finite** subgroups of GL(*n*, Z).
- These are known for low dimensions Plesken and Pohst 1976
- From these, subgroups can be calculated and tested for Q-equivalence; here, some invariants (e.g. crystal family, group order, ...) are helpful
- At present, CARAT does not test properly for Q-equivalence, but splits into Z-classes and tests for Z-equivalence
- This is done by utilising the sublattice algorithm
- Affine extensions are calculated using the **Zassenhaus** algorithm

The sublattice algorithm

Opgenorth, Plesken and Schulz 1998

- Preprocessing: take the action of G on L_0 modulo a prime p which divides |G|
- Save the irreducible constituents *U* of the resulting representation *G* → GL(*n*, Z/pZ)
- Now keep a list of lattices L (starting with L_0) and compute sublattices which are kernels of homomorphisms $\varphi: L \to U$ for each U obtained as above
- This amounts to solving a set of linear equations over $\mathbb{Z}/p\mathbb{Z}$
- Perform LLL reduction on the resulting lattices
- Circumstance-dependent choice which lattices are to be kept

The sublattice algorithm

Opgenorth, Plesken and Schulz 1998

- Preprocessing: take the action of G on L_0 modulo a prime p which divides |G|
- Save the irreducible constituents *U* of the resulting representation *G* → GL(*n*, Z/pZ)
- Now keep a list of lattices *L* (starting with L_0) and compute sublattices which are kernels of homomorphisms $\varphi: L \to U$ for each *U* obtained as above
- This amounts to solving a set of linear equations over $\mathbb{Z}/p\mathbb{Z}$
- Perform LLL reduction on the resulting lattices
- Circumstance-dependent choice which lattices are to be kept

The sublattice algorithm

Opgenorth, Plesken and Schulz 1998

- Preprocessing: take the action of G on L_0 modulo a prime p which divides |G|
- Save the irreducible constituents *U* of the resulting representation *G* → GL(*n*, Z/pZ)
- Now keep a list of lattices L (starting with L_0) and compute sublattices which are kernels of homomorphisms $\varphi: L \to U$ for each U obtained as above
- This amounts to solving a set of linear equations over $\mathbb{Z}/p\mathbb{Z}$
- Perform LLL reduction on the resulting lattices
- Circumstance-dependent choice which lattices are to be kept

The sublattice algorithm

Opgenorth, Plesken and Schulz 1998

- Preprocessing: take the action of G on L_0 modulo a prime p which divides |G|
- Save the irreducible constituents *U* of the resulting representation *G* → GL(*n*, Z/pZ)
- Now keep a list of lattices L (starting with L_0) and compute sublattices which are kernels of homomorphisms $\varphi: L \to U$ for each U obtained as above
- This amounts to solving a set of linear equations over $\mathbb{Z}/p\mathbb{Z}$
- Perform LLL reduction on the resulting lattices
- Circumstance-dependent choice which lattices are to be kept

The sublattice algorithm

Opgenorth, Plesken and Schulz 1998

- Preprocessing: take the action of G on L_0 modulo a prime p which divides |G|
- Save the irreducible constituents *U* of the resulting representation *G* → GL(*n*, Z/pZ)
- Now keep a list of lattices L (starting with L_0) and compute sublattices which are kernels of homomorphisms $\varphi: L \to U$ for each U obtained as above
- This amounts to solving a set of linear equations over $\mathbb{Z}/p\mathbb{Z}$
- Perform LLL reduction on the resulting lattices
- Circumstance-dependent choice which lattices are to be kept

The sublattice algorithm

Opgenorth, Plesken and Schulz 1998

- Preprocessing: take the action of G on L_0 modulo a prime p which divides |G|
- Save the irreducible constituents *U* of the resulting representation *G* → GL(*n*, Z/pZ)
- Now keep a list of lattices L (starting with L_0) and compute sublattices which are kernels of homomorphisms $\varphi: L \to U$ for each U obtained as above
- This amounts to solving a set of linear equations over $\mathbb{Z}/p\mathbb{Z}$
- Perform LLL reduction on the resulting lattices
- Circumstance-dependent choice which lattices are to be kept

The Zassenhaus algorithm

Zassenhaus 1948; Holt and Plesken 1989

Start with a finite unimodular group $G \leq GL(n, \mathbb{Z})$ and compute affine extensions.

- Compute vector systems Der(G, Qⁿ/Zⁿ) consisting of all v: G → Qⁿ that satisfy (gh)v = (gv)h + hv mod Zⁿ for all g, h ∈ G
- Then factor out the submodule InnDer(G, Qⁿ/Zⁿ) consisting of all v_w : G → Qⁿ with gv_w = w(1 g) for g ∈ G which is the biggest Q-subspace of Der(G, Qⁿ/Zⁿ)
- Lastly, decide which vector systems are still equivalent. This boils down to a orbit calculation in the normalizer of *G* in GL(*n*, Z)

The Zassenhaus algorithm

Zassenhaus 1948; Holt and Plesken 1989

Start with a finite unimodular group $G \leq GL(n, \mathbb{Z})$ and compute affine extensions.

- Compute vector systems Der(G, Qⁿ/Zⁿ) consisting of all v: G → Qⁿ that satisfy (gh)v = (gv)h + hv mod Zⁿ for all g, h ∈ G
- Then factor out the submodule InnDer(G, Qⁿ/Zⁿ) consisting of all v_w : G → Qⁿ with gv_w = w(1 g) for g ∈ G which is the biggest Q-subspace of Der(G, Qⁿ/Zⁿ)
- Lastly, decide which vector systems are still equivalent. This boils down to a orbit calculation in the normalizer of *G* in GL(*n*, Z)

The Zassenhaus algorithm

Zassenhaus 1948; Holt and Plesken 1989

Start with a finite unimodular group $G \leq GL(n, \mathbb{Z})$ and compute affine extensions.

- Compute vector systems Der(G, Qⁿ/Zⁿ) consisting of all v: G → Qⁿ that satisfy (gh)v = (gv)h + hv mod Zⁿ for all g, h ∈ G
- Then factor out the submodule InnDer(G, Qⁿ/Zⁿ) consisting of all v_w : G → Qⁿ with gv_w = w(1 g) for g ∈ G which is the biggest Q-subspace of Der(G, Qⁿ/Zⁿ)
- Lastly, decide which vector systems are still equivalent. This boils down to a orbit calculation in the normalizer of *G* in GL(*n*, ℤ)

Theory

- The point group generator is an element of $SO(6) \approx SU(4) \supsetneq SU(3)$
- Demand exactly one surviving spinor \Rightarrow SU(3) holonomy
- \Rightarrow At most three independent rotations, two in the Abelian case (coming from the Cartan of SU(3))

An example

$$\begin{pmatrix} \cos(\pi/3) & -\sin(\pi/3) & 0 & 0 & 0 & 0 \\ \sin(\pi/3) & \cos(\pi/3) & 0 & 0 & 0 & 0 \\ 0 & 0 & \cos(2\pi/3) & -\sin(2\pi/3) & 0 & 0 \\ 0 & 0 & \sin(2\pi/3) & \cos(2\pi/3) & 0 & 0 \\ 0 & 0 & 0 & \cos(\pi) & -\sin(\pi) \\ 0 & 0 & 0 & \cos(\pi) & \cos(\pi) \end{pmatrix}$$

Theory

- The point group generator is an element of $SO(6) \approx SU(4) \supseteq SU(3)$
- Demand exactly one surviving spinor \Rightarrow SU(3) holonomy
- \Rightarrow At most three independent rotations, two in the Abelian case (coming from the Cartan of SU(3))

An example

$$\begin{pmatrix} \cos(\pi/3) & -\sin(\pi/3) & 0 & 0 & 0 & 0\\ \sin(\pi/3) & \cos(\pi/3) & 0 & 0 & 0 & 0\\ 0 & 0 & \cos(2\pi/3) & -\sin(2\pi/3) & 0 & 0\\ 0 & 0 & \sin(2\pi/3) & \cos(2\pi/3) & 0 & 0\\ 0 & 0 & 0 & \cos(\pi) & -\sin(\pi)\\ 0 & 0 & 0 & \cos(\pi) & \cos(\pi) \end{pmatrix}$$

Theory

- The point group generator is an element of $SO(6) \approx SU(4) \supseteq SU(3)$
- Demand exactly one surviving spinor \Rightarrow SU(3) holonomy
- \Rightarrow At most three independent rotations, two in the Abelian case (coming from the Cartan of SU(3))

An example

$$\begin{pmatrix} \cos(\pi/3) & -\sin(\pi/3) & 0 & 0 & 0 & 0 \\ \sin(\pi/3) & \cos(\pi/3) & 0 & 0 & 0 & 0 \\ 0 & 0 & \cos(2\pi/3) & -\sin(2\pi/3) & 0 & 0 \\ 0 & 0 & \sin(2\pi/3) & \cos(2\pi/3) & 0 & 0 \\ 0 & 0 & 0 & \cos(\pi) & -\sin(\pi) \\ 0 & 0 & 0 & 0 & \sin(\pi) & \cos(\pi) \end{pmatrix}$$

Theory

- The point group generator is an element of $SO(6) \approx SU(4) \supsetneq SU(3)$
- Demand exactly one surviving spinor \Rightarrow SU(3) holonomy
- \Rightarrow At most three independent rotations, two in the Abelian case (coming from the Cartan of SU(3))

An example

$$\begin{pmatrix} \cos(\pi/3) & -\sin(\pi/3) & 0 & 0 & 0 & 0 \\ \sin(\pi/3) & \cos(\pi/3) & 0 & 0 & 0 & 0 \\ 0 & 0 & \cos(2\pi/3) & -\sin(2\pi/3) & 0 & 0 \\ 0 & 0 & \sin(2\pi/3) & \cos(2\pi/3) & 0 & 0 \\ 0 & 0 & 0 & 0 & \cos(\pi) & -\sin(\pi) \\ 0 & 0 & 0 & 0 & \sin(\pi) & \cos(\pi) \end{pmatrix}$$

How to preserve $\mathcal{N} = 1$ SUSY

Representations

Take P as a discrete subgroup of the 6 of $\mathrm{SO}(6)\cong\mathrm{SU}(4)$ and break to $\mathrm{SU}(3)$:

 $\mathbf{6} \rightarrow \mathbf{a} \oplus \mathbf{b} \oplus \cdots$.

Group characters

- 6 $\rightarrow \bigoplus_{i=1}^{c} n_i \rho_i$ with $n_i = \frac{1}{|P|} \sum_{g \in P} \chi_{\rho_i}(g) \overline{\chi_6(g)}$
- Iff $\mathbf{6} \to \mathbf{a} \oplus \overline{\mathbf{a}}$ plus, possibly, some singlets, then $P \subsetneq U(3)$.
- To check *P* ⊊ SU(3), produce explicit matrix representations with GAP and check their determinants.

How to preserve $\mathcal{N} = 1$ SUSY

Representations

Take P as a discrete subgroup of the 6 of $\mathrm{SO}(6)\cong\mathrm{SU}(4)$ and break to $\mathrm{SU}(3)$:

$$\mathbf{6} \to \mathbf{a} \oplus \mathbf{b} \oplus \cdots$$
.

Group characters

- $\mathbf{6} \to \bigoplus_{i=1}^{c} n_i \boldsymbol{\rho}_i$ with $n_i = \frac{1}{|P|} \sum_{g \in P} \chi_{\boldsymbol{\rho}_i}(g) \overline{\chi_{\mathbf{6}}(g)}$
- Iff $\mathbf{6} \to \mathbf{a} \oplus \overline{\mathbf{a}}$ plus, possibly, some singlets, then $P \subsetneq \mathrm{U}(3)$.
- To check *P* ⊊ SU(3), produce explicit matrix representations with GAP and check their determinants.

MF, Ramos-Sanchez and Vaudrevange 2013

Untwisted sector

- Use the three-dimensional representation ρ used in the SUSY-checking
- Then, $\rho \otimes \overline{\rho} \to h_U^{(1,1)} \mathbf{1} \oplus \cdots$ and $\rho \otimes \rho \to h_U^{(2,1)} \mathbf{1} \oplus \cdots$

- Construct conjugacy classes [g] of constructing elements of space group elements with fundamental domain on the torus
- If the null-space of g is zero-dimensional, this yields one twisted 27-plet and thus 1 to h_T^(1,1)
- If the null-space is two-dimensional, this yields one twisted
 27-plet and one twisted 27-plet, thus giving (h_T^(1,1), h_T^(1,0)) of (1,1)

MF, Ramos-Sanchez and Vaudrevange 2013

Untwisted sector

- Use the three-dimensional representation ρ used in the SUSY-checking
- Then, $\rho \otimes \overline{\rho} \to h_U^{(1,1)} \mathbf{1} \oplus \cdots$ and $\rho \otimes \rho \to h_U^{(2,1)} \mathbf{1} \oplus \cdots$

- Construct conjugacy classes [g] of constructing elements of space group elements with fundamental domain on the torus
- If the null-space of g is zero-dimensional, this yields one twisted 27-plet and thus 1 to h_T^(1,1)
- If the null-space is two-dimensional, this yields one twisted
 27-plet and one twisted 27-plet, thus giving (h_T^(1,1), h_T^(1,0)) of (1,1)

MF, Ramos-Sanchez and Vaudrevange 2013

Untwisted sector

- Use the three-dimensional representation ρ used in the SUSY-checking
- Then, $\rho \otimes \overline{\rho} \to h_U^{(1,1)} \mathbf{1} \oplus \cdots$ and $\rho \otimes \rho \to h_U^{(2,1)} \mathbf{1} \oplus \cdots$

- Construct conjugacy classes [g] of constructing elements of space group elements with fundamental domain on the torus
- If the null-space of g is zero-dimensional, this yields one twisted 27-plet and thus 1 to $h_{\rm T}^{(1,1)}$
- If the null-space is two-dimensional, this yields one twisted 27-plet and one twisted $\overline{\textbf{27}}$ -plet, thus giving $(h_{\text{T}}^{(1,1)}, h_{\text{T}}^{(1,0)})$ of (1,1)

MF, Ramos-Sanchez and Vaudrevange 2013

Untwisted sector

- Use the three-dimensional representation ρ used in the SUSY-checking
- Then, $\rho \otimes \overline{\rho} \to h_U^{(1,1)} \mathbf{1} \oplus \cdots$ and $\rho \otimes \rho \to h_U^{(2,1)} \mathbf{1} \oplus \cdots$

- Construct conjugacy classes [g] of constructing elements of space group elements with fundamental domain on the torus
- If the null-space of g is zero-dimensional, this yields one twisted 27-plet and thus 1 to $h_{\rm T}^{(1,1)}$
- If the null-space is two-dimensional, this yields one twisted 27-plet and one twisted $\overline{\textbf{27}}$ -plet, thus giving $(h_{\text{T}}^{(1,1)}, h_{\text{T}}^{(1,0)})$ of (1,1)

MF, Ramos-Sanchez and Vaudrevange 2013

Untwisted sector

- Use the three-dimensional representation ρ used in the SUSY-checking
- Then, $\rho \otimes \overline{\rho} \to h_U^{(1,1)} \mathbf{1} \oplus \cdots$ and $\rho \otimes \rho \to h_U^{(2,1)} \mathbf{1} \oplus \cdots$

- Construct conjugacy classes [g] of constructing elements of space group elements with fundamental domain on the torus
- If the null-space of g is zero-dimensional, this yields one twisted 27-plet and thus 1 to $h_{\rm T}^{(1,1)}$
- If the null-space is two-dimensional, this yields one twisted 27-plet and one twisted $\overline{\textbf{27}}$ -plet, thus giving $(h_{T}^{(1,1)}, h_{T}^{(1,0)})$ of (1,1)

- $\pi_1(\mathcal{O})$ measures the "connectedness" of the orbifold
- A non-trivial π_1 is a prerequisite for non-local GUT breaking schemes
- To compute π₁, first generate
 {g ∈ S | ∃x ∈ ℝ⁶ : gx = x} = F ⊊ S of all elements that leave a
 point fixed
- Then, $\langle F \rangle$ is a normal subgroup of S
- $\pi_1 = S / \langle F \rangle$

- $\pi_1(\mathcal{O})$ measures the "connectedness" of the orbifold
- A non-trivial π_1 is a prerequisite for non-local GUT breaking schemes
- To compute π₁, first generate
 {g ∈ S | ∃x ∈ ℝ⁶ : gx = x} = F ⊊ S of all elements that leave a
 point fixed
- Then, $\langle F \rangle$ is a normal subgroup of S
- $\pi_1 = S / \langle F \rangle$

- $\pi_1(\mathcal{O})$ measures the "connectedness" of the orbifold
- A non-trivial π_1 is a prerequisite for non-local GUT breaking schemes
- To compute π₁, first generate
 {g ∈ S | ∃x ∈ ℝ⁶ : gx = x} = F ⊊ S of all elements that leave a
 point fixed
- Then, $\langle F \rangle$ is a normal subgroup of S
- $\pi_1 = S/\langle F \rangle$

- $\pi_1(\mathcal{O})$ measures the "connectedness" of the orbifold
- A non-trivial π_1 is a prerequisite for non-local GUT breaking schemes
- To compute π₁, first generate
 {g ∈ S | ∃x ∈ ℝ⁶ : gx = x} = F ⊊ S of all elements that leave a
 point fixed
- Then, $\langle F \rangle$ is a normal subgroup of S
- $\pi_1 = S / \langle F \rangle$

- $\pi_1(\mathcal{O})$ measures the "connectedness" of the orbifold
- A non-trivial π_1 is a prerequisite for non-local GUT breaking schemes
- To compute π₁, first generate
 {g ∈ S | ∃x ∈ ℝ⁶ : gx = x} = F ⊊ S of all elements that leave a
 point fixed
- Then, $\langle F \rangle$ is a normal subgroup of S

•
$$\pi_1 = S/\langle F \rangle$$

Q-class	\mathbb{Z} -cl.	aff. cl.	Q-class	\mathbb{Z} -cl.	aff. cl.
\mathbb{Z}_3	1	1	$\mathbb{Z}_2\oplus\mathbb{Z}_2$	12	35
\mathbb{Z}_4	3	3	$\mathbb{Z}_2\oplus\mathbb{Z}_4$	10	41
$\mathbb{Z}_6 - I$	2	2	$\mathbb{Z}_2 \oplus \mathbb{Z}_6$	2	4
$\mathbb{Z}_6 - II$	4	4	$\mathbb{Z}_2 \oplus \mathbb{Z}'_6$	4	4
\mathbb{Z}_7	1	1	$\mathbb{Z}_3 \oplus \mathbb{Z}_3$	5	15
$\mathbb{Z}_8 - I$	3	3	$\mathbb{Z}_3 \oplus \mathbb{Z}_6$	2	4
$\mathbb{Z}_8 - II$	2	2	$\mathbb{Z}_4\oplus\mathbb{Z}_4$	5	15
$\mathbb{Z}_{12} - I$	2	2	$\mathbb{Z}_6 \oplus \mathbb{Z}_6$	1	1
$\mathbb{Z}_{12} - II$	1	1			

Previous work

Q-class	\mathbb{Z} -cl.	aff. cl.	Q-class	\mathbb{Z} -cl.	aff. cl.
\mathbb{Z}_3	1	1	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$	12	35
\mathbb{Z}_4	3	3	$\mathbb{Z}_2\oplus\mathbb{Z}_4$	10	41
$\mathbb{Z}_6 - I$	2 (1)	2 (1)	$\mathbb{Z}_2 \oplus \mathbb{Z}_6$	2	4
$\mathbb{Z}_6 - II$	4 (3)	4 (3)	$\mathbb{Z}_2 \oplus \mathbb{Z}'_6$	4	4
\mathbb{Z}_7	1	1	$\mathbb{Z}_3 \oplus \mathbb{Z}_3$	5	15
$\mathbb{Z}_8 - I$	3 <mark>(1)</mark>	3 (1)	$\mathbb{Z}_3 \oplus \mathbb{Z}_6$	2	4
$\mathbb{Z}_8 - II$	2	2	$\mathbb{Z}_4\oplus\mathbb{Z}_4$	5	15
$\mathbb{Z}_{12} - I$	2	2	$\mathbb{Z}_6 \oplus \mathbb{Z}_6$	1	1
$\mathbb{Z}_{12} - II$	1	1			

Previous work

These are known in the literature, e.g. Bailin and Love 1999

Q-class	\mathbb{Z} -cl.	aff. cl.	Q-class	\mathbb{Z} -cl.	aff. cl.
\mathbb{Z}_3	1	1	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$	12	35
\mathbb{Z}_4	3	3	$\mathbb{Z}_2\oplus\mathbb{Z}_4$	10	41
$\mathbb{Z}_6 - I$	2	2	$\mathbb{Z}_2 \oplus \mathbb{Z}_6$	2	4
$\mathbb{Z}_6 - II$	4	4	$\mathbb{Z}_2 \oplus \mathbb{Z}'_6$	4	4
\mathbb{Z}_7	1	1	$\mathbb{Z}_3 \oplus \mathbb{Z}_3$	5	15
$\mathbb{Z}_8 - I$	3	3	$\mathbb{Z}_3 \oplus \mathbb{Z}_6$	2	4
$\mathbb{Z}_8 - II$	2	2	$\mathbb{Z}_4\oplus\mathbb{Z}_4$	5	15
$\mathbb{Z}_{12} - I$	2	2	$\mathbb{Z}_6 \oplus \mathbb{Z}_6$	1	1
$\mathbb{Z}_{12} - II$	1	1			

Previous work

Förste et al. missed four lattices, Donagi & Wendland got almost the correct number of affine classes Förste, Kobayashi, Ohki and Takahashi 2007; Donagi and Wendland 2009

Q-class	\mathbb{Z} -cl.	aff. cl.	Q-class	\mathbb{Z} -cl.	aff. cl.
\mathbb{Z}_3	1	1	$\mathbb{Z}_2\oplus\mathbb{Z}_2$	12	35
\mathbb{Z}_4	3	3	$\mathbb{Z}_2 \oplus \mathbb{Z}_4$	10	41
$\mathbb{Z}_6 - I$	2	2	$\mathbb{Z}_2 \oplus \mathbb{Z}_6$	2	4
$\mathbb{Z}_6 - II$	4	4	$\mathbb{Z}_2 \oplus \mathbb{Z}_6'$	4	4
\mathbb{Z}_7	1	1	$\mathbb{Z}_3 \oplus \mathbb{Z}_3$	5	15
$\mathbb{Z}_8 - I$	3	3	$\mathbb{Z}_3 \oplus \mathbb{Z}_6$	2	4
$\mathbb{Z}_8 - II$	2	2	$\mathbb{Z}_4\oplus\mathbb{Z}_4$	5	15
$\mathbb{Z}_{12} - I$	2	2	$\mathbb{Z}_6 \oplus \mathbb{Z}_6$	1	1
$\mathbb{Z}_{12} - II$	1	1			

Previous work

To the best of our knowledge, these are new!

Q-class	\mathbb{Z} -cl.	aff. cl.	Q-class	\mathbb{Z} -cl.	aff. cl.
S ₃	6	11	$\mathbb{Z}_3 imes (\mathbb{Z}_3 times \mathbb{Z}_4)$	1	1
D_4	9	48	$\mathbb{Z}_3 imes A_4$	3	3
A_4	9	15	$\mathbb{Z}_6 \times S_3$	2	4
D ₆	2	8	$\Delta(48)$	4	8
$\mathbb{Z}_8 \rtimes \mathbb{Z}_2$	6	18	GL(2,3)	1	4
<i>QD</i> ₁₆	4	14	$SL(2,3) \rtimes \mathbb{Z}_2$	1	3
$(\mathbb{Z}_4 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2$	5	55	$\Delta(54)$	3	10
$\mathbb{Z}_3 imes S_3$	6	16	$\mathbb{Z}_3 \times SL(2,3)$	1	2
Frobenius T ₇	3	3	$\mathbb{Z}_3 \times ((\mathbb{Z}_6 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2)$	1	1
$\mathbb{Z}_3 \rtimes \mathbb{Z}_8$	1	1	$\mathbb{Z}_3 imes S_4$	3	3
SL(2,3)–I	4	7	$\Delta(96)$	4	12
$\mathbb{Z}_4 imes S_3$	1	2	$SL(2,3) \rtimes \mathbb{Z}_4$	1	2
$(\mathbb{Z}_6 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2$	2	6	$\Sigma(36\phi)$	2	4
$\mathbb{Z}_3 imes D_4$	2	2	$\Delta(108)$	1	1
$\mathbb{Z}_3 imes Q_8$	2	2	PSL(3,2)	1	3
S4	6	19	$\Sigma(72\phi)$	2	2
$\Delta(27)$	3	10	$\Delta(216)$	1	1
$ (\mathbb{Z}_4 \times \mathbb{Z}_4) \rtimes \mathbb{Z}_2 $	5	30			

Some statistics

	$\mathcal{N} = 1$		$\mathcal{N}=2$		$\mathcal{N}=4$			Σ				
	Q	\mathbb{Z}	aff.	Q	\mathbb{Z}	aff.	Q	\mathbb{Z}	aff.	Q	\mathbb{Z}	aff.
Abelian	17	60	138	4	10	23	1	1	1	22	71	162
Non-Abelian	35	108	331	3	7	27	0	0	0	38	115	358
\sum	52	168	469	7	17	50	1	1	1	60	186	520

Outlook

Narain, Sarmadi and Vafa 1987

- In recent years, asymmetric orbifolds found heightened interest
- There, right- and left-movers are compactified on different geometries
- In this framework, one matrix describes the whole geometry and all Wilson lines
- A classification of space groups in n = 22 dimensions would be desirable

Limitations of CARAT

The i.m.f. groups in n = 22 are known. However, the current implementation of CARAT, especially $\mathbb{Q} \to \mathbb{Z}$ is built on the assumption $n \leq 6$ and does not simply generalise. A new implementation could fix this.

Outlook

Narain, Sarmadi and Vafa 1987

- In recent years, asymmetric orbifolds found heightened interest
- There, right- and left-movers are compactified on different geometries
- In this framework, one matrix describes the whole geometry and all Wilson lines
- A classification of space groups in n = 22 dimensions would be desirable

Limitations of CARAT

The i.m. f. groups in n = 22 are known. However, the current implementation of CARAT, especially $\mathbb{Q} \to \mathbb{Z}$ is built on the assumption $n \le 6$ and does not simply generalise. A new implementation could fix this.

Narain, Sarmadi and Vafa 1987

- In recent years, asymmetric orbifolds found heightened interest
- There, right- and left-movers are compactified on different geometries
- In this framework, one matrix describes the whole geometry and all Wilson lines
- A classification of space groups in n = 22 dimensions would be desirable

Limitations of CARAT

The i.m.f. groups in n = 22 are known. However, the current implementation of CARAT, especially $\mathbb{Q} \to \mathbb{Z}$ is built on the assumption $n \leq 6$ and does not simply generalise. A new implementation could fix this.

Narain, Sarmadi and Vafa 1987

- In recent years, asymmetric orbifolds found heightened interest
- There, right- and left-movers are compactified on different geometries
- In this framework, one matrix describes the whole geometry and all Wilson lines
- A classification of space groups in n = 22 dimensions would be desirable

Limitations of CARAT

The i.m.f. groups in n = 22 are known. However, the current implementation of CARAT, especially $\mathbb{Q} \to \mathbb{Z}$ is built on the assumption $n \leq 6$ and does not simply generalise. A new implementation could fix this.

Narain, Sarmadi and Vafa 1987

- In recent years, asymmetric orbifolds found heightened interest
- There, right- and left-movers are compactified on different geometries
- In this framework, one matrix describes the whole geometry and all Wilson lines
- A classification of space groups in n = 22 dimensions would be desirable

Limitations of CARAT

The i.m.f. groups in n = 22 are known. However, the current implementation of CARAT, especially $\mathbb{Q} \to \mathbb{Z}$ is built on the assumption $n \le 6$ and does not simply generalise. A new implementation could fix this.

- Feasibility: the orders of the involved groups explode
- The size of the first Q-class of i. m. f. groups in n = 22 is $2^{41} \times 3^9 \times 5^4 \times 7^3 \times 11^2 \times 13 \times 17 \times 19 \ (\mathcal{O}(10^{27}))$

GAP – Groups, Algorithms, and Programming, Version 4.5.5 2012

• \Rightarrow Out of reach of current age computers!

- · Feasibility: the orders of the involved groups explode
- The size of the first Q-class of i. m. f. groups in n = 22 is $2^{41} \times 3^9 \times 5^4 \times 7^3 \times 11^2 \times 13 \times 17 \times 19 (\mathcal{O}(10^{27}))$

GAP – Groups, Algorithms, and Programming, Version 4.5.5 2012

⇒ Out of reach of current age computers!

- · Feasibility: the orders of the involved groups explode
- The size of the first Q-class of i. m. f. groups in n = 22 is $2^{41} \times 3^9 \times 5^4 \times 7^3 \times 11^2 \times 13 \times 17 \times 19 \ (\mathcal{O}(10^{27}))$

GAP – Groups, Algorithms, and Programming, Version 4.5.5 2012

⇒ Out of reach of current age computers!

- There is only a finite number of affine classes of space groups for a given degree *n* (cf. CY spaces)
- A complete classification of six-dimensional space groups is readily available through an easy to use computer program, CARAT
- We tested these for $\mathcal{N} \leq 1$ SUSY in four dimensions and compiled a complete list
- Hodge numbers and Fundamental groups are available
- A generalisation for asymmetric orbifolds seems out of reach at the moment

- There is only a finite number of affine classes of space groups for a given degree *n* (cf. CY spaces)
- A complete classification of six-dimensional space groups is readily available through an easy to use computer program, CARAT
- We tested these for $\mathcal{N} \leq 1$ SUSY in four dimensions and compiled a complete list
- Hodge numbers and Fundamental groups are available
- A generalisation for asymmetric orbifolds seems out of reach at the moment

- There is only a finite number of affine classes of space groups for a given degree *n* (cf. CY spaces)
- A complete classification of six-dimensional space groups is readily available through an easy to use computer program, CARAT
- We tested these for $\mathcal{N} \leq 1$ SUSY in four dimensions and compiled a complete list
- Hodge numbers and Fundamental groups are available
- A generalisation for asymmetric orbifolds seems out of reach at the moment

- There is only a finite number of affine classes of space groups for a given degree *n* (cf. CY spaces)
- A complete classification of six-dimensional space groups is readily available through an easy to use computer program, CARAT
- We tested these for $\mathcal{N} \leq 1$ SUSY in four dimensions and compiled a complete list
- Hodge numbers and Fundamental groups are available
- A generalisation for asymmetric orbifolds seems out of reach at the moment

- There is only a finite number of affine classes of space groups for a given degree *n* (cf. CY spaces)
- A complete classification of six-dimensional space groups is readily available through an easy to use computer program, CARAT
- We tested these for $\mathcal{N} \leq 1$ SUSY in four dimensions and compiled a complete list
- Hodge numbers and Fundamental groups are available
- A generalisation for asymmetric orbifolds seems out of reach at the moment

- There is only a finite number of affine classes of space groups for a given degree *n* (cf. CY spaces)
- A complete classification of six-dimensional space groups is readily available through an easy to use computer program, CARAT
- We tested these for $\mathcal{N} \leq 1$ SUSY in four dimensions and compiled a complete list
- Hodge numbers and Fundamental groups are available
- A generalisation for asymmetric orbifolds seems out of reach at the moment

Thank you!

References

Bailin, D. and A. Love (1999). "Orbifold compactifications of string theory". In: Phys.Rept. 315, pp. 285–408. DOI: 10.1016/S0370-1573 (98) 00126-4.

Brown, Ronald and Philip J. Higgins (2002). The fundamental groupoid of the quotient of a Hausdorff space by a discontinuous action of a discrete group is the orbit groupoid of the induced action. Available online at

http://arxiv.org/abs/math/0212271v1;

Dixon, Lance J. et al. (1985a). "STRINGS ON ORBIFOLDS". In: Nucl. Phys. B261, pp. 678-686.

--- (1986). "STRINGS ON ORBIFOLDS. 2". In: Nucl. Phys. B274, pp. 285-314.

Donagi, Ron and Alon E. Faraggi (2004). "On the number of chiral generations in Z(2) x Z(2) orbifolds". In: Nucl. Phys. B694, pp. 187–205. DOI: 10.1016/j.nuclphysb.2004.06.009. arXiv:hep-th/0403272.

Donagi, Ron and Katrin Wendland (2009). "On orbifolds and free fermion constructions". In: J. Geom. Phys. 59, pp. 942–968. DOI: 10.1016/j.geomphys.2009.04.004. arXiv:0809.0330 [hep-th].

Förste, Stefan et al. (2007). "Non-Factorisable Z(2) times Z(2) Heterotic Orbifold Models and Yukawa Couplings". In: JHEP 0703, p. 011. DOI: 10.1088/1126-6708/2007/03/011. arXiv:hep-th/0612044 [hep-th].

GAP - Groups, Algorithms, and Programming, Version 4.5.5 (2012). The GAP Group. URL:

\verb+(http://www.gap-system.org)+.

Groot Nibbelink, Stefan and Fabian Ruehle (2014). "Torus partition functions and spectra of gauged linear sigma models". In: arXiv:1403.2380 [hep-th].

Holt, D.F. and W. Plesken (1989). Perfect groups. Oxford mathematical monographs. Clarendon Press. ISBN: 9780198535591. URL: http://books.google.de/books?id=Nf7uAAAAMAAJ.

MF, Saul Ramos-Sanchez and Patrick K. S. Vaudrevange (2013). "Heterotic non-Abelian orbifolds". In: arXiv:1304.7742 [hep-th]. Narain, K.S., M.H. Sarmadi and C. Vafa (1987). "Asymmetric Orbifolds". In: Nucl.Phys. B288, p. 551. DOI:

10.1016/0550-3213(87)90228-8.

Opgenorth, J., W. Plesken and T. Schulz (1998). "Crystallographic Algorithms and Tables". In: Acta Crystallographica Section A 54.5, pp. 517–531. DOI: 11.1107/S010876739701547X. URL: http://dx.doi.org/10.1107/S010876739701547X.

Plesken, Wilhelm and Michael Pohst (Sept. 1976). "On maximal finite irreducible subgroups of GL (n, Z). I: The five and seven dimensional case. II: The six dimensional case". In: Bulletin of the American Mathematical Society 82.5, pp. 757–758. URL:

http://projecteuclid.org/euclid.bams/1183538234.

Plesken, Wilhelm and Tilman Schulz (2000). "Counting Crystallographic Groups in Low Dimensions". In: Experimental Mathematics 9, pp. 407–411.

Thurston, William P. (2002). The Geometry and Topology of Three-Manifolds. Website. Available online at

http://www.msri.org/publications/books/gt3m/;

Zassenhaus, Hans (1948). "Über einen Algorithmus zur Bestimmung der Raumgruppen". Cerman. In: Commentarii Mathematici Maximili Hefvettdie 1. Glapsi tylingt 4tb lösids 60/19/26/kal lotatails. 1007/BF02568029. URL: http://dx.doi.org/10.1007/BF02568029.

Untwisted Hodge numbers

Untwisted moduli	
$(h_{U}^{(1,1)}, h_{U}^{(2,1)})$	non-Abelian point groups
(2,2)	S_3, D_4, D_6
(2,1)	$QD_{16}, (\mathbb{Z}_4 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2, \mathbb{Z}_4 \times S_3, (\mathbb{Z}_6 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2,$
	$\operatorname{GL}(2,3), \operatorname{SL}(2,3) \rtimes \mathbb{Z}_2$
(2,0)	$\mathbb{Z}_8 \rtimes \mathbb{Z}_2, \mathbb{Z}_3 \times S_3, \mathbb{Z}_3 \rtimes \mathbb{Z}_8, SL(2,3) - I, \mathbb{Z}_3 \times D_4,$
	$\mathbb{Z}_3 \times Q_8$, $(\mathbb{Z}_4 \times \mathbb{Z}_4) \rtimes \mathbb{Z}_2$, $\mathbb{Z}_3 \times (\mathbb{Z}_3 \rtimes \mathbb{Z}_4)$, $\mathbb{Z}_6 \times S_3$,
	$\mathbb{Z}_3 \times \mathrm{SL}(2,3), \mathbb{Z}_3 \times ((\mathbb{Z}_6 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2), \mathrm{SL}(2,3) \rtimes \mathbb{Z}_4$
(1,1)	A_4, S_4
(1,0)	$T_7, \Delta(27), \mathbb{Z}_3 \times A_4, \Delta(48), \Delta(54), \mathbb{Z}_3 \times S_4, \Delta(96),$
	$\Sigma(36\phi), \Delta(108), \text{PSL}(3,2), \Sigma(72\phi), \Delta(216)$

Strict orbifold definition

Thurston 2002

An **orbifold** \mathcal{O} is a topological Hausdorff space X_0 with the following structure data: $\{U_i, \Gamma_i, \tilde{U}_i, \varphi_i\}_{i \in I}$, such that:

- 1. $\{U_i\}_{i \in I}$ is an open covering of X_O which is closed under finite intersections,
- **2.** $\forall i \in I, \Gamma_i$ is a discrete group with an action on an open subset $\tilde{U}_i \subseteq \mathbb{R}^n$,
- **3.** $\forall i \in I, \varphi_i : U_i \to \tilde{U}_i / \Gamma_i$ is a homeomorphism; \tilde{U}_i / Γ_i means the set of equivalence classes one gets from identifying each point in U_i with its orbit under the action of Γ_i ,
- **4.** $\forall i, j \in I$ with $U_i \subseteq U_j$ there is an injective homomorphism $f_{ij}: \Gamma_i \hookrightarrow \Gamma_j$ and an embedding $\tilde{\varphi}_{ij}: \tilde{U}_i \hookrightarrow \tilde{U}_j$ such that the following diagram commutes.

Strict orbifold definition

Back

The problem with Lie lattices

Bravais groups and crystal families

Let $G \leq \operatorname{GL}(n, \mathbb{Z})$ be a finite unimodular group and

$$\mathcal{F}(G) = \{F \in \mathbb{R}^{n \times n}_{\text{sym}} | \forall g \in G. \ g^T F g = F\}$$

its form space. Then

$$B(\mathcal{F}) = \{g \in \mathrm{GL}(n, \mathbb{Z}) | \forall F \in \mathcal{F}. g^T F g = F\}$$

is the Bravais group of \mathcal{F} .

The **Bravais group of** G is $B(G) = B(\mathcal{F}(G))$.

Two finite subgroups $G, H \leq \operatorname{GL}(n, \mathbb{Z})$ belong to the same crystal family, iff there exist subgroups $G' \leq G$ and $H' \leq H$ with $\mathcal{F}(G') = \mathcal{F}(G)$ and $\mathcal{F}(H') = \mathcal{F}(H)$ and G' and $H' \mathbb{Q}$ -equivalent

Normalizers

- The normalizer of U in G is $\{g \in G : gUg^{-1} = U\}$
- The normalizer of G ≤ GL(n, Z) is the stabilizer of G in the conjugation action of N(B) on the set of subgroups of B
- *N*(*B*) is the normalizer of the Bravais group of *G*
- $N(B) = \{g \in \operatorname{GL}(n, \mathbb{Z}) : g^T \mathcal{F}(B)g = \mathcal{F}(B)\}$

