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1. Introduction
Heterotic string theory on symmetric orbifolds

is one of very useful string models on 6D compact spaces 
to realize a realistic low-energy effective field theory.

compact space =   T6/Zn

Its geometrical aspects are rather simple.
String theory on orbifolds is solvable analytically.
Then, in principle any (stringy) perturbative
calculations  can be carried out.
…………    lots of good aspects



Heterotic symmetric orbifold models
Indeed many people have been working on hetetoric
(symmetric) orbifold models.
Then, we have obtained (semi-)realistic models 
and interesting phenomenological aspects.

Dixon, Harvey, Vafa, Witten, ‘85, ‘86
Ibanez, Nilles, Quevedo, ’87, Ibanez, Kim, Nilles, Quevedo, ‘87
Casas, Munoz, Bailin, Love, Katsuki, Kawamura, T.K., 
Ohtsubo, Ono, Tanioka, Raby, Zhang, Buchmuler, Hamaguchi, 
Lebedev, Ratz, Choi, Kyae, Ramos-Sanchez, Vaudrevange, 
Wingerter, Ploger, Forste, Ohki, Takahashi,  Blaszczk, 
Groot Nibbelink, Ruehle, Trapletti, Loukas, Fischer, Kappl, 
Cabo Bizet, Mayorga Pena, Parameswaran, Schmitz, Zavala,  

…………    many people
sorry if I miss your names



Asymmetric orbifolds

Left-mover and right-mover are independent of each other 
in heterotic string theory. 

symmetric orbifold

asymmetric orbifold

Narain, Sarmadi, Vafa, ‘87 

NN ZTZT / orbifoldmover -right/ orbifoldmover -left 66 

MN ZTZT / orbifoldmover -right/ orbifoldmover -left 66 



Asymmetric orbifolds

Narain, Sarmadi, Vafa, ’87

the left-movers of a string theory live on one orbifold, 
and the right-movers live on another orbifold. 
We shall call such spaces asymmetric orbifolds. 

In view of the fact that the separation of left- and right-
movers is already done in heterotic strings and  
that orbifolds are consistent, it seems somewhat surprising 
that these two ideas had not been combined before.

MN ZTZT / orbifoldmover -right/ orbifoldmover -left 66 



Heterotic asymmetric orbifold models
Symmetric orbifolds Asymmetric orbifolds

(Explicit model building 
except equivalent models)

Dixon, Harvey, Vafa, Witten, ‘85, ‘86
Narain, Sarmadi, Vafa,  ‘87

Ibanez, Nilles, Quevedo, ’87, 
Ibanez, Kim, Nilles, Quevedo, ‘87

…………….                        Ibanez, Mas, Nilles, Quevedo, ’88 
Kakushadze, Tye, ‘96

uncountable papers           Ito, et. al. , ’11
Bye, T.K., Kuwakino ’13

small number of papers
a few of papers every ten years



Asymmetric orbifolds

Why a few studies ?
Maybe one of reasons is that geometrical pictures 
and intuitions are poor compared with the symmetric 

orbifolds.

However, some aspects are quite similar to 
the symmetric one.

Thus heterotic asymmetric orbifolds would be 
as interesting as the symmetric ones.

Let’s study. 

MN ZTZT / orbifoldmover -right/ orbifoldmover -left 66 



Comparison between symmetric and asymmetric 

orbifolds before going into detail
Moduli
symmetric orbifold

geometrical moduli appear 

asymmetric orbifold

The dilaton appears in both.

NN ZTZT / orbifoldmover -right/ orbifoldmover -left 66 

MN ZTZT / orbifoldmover -right/ orbifoldmover -left 66 
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Comparison between symmetric and asymmetric 

orbifolds before going into detail
Degeneracy factors 
symmetric orbifold with the twist g

the number of fixed points e.g. n= 27 for Z3 

asymmetric orbifold

Geometrical meaning is not so clear.
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Comparison between symmetric and asymmetric 

orbifolds before going into detail
Left-mover maassless spectra  

The twisted sector in the Z3 symmetric orbifold has 
the conformal dimension, 1/3, because of twisted B.C..
Conformal dimension = 1/3 (1/4) for SU(3) 3 (SU(2) 2). 

For example, the quark doublets have the conformal 
dimensions, 7/12, and they cann’t have other non-Abelian 

charges in the twisted sector.

Asymmetric side 

Quark doublets in the twisted sector can have another 
non-Abelian charge, SU(3) or SU(2) flavor symmetries.

1)dimensions  conformal( 

.0  ,1 when example,For  hL



Asymmetric orbifolds

Some aspects are different between symmetric 
and asymmetric orbifold models, while other aspects 
are similar.

Anyway, heterotic asymmetric orbifolds would be 
as intereting as the symmetric ones.

Let’s study. 



2. Model construction 

total extra dimensions    6+16 = 22 for left-movers
6       = 6   for right-movers  

Our starting point is 22D torus compactification
for left-movers 

and 6D torus compactification
for right-movers.

even and self-dual Lorentzian lattice

lattice.Narain     need  We 22,6



Narain lattice  

The classification of (22,6) Narain lattices is not clear
(at least to me).

We have classification for even and self-dual 
Euclidian lattices.                 

We use the technical tool: 
lattice engineering technique, 

Euclidian lattice   Lorentzian lattice 

Lerche, Schellekens, Warner, ‘89



Lattice engineering technique  
Lerche, Schellekens, Warner, ‘89

E6 x SU(3) is a maximal subgroup of E8.            
E8 lattice, which is even self-dual, is decomposed as 

1 and 2 are fundamental and anti-fundamental 
weights of E6 and SU(3).

We call E6 and SU(3) dual to each other.

)2,2()1,1()0,0( )3(6)3(6)3(6 SUESUESUE 



Lattice engineering technique  
Lerche, Schellekens, Warner, ‘89

lattice engineering               

They have the same modular transformation properties.
E8 Euclidian lattice  

(6,6) Narain lattice    

Euclidian lattice   Lorentzian lattice 

   ,22   ,11   ,00

  ),mover-right(E  mover)-(left SU(3) relacing

6SU(3)6SU(3)6SU(3)

6

EEE




)2,2()1,1()0,0(
666666 EEEEEE 



Lattice engineering technique  
Lerche, Schellekens, Warner, ‘89

lattice engineering 

. lattice, dual-selfeven an  offactor  group  theis 

 of subgroup maximal
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Even self-dual lattices   
8D even self-dual Euclidean lattice     E8 
16D                                                E8xE8, SO(32)
24D                                              23 Niemeier lattices

A2xA2xA2
lattice engineering 

We can construct (22,6) Narain lattices.                             

.    replace We dualGG
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Towards Z3 orbifold models   

In order to construct asymmetric Z3 orbifold models, 
we need right-mover lattices including 

We construct (22,6) Narain lattice 
including these right-mover lattices 

by starting with Euclidean lattice and 
using lattice engineering technique.

24       ,)2(       ,6 3 ADAE 



Towards Z3 orbifold models   

lots of lattices including 
see Beye, T.K., Kuwakino, 1304.5621 classification

Various left-mover lattices
 various gauge symmetries before orfolding

We have understood the starting points 
towards Z3 asymmetric orbifold construction.
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3. Z3 asymmetric orbifold models   
Beye, T.K., Kuwakino, 1311.4687

Example of asymmetric orbifold

22D Left-mover lattice is devided by shift V. 
Various possibilities for shift V with 3V on lattice

Massless spectrum 
unbroken gauge group 

untwisted matter fields 

twisted massless condition 

There is no oscillator modes, because N=integer. 
In some models, we can introduce Wilson lines.

1
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Model 1    
Beye, T.K., Kuwakino, 1311.4687                                

Starting lattice, 

We divide right-movers by Z3 twist and 
left-movers by Z3 shift V.

Unbroken gauge group  

U(1)Y is anomaly-free.

degeneracy factor in the twisted sector = 3
We did not introduce WL.                         
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Model 1    
Beye, T.K., Kuwakino, 1311.4687            

full massless spectrum 

3 x 12 multiplets in untwisted sector
3 x 37 multiplets in twisted sector 
maybe smaller number than symmetric models 

3 generations of (MSSM) quarks and leptons 
+ vector-like matter fields 

top quark has O(1) of Yukawa coupling, 
but the charm Yukawa coupling is also strong.

U(1)Y is anomaly-free.



Model 2    
Beye, T.K., Kuwakino, 1311.4687           

Starting lattice, 

We divide right-movers by Z3 twist and left-mover 
by Z3 shift V.

Unbroken gauge group  

U(1)(B-L) is anomaly-free.
SU(2)F  flavor symmetry

degeneracy factor in the twisted sector = 1
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Model 2    
Beye, T.K., Kuwakino, 1311.4687            

full massless spectrum 

3 x 5 multiplets in untwisted sector
1x 65 multiplets in twisted sector 
maybe smaller number than symmetric models 

3 generations of (would-be) quarks and leptons 
+ vector-like matter fields 

SU(2) flavor symmetry
Left-handed quarks   (1+2) under SU(2) flavor symmetry,

in the twisted sector
top Yukawa coupling is of O(1).



Other models    

We have studied asymmetric Z3 orbifold models 
with only right-movers twisted and vanishing Wilson lines.

Similarly, we can construct asymmetric Z3 orbifold models 
with left-movers also twisted partly and/or 

non-vanishing Wilson lines.

Also we can study other ZN asymmetric orbifold models 
in  a similar way.  



4. Enhancement point and 
flavor symmetry     

Beye, T.K., Kuwakino, 1406.XXXX            
Starting point of asymmetric orbifold models 

is Narain models.

Gauge enhancement point in the moduli space

Flavor symmetries:    the topic in the last week

Heterotic sting theory on symmetric orbifolds
leads to certain non-Abelian discrete flavor symmetries.

T.K., Nilles, Ploger, Raby, Ratz, ’07

We revisit this from the viewpoint of the enhancement of 
point in the moduli space.



Coupling selection rule and 
symmetries

A string can be specified by 

its boundary condition.

Two strings can be connected 

to become a string if their 

boundary conditions fit each other.

coupling selection rule

symmetry

)0( X
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Heterotic orbifold models

S1/Z2 Orbifold

There are two singular points, 

which are called fixed points.
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Heterotic orbifold models

S1/Z2 Orbifold
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Heterotic orbifold models
S1/Z2 Orbifold

twisted string

untwisted string )0()(   XX
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Z2 x Z2 in Heterotic orbifold models
S1/Z2 Orbifold

two Z2’s 

twisted string

untwisted string 

Z2 even for both Z2
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Geometrical symmetry 

S1/Z2 Orbifold

String theory has two Z2’s.

In addition, the Z2 orbifold has the geometrical 

symmetry, i.e.  Z2 permutation.
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10



Non-Abelian discrete flavor symmetry 
The full symmetry includes 

D4 symmetry 

the twisted strings on the two fixed points

D4 doublet

untwisted strings   D4 singlets

T.K., Raby, Zhang, ‘05

T.K, Nilles, Ploger, Raby,Ratz, ‘07
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Heterotic orbifold models
T2/Z3 Orbifold

two Z3’s 

Z3 orbifold has the S3 geometrical symmetry,  

Their closed algebra is Delta(54).

T.K., Nilles, Ploger, Raby, Ratz, ‘07
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Heterotic orbifold models

T2/Z3 Orbifold

has Delta(54) symmetry.

localized modes on three fixed points 

Delta(54) triplet

bulk modes                   Delta(54) singlet

T.K., Nilles, Ploger, Raby, Ratz, ‘07



S1 at an enhancement point

S1  before orbifolding

U(1)

other massless modes at a special point 

SU(2) non-zero roots

Gauge symmetry is enhanced to SU(2).

]2exp [ xiE 
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S1/Z2 at an enhancement point

S1/Z2 

U(1)                       not Z2 invarinat

is invariant. 

SU(2) is broken to U(1) by orbifolding.
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S1/Z2 at an enhancement point

S1/Z2

U(1)  theory                       

Z2 odd     untwisted matter    

U(1) charges 

two twisted (shifted) matter

U(1) charges 
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S1/Z2 at an enhancement point

U(1) symmetry 

Discrete Z2 permutation symmetry           

remnant of SU(2)

           TTUU



S1/Z2 

Deformation from the enhancement point

by moduli VEV 

U(1) is broken to Z4, and 

permutation Z2 symmetry reamins.

The full symmetry is D4.

            UU
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S1/Z2 

D4 

The other directions of VEVs 

lead to just  Z4.

            UU

            UU



T2/Z3 

Heterotic string on T2 with the enahncemnt

point can have SU(3) gauge symmetry.

Orbifolding breaks SU(3) to U(1)xU(1) 

and S3.

remnant of SU(3)

U(1) is broken to Z4, and 



T2/Z3 

Charged untwisted fields 

There are three twsited matter fields 

with charges,    
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T2/Z3 

Charged untwisted fields 

U(1) x U(1) is broken to Z3xZ3, and 

permutation S3 symmetry reamins.

The full symmetry is Delta(54).

          321      UUU
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T2/Z3 

Delta(54) 

The other directions of VEVs, 

Z3xS3, Z6x(U(1) xS2), Z3xZ3, 

-> S1/Z2

          321      UUU

         . . . .. . . . . . . . . ., . . . . . . . . . ,0 321     UUU



Non-Abelian discrete symmetries 

We have not used explicitly the geometrical 

symmetries, but gauge symmetries, 

although of course gauge symmetries 

and geometrical symmetries are tightly 

related.

Our approach can be extended into 

string models, where geometrical pictures 

are not so clear such as asymmetric orbifolds, 

Gepner models,  etc.



Applications  

We can start e.g. 

field-theoretical models with many U(1)s 

and their permutation symmetries.

Then, break it by orbifolding.

We would get various 

non-Abelian disctete symmetries. 



Summary  

We have studied on asymmetric heterotic

orbifold models, in particular Z3.

We have constructed models 

with MSSM matter contents 

+ vector-like matter as well as 

SU(2) flavor symmetry models.

We also discussed the gauge origin 

of non-Abelian discrete symmetries.



Summary

Perturbative calculations such as 

higher-order couplings are not clear.

Introduction of WLs is important.

We can extend our analysis to 

other asymmetric ZN orbifolds.

Further studies: Dilaton stabilizatin, …


