Discrete Abelian Gauge Symmetries and Axions

Gabriele Honecker

Cluster of Excellence PRISMA & Institut für Physik, JG|U Mainz

based on JHEP 1310(2013)146, PoS Corfu2012(2013)107, Fortsch.Phys. 62(2014)115-151 with Wieland Staessens

BCTP Bonn, 3 June 2014

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Motivation: Gauge Symmetries in String Theory

Type II string theories: gauge theories localized on D-branes

• $U(1) \subset U(N)$ generically massive $\propto M_{
m string}$

U(1)^k_{massive} remain as perturbative global symmetries

Motivation: Discrete Abelian Gauge Symmetries

 $U(1)_{\text{massive}}^k$

- broken by non-perturvative effects, e.g. D-brane instantons
- Z_n ⊂ U(1)^k_{massive} remain as global discrete symmetries

→ constraints on effective field
 theory @ low energies

This talk:

- Conditions on the existence of \mathbb{Z}_n symmetries
- Which \mathbb{Z}_n occur in global (=consistent) D-brane models?

... gauge quivers: Richter's talk

▶ Relation to axions (strong CP problem, dark sector ...)

... inflation: Marchesano's talk

Related Works on Abelian Discrete Symmetries

SUSY field theory:

- Discrete gauge symmetries and the origin of baryon and lepton number conservation in supersymmetric versions of the standard model L.E.Ibáñez, G.G.Ross: Nucl.Phys.B368(1992)3-37
- What is the discrete gauge symmetry of the MSSM? H.K.Dreiner, C.Luhn, M.Thormeier: Phys.Rev.D73(2006)075007 Luhn's talk
- \rightsquigarrow R-parity ($\mathbb{Z}_2)$, baryon triality ($\mathbb{Z}_3)$, proton hexality ($\mathbb{Z}_6)$ for e.g.

proton stability

D-brane models:

- Discrete gauge symmetries in D-brane models M.Berasaluce-Gonzalez, L.E.Ibáñez, P.Soler, A.M.Uranga: JHEP1112(2011)113
- Discrete Gauge Symmetries in Discrete MSSM-like Orientifolds L.E.Ibáñez, A.N.Schellekens, A.M.Uranga: Nucl.Phys.B865(2012)509-540
- String Constraints on Discrete Symmetries in MSSM Type II Quivers P.Anastasopoulos, M.Cvetič, R.Richter, P.K.S.Vaudrevange: JHEP1303(2013)011
- Zp charged branes in flux compactifications M.Berasaluce-Gonzalez, P.G.Camara, F.Marchesano, A.M.Uranga: JHEP1304(2013)138

GH, W. Staessens '13

Content

• Discrete gauge symmetries: \mathbb{Z}_n

- Massive U(1)s & closed string axions
- Conditions on \mathbb{Z}_n symmetries
- Cross-check of normalisation for n
- Examples: D6-branes on T^6/\mathbb{Z}_{2N} or $\mathbb{Z}_2 \times \mathbb{Z}_{2M}$
- Axions, strong CP problem & the dark sector
 - Open & closed string axions
 - $U(1)_{PQ}$ & Higgs-axion potential in the DFSZ model
 - ► soft_SUSY
 - Bounds on M_{string}

Conclusions

\mathbb{Z}_n Symmetries

Massive U(1)s in String Theory I

- Here: geometric language of Type IIA/ ΩR
- same physics for (by dualities for smooth CYs)
 - Type IIB/ Ω (mirror symmetry) ... F-theory
 - hetero. w/ U(1) bundles (S-dual/SO(32), M-theory dual/ $E_8 \times E_8$)

• **Global model** \rightsquigarrow Non-Abelian $SU(N_b)$ gauge anomalies=0:

$$\left[\sum_{a} N_{a} \left(\Pi_{a} + \Pi_{a}'\right) - 4 \Pi_{O6}\right] \circ \Pi_{b} = 0$$

Discrete Abelian Gauge Symmetries and Axions

upon RR tadpole cancellation

Massive U(1)s in String Theory II

Mixed anomalies cancel by the Green-Schwarz mechanism:

- $U(1)_X = \sum_a q_a U(1)_a$ massless if $\sum_a N_a q_a B_a^i = 0 \ \forall i$
- Z_n ⊂ U(1)^k_{massive} for suitable Bⁱ_a ('mod n') due to shift symmetry of ξ_i

Axionic Shift Symmetry

• Closed string axions within $\mathcal{N} = 1$ chiral multiplets:

- axion-dilaton: $S = \phi + i \xi_0$
- complex structure: $U_i = c_i + i \xi_i$ $\xi_i \subset C_3^{RR}$
- ► Kähler: $T_k = v_k + i b_k$ $b_k \subset B_2^{NSNS}$
- ▶ $\mathcal{N} = 1$ SUGRA action independent of $\xi_i \rightarrow \xi_i + 1$

$$\mathcal{K}_{\mathsf{closed}} = -\ln \Re(S) - \sum_{i} \ln \Re(U_i) - \sum_{k} \ln \Re(T_k)$$

- **perturbatively:** only couplings to $(\partial_{\mu}\xi_i)$
- ► non-perturbative couplings via D-brane instantons: $e^{-S_{inst}}$ with $S_{inst} \supset 2\pi i \xi_i$ in IIB: $U_i \leftrightarrow T_k$
- ▶ **Discrete** Z_n symmetry preserved if

$$A^{\mu} \to A^{\mu} + \partial^{\mu}\lambda \qquad \xi_i \to \xi_i + \overline{c_i(B^i_a)} \lambda$$

0 mod n

 \rightsquigarrow need to determine $\overline{c}_i(B_a^i)!$

∀i

\mathbb{Z}_n Symmetries & Green-Schwarz Couplings I

$$\begin{split} \mathcal{S}_{CS} \supset \int_{\mathbb{R}^{1,3}} \sum_{i=0}^{h_{21}} \left(\mathcal{B}_{a}^{i} \ \mathcal{B}_{2}^{(i)} \wedge \mathrm{tr} \mathcal{F}_{a} + \mathcal{A}_{b}^{i} \ \boldsymbol{\xi}_{i} \ \mathrm{tr} \mathcal{F}_{b} \wedge \mathcal{F}_{b} \right) \\ & \text{with} \ \overline{\mathcal{B}_{2}^{(i)} \propto \int_{\Pi_{i}^{\mathrm{odd}}} \mathcal{C}_{5}^{RR}} \ ; \ \overline{\boldsymbol{\xi}_{i} \propto \int_{\Pi_{i}^{\mathrm{even}}} \mathcal{C}_{3}^{RR}} \end{split}$$

Expand 3-cycles and Ω*R*-images as:

$$\Pi_{a} = \sum_{i=0}^{h_{21}} \left(A_{a}^{i} \Pi_{i}^{\mathsf{even}} + B_{a}^{i} \Pi_{i}^{\mathsf{odd}} \right), \quad \Pi_{a}' = \sum_{i=0}^{h_{21}} \left(A_{a}^{i} \Pi_{i}^{\mathsf{even}} - B_{a}^{i} \Pi_{i}^{\mathsf{odd}} \right)$$

► If
$$\begin{bmatrix} \prod_{i}^{\text{even}} \circ \prod_{j}^{\text{odd}} = m_i \ \delta_{ij} \end{bmatrix}$$
 with $m_i \in \mathbb{Z}$
► $\{\prod_{i}^{\text{even}}, \prod_{j}^{\text{odd}}\}$ span only **sublattice** of finite index:

$$\Lambda_3^{\mathsf{even}} \oplus \Lambda_3^{\mathsf{odd}} \subsetneq \Lambda_3$$

all known global D-brane models of this type

\mathbb{Z}_n Symmetries & Green-Schwarz Couplings II

$$\Pi_{i}^{\text{even}} \circ \Pi_{j}^{\text{odd}} = m_{i} \delta_{ij} \quad \rightsquigarrow \quad d\mathcal{B}_{2}^{(i)} = m_{i} \star_{4} d\xi_{i}$$

$$\text{gauge trafos of } U(1)_{\text{massive}} = \sum_{a} k_{a} U(1)_{a}$$

$$A^{\mu} \rightarrow A^{\mu} + \partial^{\mu} \lambda \qquad \xi_{i} \rightarrow \xi_{i} + \left(m_{i} \sum_{a} N_{a} k_{a} B_{a}^{i} \right) \lambda$$

$$\overline{c}_{i} (B_{a}^{i})$$

Cross-checks on correct normalisation:

$$\bullet \ \Pi_i^{\text{even}} \in \Lambda_3 \text{ coincide with } U(N) \hookrightarrow \begin{cases} USp(2N) \\ SO(2N) \end{cases}$$

Cross-Check: K-Theory Constraint as \mathbb{Z}_2 Symmetry

- K-theory constraint ⇐ absence of SU(2) field anomalies
 related to Z₂ grading of H₃(CY₃) in Type IIA/ΩR
- probe brane argument: Uranga '02
 0 mod 2 = Π_{USp(2)_k} ∘ ∑_a N_a Π_a = ∑_{i=0}^{h₂₁} Aⁱ_{USp(2)_k} m_i ∑_a N_a Bⁱ_a
 (k_a, k_b,...) = (1, 1, ...) if all Π^{even}_i = Π_{USp(2)_i} √
 generally: N_a D-branes on Π^{even}_i: U(N_a) ↔ { USp(2N_a) SO(2N_a) SO(2N_a) SO(2N_a)
 K-theory constraint naively less than Z₂ gauge symmetry
- ► Π_{USp(2)_k} Π_a ∈ ℤ independent of:
 - basis { $\Pi_i^{\text{even}}, \Pi_i^{\text{odd}}$ }
 - normalisation of wrappings $\{A_a^i, B_a^i\}$
 - \rightsquigarrow express also \mathbb{Z}_n condition via **intersection numbers**

\mathbb{Z}_n Symmetries in Terms of Intersection Numbers

• ambiguities of normalisation factors m_i in B_a^i and Π_i^{odd} cancel

$$\begin{array}{ll} U(1)_{\text{massless}} = \sum_{a} q_{a} U(1)_{a} & \mathbb{Z}_{n} \subset U(1)_{\text{massive}} = \sum_{a} k_{a} U(1)_{a} \\ \\ \hline \Pi_{i}^{\text{even}} \circ \sum_{a} N_{a} q_{a} \Pi_{a} = 0 \ \forall i & \Pi_{i}^{\text{even}} \circ \sum_{a} N_{a} k_{a} \Pi_{a} = 0 \ \text{mod} \ n \ \forall i \\ \\ \Leftrightarrow & \sum_{a} N_{a} q_{a} B_{a}^{i} = 0 \ \forall i & \Leftrightarrow \ m_{i} \sum_{a} N_{a} k_{a} B_{a}^{i} = 0 \ \text{mod} \ n \ \forall i \\ \hline q_{a} \in \mathbb{Q} & k_{a} \in \mathbb{Z}, \ 0 \leqslant k_{a} < n, \ \gcd(k_{a}, n) = 1 \end{array}$$

• derivation of m_i , B_a^i for all **orbifolds** possible

 $\rightsquigarrow \mathbb{Z}_n \text{ symmetries in any } global \text{ model } \checkmark$

GH, Staessens '13

Comparison with *local* Bottom-up Models

Richter's talk

- Π_i^{even} unknown \rightsquigarrow use $(\Pi_x + \Pi'_x) \in \Lambda_3^{\text{even}}$
- caution: $\frac{\Pi_x + \Pi'_x}{2} \notin \Lambda_3^{\text{even}}$
- ► $(\Pi_x + \Pi'_x) \circ \Pi_a = \Pi_x \circ (\Pi_a \Pi'_a)$ without factor 1/2
- ▶ gives (at most) 4 of (h₂₁ + 1) conditions for 4 stacks of D-branes

- only **necessary**, **not sufficient** conditions on existence of \mathbb{Z}_n
- cross-check on correct normalisation from $0 \leq k_a < n$

Intermezzo: \mathbb{Z}_n Symmetries & D2-Brane Instantons

▶ O(1) D2-instantons respect \mathbb{Z}_n symmetry: $e^{-S_{D2}}$ contains

$$S_{D2} = -\frac{\text{Vol}(D2)}{g_s} + 2\pi i\xi \quad \text{with} \quad \xi = \int_{\Pi_{D2}} C_3^{RR} = \sum_{i=0}^{h_{21}} A_{D2}^i \xi_i$$
$$S_{D2} \xrightarrow{\text{gauge trafo}} S_{D2} + 2\pi i\lambda \underbrace{\sum_{i=0}^{h_{21}} A_{D2}^i m_i (\sum_a N_a k_a B_a^i)}_{= \Pi_{D2} \circ \Pi_{U(1)_{\text{massive}}} = 0 \mod n$$

U(1) D2-instantons: S_{D2} ⊃ 2πiξ with ξ = ∫_{ΠD2}+Π'_{D2}C₃^{RR}
 (Π_{D2} + Π'_{D2}) ∘ Π_{U(1)massive} = 0 mod n √
 non-minimal # zero-modes → contributions to eff. action=0
 USp(2) D2-instantons analogous √

Modding out Redundant \mathbb{Z}_N Symmetries

- SU(N) has center \mathbb{Z}_N
- $\mathbb{Z}_N \subset U(1)_{\text{massive}} \subset U(N)$ equivalent to $\mathbb{Z}_N^{\text{center}}$?
- for $N \ge 3$: representations of $SU(N)_{U(1)} \simeq U(N)$

$$(N)_1 (N)_1 \times (\overline{N})_{-1} \simeq (Adj)_0 + (1)_0 (N)_1 \times (N)_1 \times (N)_1 = (N)_1 \times (N)_1 \times$$

•
$$(N)_1 \times (N)_1 \simeq (Sym + Anti)_2$$

 $\rightsquigarrow \mathbb{Z}_N \subset U(1)_{\text{massive}}$ provides same selection rules on couplings as SU(N) rep.

for
$$N = 2$$
:
 (Anti)₂ ≃ (1)₂ ↔ (1)₀
 (Sym)₂ ≃ (3)₂ ↔ (Adj)₀ ≃ (3)₀
 ~ charges identical 'mod 2'

▶ **But:** non-trivial sums of $\mathbb{Z}_{N_a} \subset U(N_a)$ charges can arise

 \rightsquigarrow generation dependent \mathbb{Z}_n symmetries

example of generation dependent \mathbb{Z}_2 later

\mathbb{Z}_n Symmetries in the SUSY Standard Model

Field theory / SUSY SM:

Luhn's talk

- ► 3 generators for \mathbb{Z}_n in MSSM: $g_n = e^{i2\pi \mathcal{R}\frac{m}{n}} \cdot e^{i2\pi \mathcal{A}\frac{k}{n}} \cdot e^{i2\pi \mathcal{L}\frac{p}{n}}$
 - ▶ R-parity: R₂
 - baryon triality: $\mathcal{L}_3\mathcal{R}_3$
 - proton hexality: $\mathcal{L}_6^2 \mathcal{R}_6^5$
- Q_L charge can be rotated away by $U(1)_Y$

Charges o	Charges of generation-independent \mathbb{Z}_n symmetries in the MSSM												
Generator	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
\mathcal{R}	0	n-1	1	0	1	n-1	1	n-1					
£	0	0	0	n-1	1	1	0	0					
\mathcal{A}	0	0	n-1	n-1	0	1	0	1					

- Presence of $U(1)_{B-L}$ makes R-parity (\mathcal{R}_2) trivial
- Pati-Salam models: no U(1)_{massless}

Which \mathbb{Z}_n occur in global D-brane models?

\mathbb{Z}_n Symmetries on Orbifolds

\mathbb{Z}_n Symmetries on Orbifolds of IIA/ $\Omega \mathcal{R}$

- dim $(\Lambda_3^{\text{even}}) = h_{21} + 1$ conditions
- phenomenologically interesting:

$$T^{6}/\mathbb{Z}_{6} : h_{21} = 5$$

$$T^{6}/\mathbb{Z}_{6}' : h_{21} = 5 (+6)^{*}$$

$$T^{6}/\mathbb{Z}_{2} \times \mathbb{Z}_{6}' : h_{21} = 15 (+4)^{*}$$

$$T^{6}/\mathbb{Z}_{2} \times \mathbb{Z}_{6}' : h_{21} = 15$$

- shape of Λ_3^{even} depends on lattice orientations under \mathcal{R}
- ► L-R symmetric & Pati-Salam models 'natural' on D-branes → U(1)_Y & U(1)_{B-L} to rotate charges to 0

^{*} D-branes wrap only untwisted & \mathbb{Z}_2 twisted cycles

Orbifolds I: Basis of Λ_3^{even} for $T^6/\mathbb{Z}_6^{(\prime)}$

$$\Pi_{a}^{\mathsf{frac}} = \frac{1}{2} \left(\Pi_{a}^{\mathsf{bulk}} + \Pi_{a}^{\mathbb{Z}_{2}} \right)$$

- 2 displacements $\sigma \in \{0, 1\}$
- ▶ 1 Z₂ eigenvalue ±1
- 2 Wilson lines $au \in \{0, 1\}$
- $2^5 = 32$ fractional 3-cycles per given bulk cycle
- only $(h_{21} + 1) = 6$ independent conditions on \mathbb{Z}_n

Example I: L-R Symmetric Model on T^6/\mathbb{Z}_6

GH, Ott '04; see also Gmeiner, GH '09

$$\blacktriangleright U(3)_a \times U(2)_b \times USp(2)_c \times U(1)_d \times USp(2)_e$$

•
$$U(1)_{B-L} = (\frac{Q_a}{3} + Q_d)_{\text{massless}} \& U(1)^2_{\text{massive}}$$

- $USp(2)_{x \in \{c,e\}} \rightarrow U(1)_{x,\text{massless}}$ by brane displacement
- only $x \in \{a, b, d\}$ contribute to \mathbb{Z}_n conditions
- ▶ after B − L rotation:

GH, Staessens '13

Di	screte sym.		Charge assignment for the MSSM states										
\mathbb{Z}_n	$\left \subset \sum_{x} k_{x} U(1)_{x} \right $	Q_L	\overline{U}_R	\overline{D}_R	L	\overline{E}_R	\overline{N}_R	$H_{u}^{(1)}$	$H_{u}^{(2)}$	$H_{d}^{(1)}$	$H_{d}^{(2)}$		
\mathbb{Z}_2	$Q_a + Q_d$	0	0	0	0	0	0	0	0	0	0		
\mathbb{Z}_2	Q_b	0	1	1	0	1	1	1	1	1	1		
\mathbb{Z}_3	Q _a	0	0	0	0	0	0	0	0	0	0		

not listed: mild amount of vector-like exotics

- ▶ $(k_a, k_b, k_d) = (1, 1, 1) \simeq \mathbb{Z}_2$ of K-theory constraint
- ► Z₂^(b) gives no extra constraints beyond SU(2)_b charges → all Z_n appear trivial

Example II: L-R Symmetric Model on T^6/\mathbb{Z}_6'

Gmeiner, GH '07-'08

- $\blacktriangleright U(3)_a \times U(2)_b \times USp(2)_c \times U(1)_d (\times USp(6)_{hidden})$
- $U(1)_{B-L} = (\frac{Q_a}{3} + Q_d)_{\text{massless}} \& U(1)^2_{\text{massive}}$
- $USp(2)_c \rightarrow U(1)_{c,\text{massless}}$ by brane displacement σ
- $USp(6)_{hidden}$ cannot be broken by σ or τ (SUSY)
- ▶ after B − L rotation:

GH, Staessens '13

0	Discrete sym.		Charge assignment for the chiral states									
$\mathbb{Z}_n \mid \subset \sum_x k_x U(1)_x \mid$		Q_L	\overline{U}_R	\overline{D}_R	L	Ī	\overline{E}_R	\overline{N}_R	H _u	H _d	Σ _b	
\mathbb{Z}_2	$Q_{a}+Q_{d}$	0	0	0	0	0	0	0	0	0	0	
\mathbb{Z}_3	Q _a	0	0	0	0	0	0	0	0	0	0	
\mathbb{Z}_6	Q_b	0	1	1	4	4	3	3	5	5	4	
	$\xrightarrow{U(1)_c}$	0	0	2	4	4	4	2	0	4	4	

open string axion: $\Sigma_b \simeq (\mathbf{1}_{\overline{\mathtt{Anti}}_b})_{-2_b}$

not listed: mild amount of vector-like exotics

• non-trivial: $\mathbb{Z}_3 \subset U(1)_b$

Orbifolds II: Basis of Λ_3^{even} for $\overline{T}^6/\mathbb{Z}_2 \times \mathbb{Z}_6^{(\prime)}$

►
$$T^6/\mathbb{Z}_2 \times \mathbb{Z}_6^{(\prime)}$$
 with discrete torsion:

$$\Pi_a^{\text{frac}} = \frac{1}{4} \left(\Pi_a^{\text{bulk}} + \sum_{i=1}^3 \Pi_a^{\mathbb{Z}_2^{(i)}} \right)$$
► 3 displacements $\sigma \in \{0, 1\}$

- 2 \mathbb{Z}_2 eigenvalues ± 1
- 3 Wilson lines $au \in \{0, 1\}$
- very large number of 3-cycles per given bulk cycle
- ▶ but: only $(h_{21} + 1)$ independent $\prod_{i}^{\text{even}} \longrightarrow \text{classify}!$ Förste, GH '10

Gabriele Honecker Discrete Abelian Gauge Symmetries and Axions

Classification of Gauge Enhancements: $T^6/\mathbb{Z}_2 imes \mathbb{Z}_6^{(\prime)}$

- $\mathcal{T}^6/\mathbb{Z}_2 \times \mathbb{Z}_6^{(\prime)}$ with discrete torsion:
 - 256 ΩR-invariant 3-cycles in total
 - **untilted tori** $(b_i \equiv 0 \forall i)$: $\Omega \mathcal{R}$ inv. only for
 - $c \parallel \text{ exotic O6 & any } (\vec{\sigma}, \vec{\tau}) \rightsquigarrow USp(2N)$

 ${\it T^6}/{\mathbb Z}_2 \times {\mathbb Z}_2 {:}$ Blumenhagen, Cvetič, Marchesano, Shiu '05

- ► tilted tori $(b_i \equiv \frac{1}{2} \forall i)$: $\Omega \mathcal{R}$ invariance for GH, Ripka, Staessens '12
 - $c \parallel$ exotic O6 & $\tau^i \sigma^i \equiv 0 \ \forall i \rightsquigarrow USp(2N)$
 - $c \parallel$ exotic O6 & $\tau^i \sigma^i \equiv 1 \forall i \rightsquigarrow SO(2N)$
 - $c \perp \text{ exotic O6 } \& \tau^i \sigma^i \neq \tau^j \sigma^j = \tau^k \sigma^k = 1 \rightsquigarrow SO(2N)$
 - $c \perp \text{ exotic O6 } \& \tau^i \sigma^i \neq \tau^j \sigma^j = \tau^k \sigma^k = 0 \rightsquigarrow USp(2N)$
- mixed set-up: $(b_1, b_2, b_3) = (0, \frac{1}{2}, \frac{1}{2})$ on $T^6/\mathbb{Z}_2 \times \mathbb{Z}_6$

work in progress Ecker, GH, Staessens

- full classification of USp(2) needed for
 - K-theory constraint
 - O(1) D2-brane instantons

• only $(h_{21} + 1) = 16$ indep. conditions on \mathbb{Z}_n symmetries

Example: A Pati-Salam Model on $T^6/\mathbb{Z}_2 \times \mathbb{Z}_6'$

• $\mathbb{Z}_2 \times \mathbb{Z}'_6$ shifts: $\vec{v} = (\frac{1}{2}, \frac{-1}{2}, 0), \ \vec{w}' = (\frac{-1}{3}, \frac{1}{6}, \frac{1}{6})$ on $SU(3)^3$

$$\Pi_{a}^{\text{frac}} = \frac{1}{4} \left(X_{a} \rho_{1} + Y_{a} \rho_{2} + \sum_{k=1}^{3} \sum_{\alpha=1}^{5} \left[x_{a,\alpha}^{(k)} \varepsilon_{\alpha}^{(k)} + y_{a,\alpha}^{(k)} \tilde{\varepsilon}_{\alpha}^{(k)} \right] \right)$$

$$\text{with } \rho_{1} \circ \rho_{2} = -\varepsilon_{\alpha}^{(k)} \circ \tilde{\varepsilon}_{\alpha}^{(k)} = 4$$

$$\Omega \mathcal{R}\text{-even \& odd 3-cycles:}$$

$$\text{GH, Staessens '13}$$

 $\Pi_0^{\text{even},\mathbf{1}} = \rho_1,$ $\Pi_0^{\text{odd},1} = -\rho_1 + 2\,\rho_2,$
$$\begin{split} & \Pi^{\text{odd},\mathbb{Z}_2^{(k)}}_{\alpha\in\{1,2,3\}} = -\varepsilon_\alpha^{(k)} + 2\,\tilde{\varepsilon}_\alpha^{(k)}, \\ & \Pi^{\text{odd},\mathbb{Z}_2^{(k)}}_4 = 2\,(\tilde{\varepsilon}_4^{(k)} + \tilde{\varepsilon}_5^{(k)}) - (\varepsilon_4^{(k)} + \varepsilon_5^{(k)}), \end{split}$$
 $\Pi^{\mathsf{even},\mathbb{Z}_2^{(k)}}_{\alpha\in\{1,2,3\}} = \varepsilon^{(k)}_{\alpha},$ $\Pi_{4}^{\operatorname{even},\mathbb{Z}_{2}^{(k)}} = \varepsilon_{4}^{(k)} + \varepsilon_{5}^{(k)},$ $\Pi_{\varepsilon}^{\text{even},\mathbb{Z}_{2}^{(k)}} = 2\left(\tilde{\varepsilon}_{4}^{(k)} - \tilde{\varepsilon}_{\varepsilon}^{(k)}\right) - \left(\varepsilon_{4}^{(k)} - \varepsilon_{\varepsilon}^{(k)}\right), \quad \Pi_{\varepsilon}^{\text{odd},\mathbb{Z}_{2}^{(k)}} = \varepsilon_{4}^{(k)} - \varepsilon_{\varepsilon}^{(k)},$ Intersection numbers $(8 \tilde{\alpha} - 0)$

$$\Pi_{\tilde{\alpha}}^{\text{even},\mathbb{Z}_{2}^{(k)}} \circ \Pi_{\tilde{\beta}}^{\text{odd},\mathbb{Z}_{2}^{(l)}} = \delta^{kl} \delta_{\tilde{\alpha}\tilde{\beta}} \times \begin{cases} -8 & 1 \dots 3 \\ -16 & 4 \\ 16 & 5 \end{cases} \quad \text{with } \mathbb{Z}_{2}^{(0)} \equiv \mathbf{1}$$

$$\bullet \text{ wrapping numbers } a \text{ priori } A_{\alpha}^{i}, B_{\alpha}^{i} \in \frac{1}{2} \mathbb{Z}$$

A Pati-Salam model on $T^6/\mathbb{Z}_2 \times \mathbb{Z}'_6$: \mathbb{Z}_n conditions

$$\sum_{a} k_{a} N_{a} \begin{pmatrix} Y_{a} \\ -y_{a,1}^{(1)} \\ -y_{a,2}^{(2)} \\ -y_{a,3}^{(1)} \\ -(y_{a,4}^{(1)} + y_{a,5}^{(1)}) \\ 2(x_{a,4}^{(1)} - x_{a,5}^{(1)}) + (y_{a,4}^{(1)} - y_{a,5}^{(1)}) \\ -y_{a,1}^{(2)} \\ -y_{a,2}^{(2)} \\ -y_{a,2}^{(2)} \\ 2(x_{a,4}^{(2)} - x_{a,5}^{(2)}) + (y_{a,4}^{(2)} - y_{a,5}^{(2)}) \\ 2(x_{a,4}^{(2)} - x_{a,5}^{(2)}) + (y_{a,4}^{(2)} - y_{a,5}^{(2)}) \\ -y_{a,1}^{(2)} \\ -y_{a,3}^{(2)} \\ -y_{a,3}^{(2)} \\ -y_{a,3}^{(2)} \\ -y_{a,3}^{(3)} \\ -(y_{a,4}^{(3)} + y_{a,5}^{(3)}) \\ 2(x_{a,4}^{(3)} - x_{a,5}^{(3)}) + (y_{a,4}^{(3)} - y_{a,5}^{(3)}) \end{pmatrix} = 0 \mod n \stackrel{!}{=} 0 \mod n \stackrel{!}{=} \sum_{a} k_{a} N_{a}$$

$$\left(\begin{array}{c} \frac{Y_{a} - \sum_{i=1}^{3} [y_{a,1}^{(i)} + y_{a,2}^{(i)} + y_{a,3}^{(i)}]}{4} \\ \frac{Y_{a} - [y_{a,1}^{(i)} + y_{a,2}^{(i)} + y_{a,3}^{(i)}]}{4} \\ \frac{Y_{a,1}^{(i)} + y_{a,2}^{(i)} + y_{a,3}^{(i)}]}{4} \\ \frac{Y_{a,1}^{(i)} + y_{a,3}^{(i)} + y_{a,3}^{(i)} + y_{a,3}^{(i)}]}{4} \\ \frac{Y_{a,1}^{(i)} + y_{a,3}^{(i)} + y_{a,3}^{(i)} + y_{a,3}^{(i)}]}{2} \\ \frac{Y_{a+1}^{(i)} + y_{a,3}^{(i)} + y_{a,3}^{(i)} + y_{a,3}^{(i)} + y_{a,3}^{(i)}]}{2} \\ \frac{Y_{a+1}^{(i)} + y_{a,3}^{(i)} + y_{a,3}^{$$

Gabriele Honecker Discrete Abelian Gauge Symmetries and Axions

A Pati-Salam model on $T^6/\mathbb{Z}_2 \times \mathbb{Z}'_6$: spectrum

GH, Ripka, Staessens '12

 $SU(4)_a \times SU(2)_b \times SU(2)_c \times SU(2)_d \times SU(2)_e \times U(1)_{\text{massive}}^5$

Standard Model particles plus one Higgs

 $(4, \overline{2}, 1; 1, 1) + 2(4, 2, 1; 1, 1) + (\overline{4}, 1, 2; 1, 1) + 2(\overline{4}, 1, \overline{2}; 1, 1) + (1, 2, \overline{2}; 1, 1)$

 → one massive generation at leading order by charge selection rules

• chiral w.r.t. anomalous $U(1)_{\text{massive}}^5$

 $(1,2,1;\overline{2},1)+3(1,\overline{2},1;\overline{2},1)+(1,\overline{2},1;1,\overline{2})+(1,1,\overline{2};2,1)+3(1,1,2;2,1)+(1,1,2;1,2)$

but non-chiral w.r.t. $SU(4)_a \times SU(2)_b \times SU(2)_c$

▶ non-chiral w.r.t. to full $U(4)_a \times U(2)^4$ with **GUT Higgses**

 $2 \left[(4,1,1;\overline{2},1) + h.c. \right] + \left[(1,1,1;2,2) + h.c. \right] + (1,1,1;4_{Adj},1)$

+ 2 $[(1, 1, 1; 3_{S}, 1) + (1, 1, 1; 1_{A}, 1) + h.c.] + [(1, 1, 1; 1, 3_{S}) + (1, 1, 1; 1, 1_{A}) + h.c.]$

Pati-Salam model cont'd: \mathbb{Z}_n Symmetries in $U(1)_{\text{massive}}^5$

▶ 5 independent \mathbb{Z}_n symmetries ($h_{21} = 15$)

G.H., Staessens '13

- family-independent & trivial:
 - $\mathbb{Z}_4 \subset U(1)_a \subset U(4)_a$
 - $\blacktriangleright \mathbb{Z}_2 \subset U(1)_x \subset U(2)_{x,x \in \{b,c,d,e\}}$
 - $\mathbb{Z}_2 \subset U(1)_c$: **R**-parity \mathcal{R}_2
 - $\mathbb{Z}_2 \subset U(1)_{d,e}$: only non-trivial on exotic matter

family-dependent:

• $\mathbb{Z}_4 \subset \frac{1}{2} \sum_{x \in \{b,c,d,e\}} U(1)_x \rightsquigarrow$ selection rule on Yukawas

	Discrete charges	for t	he five-	stack	Pati-Sa	lam mode	el on É	$T^6/(\mathbb{Z}$	$_2 imes \mathbb{Z}_6'$	$_{5}^{\prime} imes\Omega$	$\mathcal{R})$		
D	iscrete symmetries		Charge assignment for the 'chiral' states										
\mathbb{Z}_n	$\mathbb{Z}_n \left U(1) = \sum_x k_x U(1)_x \right $		$ \begin{array}{ c c c } (Q_L,L) & (Q_R,R) \\ ab & ab' & ac & ac' \end{array} $		(H_d, H_u)	X _{bd}	X _{bd'}	$X_{be'}$	X _{cd}	X _{cd'}	X _{ce'}		
\mathbb{Z}_2	$U(1)_e$	0	0	0	0	0	0	0	1	0	0	1	
	$U(1)_d$	0	0	0	0	0	1	1	0	1	1	0	
	$U(1)_c$	0	0	1	1	1	0	0	0	1	1	1	
	$U(1)_b$	1	1	0	0	1	1	1	1	0	0	0	
\mathbb{Z}_4	$U(1)_a$	1	1	3	3	0	0	0	0	0	0	0	
	$U(1)_b + U(1)_c + U(1)_d + U(1)_d + U(1)_e$	3	1	1	3	0	0	2	2	0	2	2	

Gabriele Honecker

Discrete Abelian Gauge Symmetries and Axions

Reduction of the Family Dependent Symmetry: $\mathbb{Z}_4 \rightarrow \mathbb{Z}_2$

- unwritten lore: **mod out centers** of SU(N): $((\mathbb{Z}_4)^2 \times (\mathbb{Z}_2)^3)/(\mathbb{Z}_4 \times (\mathbb{Z}_2)^4) \simeq \mathbb{Z}_2$
- search consistent charge assignment by hand:
 - $(4,\overline{2},1,1,1).(\overline{4},1,2,1,1).(1,2,\overline{2},1,1)$ perturbatively allowed
 - ▶ $(4,\overline{2},1,1,1).(\overline{4},1,1,2,1).(1,\overline{2},1,\overline{2},1)$ pert. forbidden by $U(1)_b$ - \mathbb{Z}_4 charge: 2 mod 4
 - ► $(4,\overline{2},1,1,1).(\overline{4},1,\overline{2},1,1).(1,2,\overline{2},1,1)$ pert. forbidden by $U(1)_c$ ► ...

	(Q _L ab	, L) ab'	(Q _R ac	, R) ac'	(H_d, H_u)	X _{bd}	X _{bd′}	$X_{be'}$	X _{cd}	X _{cd'}	X _{ce'}
\mathbb{Z}_2	0	1	0	1	0	0	1	1	0	1	1

- ▶ Z₂ remains family-dependent
- ► cannot be obtained from 'mod 2' on Z₄ charges → unwritten lore doesn't really help

Global D-brane models:

GH, Staessens '13

- $U(1)_{B-L}$ in L-R sym. models makes \mathbb{Z}_2 's (R-parity) trivial
- ▶ L-R models: $\mathbb{Z}_3 \subset U(1)_a \subset U(3)_a$ trivial
- ▶ Pati-Salam models: no $\mathbb{Z}_3 \notin U(1)_a \subset U(4)_a$
- most \mathbb{Z}_n give no new coupling selection rules beyond SU(N)
- family-dependent \mathbb{Z}_n for very special D-brane set-up
 - naive way to mod out centers of SU(N) wrong!

Axions, CP, Dark Sector

Axions and the Strong CP Problem

Axions originally invoked to solve strong CP-problem

$$\mathcal{L}_{lpha} \supset \frac{1}{2} \left(\partial_{\mu} lpha
ight) \left(\partial^{\mu} lpha
ight) - rac{1}{32\pi^2} rac{lpha(x)}{f_{lpha}} \operatorname{Tr}(\mathcal{G}_{\mu
u} \tilde{\mathcal{G}}^{\mu
u})$$

global Pecci-Quinn symmetry U(1)_{PQ}

```
Pecci, Quinn '77
```

- \blacktriangleright axion α arises from rewriting two Higgs doublets
- electro-weak & PQ scales identical
- axions ↔ photon conversion assumed (Primakoff effect)
 → astrophysical & lab searches (e.g. ALPs@DESY)

experimentally excluded

- modified models contain SM singlet field σ
 - σ couples to Higgs doublets \rightsquigarrow new terms in $V_{\rm Higgs}$
 - PQ by $\langle \sigma
 angle$ at higher energy than $SU(2)_L imes U(1)_Y$

e.g. Zhitnitsky '80; Dine, Fischler, Srednicki '81; ...; Dreiner, Staub, Ubaldi '14

- realisation in D-brane models
 - ▶ $U(1)_{PQ} \rightarrow U(1)_{\text{massive}}$
 - 'exotic' scalars abundant adjustments to SUSY required
 - suitable SUSY breaking minimum of V_{Higgs}?

GH, Staessens '13

cf. Berenstein, Perkins '12

Open String Axions & DFSZ Model

► U(1)_{PQ} must allow:

 $\mathcal{L}_{\mathsf{Yukawa}} = f_u \ Q_L \cdot H_u \ u_R + f_d \ Q_L \cdot H_d \ d_R + f_e \ L \cdot H_d \ e_R + f_\nu \ L \cdot H_u \ \nu_R$

- introduce SM singlet σ with $U(1)_{PQ} \simeq U(1)_{\text{massive}}$ charge
- ► (H_u, H_d) charged under $U(1)_{PQ}$ $\rightsquigarrow Q_L$ or (u_R, d_R) have $U(1)_{PQ}$ charge
- ► **Higgs potential** of the DFSZ model $V_{\text{DFSZ}}(H_u, H_d, \sigma) = \lambda_u (H_u^{\dagger} H_u - v_u^2)^2 + \lambda_d (H_d^{\dagger} H_d - v_d^2)^2 + \lambda_\sigma (\sigma^* \sigma - v_\sigma^2)^2 + (a H_u^{\dagger} H_u + b H_d^{\dagger} H_d) \sigma^* \sigma + c (H_u \cdot H_d \sigma^2 + h.c.) + d |H_u \cdot H_d|^2 + e |H_u^{\dagger} H_d|^2$

► **SUSY** version: $V = V_F + V_D + V_{soft}$ ► modify $c (H_u \cdot H_d \sigma^2 + h.c.) \longrightarrow c (H_u \cdot H_d \sigma + h.c.); \sigma \sim e^{ia}$

Matter	Q_L	ū _R	\overline{d}_R	Hu	H _d	L	\overline{e}_R	$\overline{\nu}_R$	Σ
$U(1)_{PQ}$	∓1	0	0	± 1	± 1	∓ 1	0	0	∓2

• identify $\Sigma = (Anti)_{U(2)_b}$ in global D-brane model

e.g. SM on $\mathcal{T}^6/\mathbb{Z}_6$: GH, Ott '04 & $\mathcal{T}^6/\mathbb{Z}_6'$: Gmeiner, GH '08

Mixing of Open and Closed String Axions

GH, Staessens '13

- open string axion a from $\sigma = \frac{v+s(x)}{\sqrt{2}}e^{i\frac{a(x)}{v}}$
- open axion a mixes with closed axion $\xi \ (\leftarrow U(1)_{\text{massive}})$

$$\zeta = \frac{M_{\text{string}}\,\xi + qv\,a}{\sqrt{M_{\text{string}}^2 + q^2v^2}}, \qquad \alpha = \frac{M_{\text{string}}\,a - qv\,\xi}{\sqrt{M_{\text{string}}^2 + q^2v^2}}$$

$$\Rightarrow \qquad \mathcal{L}_{\text{CP-odd}} = \frac{1}{2} \left(\partial_{\mu} \zeta + m_B B_{\mu} \right)^2 + \frac{1}{2} (\partial_{\mu} \alpha)^2$$

• axion decay constant f_{α} from dim. reduction: $\mathcal{L}_{anom} = \frac{1}{16\pi^2} \frac{\zeta(x)}{f_{\zeta}} \operatorname{Tr}(\mathcal{G}_{\mu\nu} \tilde{\mathcal{G}}^{\mu\nu}) + \frac{1}{32\pi^2} \frac{\alpha(x)}{f_{\alpha}} \operatorname{Tr}(\mathcal{G}_{\mu\nu} \tilde{\mathcal{G}}^{\mu\nu})$

with
$$f_{\zeta} = rac{\sqrt{M_{ ext{string}}^2 + (qv)^2}}{2}, \qquad f_{\alpha} = rac{M_{ ext{string}} \, qv \sqrt{M_{ ext{string}}^2 + (qv)^2}}{(M_{ ext{string}}^2 - (qv)^2)}$$

► For
$$M_{\text{string}} \gg v$$
 : $\zeta \simeq \xi_{\text{closed}}$, $\alpha \simeq a_{\text{open}}$

Soft SUSY Terms

Origin of
$$V = V_F + V_D + V_{\text{soft}}$$

$$V_{\text{DFSZ}}(H_u, H_d, \sigma) = \lambda_u (H_u^{\dagger} H_u - v_u^2)^2 + \lambda_d (H_d^{\dagger} H_d - v_d^2)^2 + \lambda_\sigma (\sigma^* \sigma - v_\sigma^2)^2 + (a H_u^{\dagger} H_u + b H_d^{\dagger} H_d) \sigma^* \sigma + c (H_u \cdot H_d \sigma + h.c.) + d |H_u \cdot H_d|^2 + e |H_u^{\dagger} H_d|^2$$

in SUSY field theory

$$\blacktriangleright \mathcal{W} = \mu \Sigma H_d \cdot H_u$$

•
$$K^{\text{SUSY}}(\Phi^{\dagger}e^{2gV}\Phi) = \Phi^{\dagger}e^{2gV}\Phi$$

- $\blacktriangleright \mathcal{W}_{soft} = \eta \, cH_u \cdot H_d \, \Sigma \rightsquigarrow \mathcal{A}\text{-terms}$
- $K_{\text{soft}} = \eta \overline{\eta} \ m_{\Phi}^2 \ \Phi^{\dagger} e^{2gV} \Phi \rightsquigarrow m_{\text{soft}}$

in Type II string models

strongly coupled hidden group

e.g. USp(6) in T^6/\mathbb{Z}_6' model

- ► gaugino condensate: $\langle \lambda \lambda \rangle = \Lambda_c^3 \rightsquigarrow M_{SUSY}^2 = \langle F^H \rangle \sim \frac{\Lambda_c^3}{M_{Planck}}$
- gravity mediation to SM sector

Lower Bounds on M_{string}

 \sim

- typical phenomenological constraints from $f_{\zeta} \sim M_{\rm string}$, $f_{\alpha} \sim qv$: $M_{\rm string} \geq 10^9 {\rm ~GeV}$
- supplemented by constraints on gauge couplings

exponentially large volumes:

GH, Staessens '13

	$M_{\rm string}$ as a function of v_i and $g_{\rm string}$											
	$g_{ m string} = 0.1$ $g_{ m string} = 0.01$ $g_{ m string} = 0.001$											
<i>V</i> 1 <i>V</i> 3	$v_{2,\text{max}}^2$	M _{string}	V1 V3	$v_{2,\text{max}}^2$	M _{string}	V_1V_3	$v_{2,max}^2$	M _{string}				
10 ⁸	$9.7 imes 10^9$	$1.6 imes 10^{10} \text{ GeV}$	106	$1.5 imes 10^{10}$	$1.6 imes 10^{10} \text{ GeV}$	10 ²	$1.5 imes10^{6}$	$1.6 imes 10^{12} \text{ GeV}$				
10 ¹⁰	$1.5 imes10^{14}$	$2.8 imes 10^9 { m GeV}$	108	$1.6 imes10^{14}$	$1.5 imes 10^8 \text{ GeV}$	104	$1.6 imes10^{10}$	$1.5 imes 10^{10} \text{ GeV}$				
1012	$1.5 imes10^{18}$	$2.8\times 10^8~\text{GeV}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $									

Conclusions

Conclusions:

- Conditions on \mathbb{Z}_n expressed via intersection numbers:
 - ▶ independent of choice of basis & parameterisation:
 correct normalisations (cross-check: K-theory ↔ Z₂)
 - ▶ many 'probe branes', but only $(h_{21} + 1)$ conditions per orbifold
- $\mathbb{Z}_N \subset U(N)$ automatic
- ▶ $U(1)_{\text{massless}}$, e.g. Y, (B L): \rightsquigarrow many \mathbb{Z}_n trivial
- Pati-Salam example:
 - R-parity $\subset U(2)_R$
 - family-dependent \mathbb{Z}_4 (\mathbb{Z}_2) constrains Yukawas

 \ldots more details in GH, Staessens '13

- $U(1)_{PQ} \simeq U(1)_{\text{massive}}$
- Mixing of axions from open/closed string sector
- intermediary M_{string} and exponentially large volumes?

 \ldots more details in GH, Staessens '13

The String Theory Universe

20th European Workshop on String Theory 2nd COST MP1210 Meeting

22–26 September 2014 Philosophicum, JGU Mainz

www.strings2014.uni-mainz.de

Organizers

Johanna Erdmenger | Munich Mirjam Cvetič | Philadelphia Fernando Marchesano | Madrid Carlos Núñez | Swansea Timo Weigand | Heidelberg

Local Organizer Gabriele Honecker | Mainz

International Advisory Committee

Ana Achicamo Lisele Matthias Blou | Ben And Eser | Aenstein Anna Cerecke | Tore Roboto Empartor | Banetas Jerome Gauntiett | Landon Ellas Sittishi | Ineation Karla A. Liedd | Valencia Volanda Lozano | Jones Dieter List | Manch Silvia Penati | Manch Antoine Van Proven | Lanes

Mainz Institute for

Theoretical Physics

The conference is dedicated to all aspects of superstring, supergravity and supersymmetric theories and is embedded in the MITP programme String Theory and its Applications.

Overview Talks

Paul Chesler | Harvard Fernando Marchesano | Madrid Dario Martelli | London Tadashi Takayanagi | Kyoto Ivonne Zavala | Greningen

Special Interest Talks

Lutz Köpke | Mairo IceCube Neutrino Observatory

Ana Achúcarro | Leider Strings and the Cosmic Microwave Background

MITP Public Lecture

Dieter Lüst Munich Strings im Multiversum Mairzer Wissenschaftsmarkt Saturday, 13 September 2014 at 6pm.

Working Groups

Gauge/Gravity Duality String Phenomenology Cosmology and Quantum Gravity

Gabriele Honecker

Discrete Abelian Gauge Symmetries and Axions

Technical Details

$IIA/\Omega \mathcal{R}$ on $T^6/\mathbb{Z}_2 \times \mathbb{Z}'_6$ with discrete torsion: geometry

 $\mathbb{Z}_2 \times \mathbb{Z}'_6$ shifts: $\vec{v} = (\frac{1}{2}, \frac{-1}{2}, 0)$, $\vec{w}' = (\frac{-1}{3}, \frac{1}{6}, \frac{1}{6})$ on $SU(3)^3$

Xa

 ρ_1

$$\begin{array}{c} \mathbf{r} \\ \mathbf{B} \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \sum_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \sum_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \sum_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \sum_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \sum_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \sum_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \sum_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \sum_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \sum_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \sum_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \sum_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \sum_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \prod_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \prod_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \prod_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \prod_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \prod_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \prod_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \prod_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \prod_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \prod_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \prod_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \prod_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{rigid} = \frac{1}{4} \left(\Pi_{a}^{\text{bulk}} + \prod_{i=1}^{3} \Pi_{a}^{\mathbb{Z}_{2}^{(i)}} \right) \\ \mathbf{R}^{ri$$

$T^6/\mathbb{Z}_2 imes \mathbb{Z}_6'$ geometry cont'd

$$\begin{split} & \prod_{a}^{\text{rigid}} = \frac{1}{4} \Big(\prod_{a}^{\text{bulk}} + \sum_{i=1}^{3} \prod_{a}^{\mathbb{Z}_{2}^{(i)}} \Big) \\ & \prod_{a}^{\mathbb{Z}_{2}^{(i)}} = \sum_{\alpha=1}^{5} \Big(x_{\alpha,a}^{i} \varepsilon_{\alpha}^{(i)} + y_{\alpha,a}^{i} \tilde{\varepsilon}_{\alpha}^{(i)} \Big) \\ & \text{ a equivalent } \mathbb{Z}_{2}^{(i)} \text{ twisted sectors:} \\ & \varepsilon_{\alpha=1}^{(i)} = 2 \sum_{k=0}^{2} \omega^{k} (e_{41}^{(i)} \otimes \pi_{2i-1}), \\ & \tilde{\varepsilon}_{\alpha=1}^{(i)} = 2 \sum_{k=0}^{2} \omega^{k} (e_{41}^{(i)} \otimes \pi_{2i}) \\ & \text{ with } \varepsilon_{\alpha}^{(i)} \circ \tilde{\varepsilon}_{\beta=1}^{(j)} = -4 \, \delta^{ij} \, \delta_{\alpha\beta} \\ & \text{ exceptional wrappings } (x_{\alpha,a}^{i}, y_{\alpha,a}^{i}) \sim (n_{a}^{i}, m_{a}^{i}) \\ & \text{ sign factors from} \\ & \mathbb{Z}_{2} \text{ eigenvalues } \pm 1 \\ & \text{ Wilson lines } \tau \in \{0, 1\} \\ & \text{ example for a short } \Omega \mathcal{R}\text{-even cycle:} \end{split}$$

$$\Pi^{\mathrm{frac},\Omega\mathcal{R}}_{(\sigma^{i})=(1,1,1)} \stackrel{\tau^{i} \equiv \tau}{=} \frac{\Pi^{\mathrm{even}}_{0}}{4} + \sum_{i=1}^{3} \frac{(-1)^{\tau^{\mathbb{Z}_{2}^{(i)}}}}{4} \left(-\Pi^{\mathrm{even},\mathbb{Z}_{2}^{(i)}}_{3} + (-1)^{\tau} \, \frac{-\Pi^{\mathrm{even},\mathbb{Z}_{2}^{(i)}}_{4} + \Pi^{\mathrm{even},\mathbb{Z}_{2}^{(i)}}_{5} \right)$$

A typical global Pati-Salam model on $T^6/\mathbb{Z}_2 imes \mathbb{Z}_6'$

- ▶ a, b, c at $(\frac{\pi}{3}, 0, -\frac{\pi}{3})$, d at $(\frac{\pi}{6}, -\frac{\pi}{2}, \frac{\pi}{3})$ e at (0, 0, 0)
- ▶ all $U(1)^5$ anomalous & massive at $M_{ ext{string}} \leftrightarrow h_{21} = 15(\mathbb{Z}_2)$
- ► $SU(4)_a \times SU(2)_b \times SU(2)_c \times SU(2)_d \times SU(2)_e$ with
 - 3 generations of quarks + leptons
 - one Higgs (H_d, H_u)
 - Adj on $a, b, c, e \leftrightarrow 1 \times \mathrm{Adj}_d$

Yukawa interactions for the typical Pati-Salam model

► charge selection rules not sufficient on T^6/\mathbb{Z}_{2N} , $T^6/\mathbb{Z}_2 \times \mathbb{Z}_{2M}$ due to various sectors $a(\omega^k b)_{k \in \{0,1,2\}}$ G.H., Vanhoof '12

- ► Pati-Salam model: one heavy generation by G.H., Ripka, Staessens '12 $W_{Q_L^{(3)}Q_R^{(3)}H} \sim e^{-\sum_{i=1}^3 v_i/8}$ with Kähler moduli $v_i \equiv \frac{\sqrt{3}}{2} \frac{r_i^2}{\alpha'}$
- non-chiral [(4,1,1;2,1) + (1,1,1;2,2) + (1,1,1;1_A,1) + h.c.] massive via couplings to (1,1,1;4_{Adj},1)
- ► several types of (1, 2_x, 2_y, 1, 1)_{x,y∈{b,c,d,e}} massive through 3-point couplings among each other and with SM Higgs
- ► other masses through higher order or non-perturbative (instanton) couplings ~→ need to be computed!