

Michael Ratz

Bethe workshop, Bonn, June 05, 2014

Based on:

- T. Kobayashi, H.P. Nilles, F. Plöger, S. Raby & M.R.. Nucl. Phys. B768, 135
- H.P. Nilles, M.R. & P. Vaudrevange, Fortsch. Phys. 61, 493
- M.-C. Chen, M.R. & A. Trautner, JHEP 1309, 096
- H.P. Nilles, S. Ramos–Sánchez, M.R. & P. Vaudrevange, Phys. Lett. B726, 876
- M.-C. Chen, M. Fallbacher, K.T. Mahanthappa, M.R. & A. Trautner, Nucl. Phys. B883, 267

non–Abelian discrete *R* and non–*R* symmetries

because it is an R symmetry

supersymmetry breaking

one of the central themes of this talk

symmetry breaking

geometry of compact dimensions

Textbook knowledge:

• Maximal *R* symmetry of N = 1 supersymmetry is Abelian, i.e. $U(1)_R$

- Maximal R symmetry of N = 1 supersymmetry is Abelian, i.e. $U(1)_R$
- Green–Schwarz (GS) anomaly cancellation is only available for Abelian symmetries

- Maximal *R* symmetry of N = 1 supersymmetry is Abelian, i.e. $U(1)_R$
- Green–Schwarz (GS) anomaly cancellation is only available for Abelian symmetries
- One aim of this talk: convince you that this is not entirely correct

- Maximal *R* symmetry of N = 1 supersymmetry is Abelian, i.e. $U(1)_R$
- Green–Schwarz (GS) anomaly cancellation is only available for Abelian symmetries
- One aim of this talk: convince you that this is not entirely correct
- Clearly, there cannot be a non–Abelian continuous R symmetry G_R as this would require more than one supercharge

- Maximal *R* symmetry of N = 1 supersymmetry is Abelian, i.e. $U(1)_R$
- Green–Schwarz (GS) anomaly cancellation is only available for Abelian symmetries
- One aim of this talk: convince you that this is not entirely correct
- Clearly, there cannot be a non–Abelian continuous R symmetry G_R as this would require more than one supercharge
- However: non–Abelian discrete symmetries can have non–trivial 1–dimensional representations 1_{non-trivial} Chen, M.R. & Trautner (2013)

- Maximal R symmetry of N = 1 supersymmetry is Abelian, i.e. $U(1)_R$
- Green–Schwarz (GS) anomaly cancellation is only available for Abelian symmetries
- One aim of this talk: convince you that this is not entirely correct
- Clearly, there cannot be a non–Abelian continuous R symmetry G_R as this would require more than one supercharge
- However: non–Abelian discrete symmetries can have non–trivial 1–dimensional representations 1_{non-trivial} Chen, M.R. & Trautner (2013)
- This allows us to consider settings in which the superspace coordinate transforms as 1_{non-trivial}

- Maximal R symmetry of N = 1 supersymmetry is Abelian, i.e. $U(1)_R$
- Green–Schwarz (GS) anomaly cancellation is only available for Abelian symmetries
- One aim of this talk: convince you that this is not entirely correct
- Clearly, there cannot be a non–Abelian continuous R symmetry G_R as this would require more than one supercharge
- However: non–Abelian discrete symmetries can have non–trivial 1–dimensional representations 1_{non-trivial} Chen, M.R. & Trautner (2013)
- This allows us to consider settings in which the superspace coordinate transforms as 1_{non-trivial}
- Likewise, the axion may shift under the action of the elements of the discrete group

- Maximal R symmetry of N = 1 supersymmetry is Abelian, i.e. $U(1)_R$
- Oreen-Schwarz anomaly cancellation is only available for Abelian symmetries
- One aim of this talk: convince you that this is not entirely correct
- Clearly, there cannot be a non–Abelian continuous R symmetry G_R as this would require more than one supercharge
- However: non–Abelian discrete symmetries can have non–trivial 1–dimensional representations 1_{non-trivial} Chen, M.R. & Trautner (2013)
- This allows us to consider settings in which the superspace coordinate transforms as 1_{non-trivial}
- Likewise, the axion may shift under the action of the elements of the discrete group

- 1 Introduction
- Non–Abelian discrete R symmetries

Reminder: Abelian discrete R symmetries Anomaly coefficients for discrete Abelian R and non-R symmetries Discrete Green–Schwarz anomaly cancellation Anomaly coefficients for non–Abelian discrete R and non–Rsymmetries

Orbifolds

The \mathbb{Z}_6 –II orbifold

4 Flavor symmetries from orbifolds

Example: $\mathbb{S}^1/\mathbb{Z}_2$

Symmetry enhancement

- 5 Summary
- 6 Backup slides

Orbifold classification $\Delta(54)$ from the \mathbb{Z}_3 orbifold References

Non–Abelian discrete *R*

symmetries

Non–Abelian discrete R symmetries

Reminder: Abelian discrete *R* symmetries

Reminder: Abelian discrete R symmetries

Superpotential transforms as

$$\mathscr{W} \rightarrow \mathrm{e}^{2\pi\mathrm{i}q_{\mathscr{W}}/M} \mathscr{W}$$

$$q_{\mathscr{W}} = 2q_{\theta}$$

Non–Abelian discrete R symmetries

Reminder: Abelian discrete R symmetries

Reminder: Abelian discrete R symmetries

Superpotential transforms as

$$\mathcal{W} \rightarrow \mathrm{e}^{2\pi\mathrm{i}q_{\mathcal{W}}/M} \mathcal{W}$$

Superfields $\Phi^{(f)} = \phi^{(f)} + \sqrt{2} \theta \psi^{(f)} + \theta \theta F^{(f)}$ transform as

$$\Phi^{(f)} \rightarrow \mathrm{e}^{2\pi \mathrm{i} q^{(f)}/M} \Phi^{(f)}$$

Reminder: Abelian discrete R symmetries

Reminder: Anomalies in Abelian discrete symmetries

Krauss & Wilczek (1989); Ibáñez & Ross (1991, 1992); Banks & Dine (1992)

Discrete symmetries can have anomalies

Reminder: Abelian discrete R symmetries

Reminder: Anomalies in Abelian discrete symmetries

Krauss & Wilczek (1989); Ibáñez & Ross (1991, 1992); Banks & Dine (1992)

Discrete symmetries can have anomalies

Fujikawa (1979)

Most convenient way to compute anomalies: path integral approach

Reminder: Abelian discrete R symmetries

Reminder: Anomalies in Abelian discrete symmetries

Krauss & Wilczek (1989); Ibáñez & Ross (1991, 1992); Banks & Dine (1992)

Discrete symmetries can have anomalies

Fujikawa (1979)

Most convenient way to compute anomalies: path integral approach

Araki (2007); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

IN Works both for Abelian and non-Abelian discrete symmetries

Anomaly coefficients for discrete Abelian R and non-R symmetries

Anomaly coefficients for Abelian $\mathbb{Z}_{M}^{(R)}$ symmetries

Consider the action of one generator of the discrete group

Non–Abelian discrete R symmetries

Anomaly coefficients for discrete Abelian R and non-R symmetries

Anomaly coefficients for Abelian $\mathbb{Z}_{M}^{(R)}$ symmetries

Consider the action of one generator of the discrete group

Non-Abelian discrete R symmetries

Anomaly coefficients for discrete Abelian R and non-R symmetries

Anomaly coefficients for Abelian $\mathbb{Z}_{M}^{(R)}$ symmetries

- Consider the action of one generator of the discrete group
- Service $\mathbb{Z}_M^{(R)}$ service $\psi^{(f)} \to e^{2\pi i (q^{(f)} q_{\theta})/M} \psi^{(f)}$

 $\mathbb{Z}_M^{(R)}$ charge of superspace coordinate

Non–Abelian discrete R symmetries

Anomaly coefficients for discrete Abelian R and non-R symmetries

- Consider the action of one generator of the discrete group
- is Fermions acquire a $\mathbb{Z}_M^{(R)}$ phase: $\psi^{(f)} \to e^{2\pi i (q^{(f)} q_{\theta})/M} \psi^{(f)}$
- Non-trivial transformation of the path integral measure

$$\prod_{f} \mathcal{D}\psi^{(f)} \, \mathcal{D}\overline{\psi}^{(f)} \, \rightarrow \, J^{-2} \, \prod_{f} \mathcal{D}\psi^{(f)} \, \mathcal{D}\overline{\psi}^{(f)}$$

with
$$J^{-2} = \exp\left\{i\frac{2\pi}{M}A_{G-G-\mathbb{Z}_M^R}\int d^4x \frac{1}{32\pi^2}F^{b,\mu\nu}\widetilde{F}^b_{\mu\nu}\right\}$$

and
$$A_{G-G-\mathbb{Z}_{M}^{(R)}} = \sum_{f} \ell \left(\mathbf{r}^{(f)} \right) \cdot q_{\psi^{(f)}} + q_{\theta} \ell(\operatorname{adj} G)$$

representation of $\psi^{(f)}$

Non–Abelian discrete R symmetries

Anomaly coefficients for discrete Abelian R and non-R symmetries

- Consider the action of one generator of the discrete group
- is Fermions acquire a $\mathbb{Z}_M^{(R)}$ phase: $\psi^{(f)} \to \mathrm{e}^{2\pi\mathrm{i}(q^{(f)}-q_{\theta})/M} \psi^{(f)}$
- Non-trivial transformation of the path integral measure

$$\prod_{f} \mathcal{D}\psi^{(f)} \, \mathcal{D}\overline{\psi}^{(f)} \, \rightarrow \, J^{-2} \, \prod_{f} \mathcal{D}\psi^{(f)} \, \mathcal{D}\overline{\psi}^{(f)}$$

with
$$J^{-2} = \exp\left\{i\frac{2\pi}{M}A_{G-G-\mathbb{Z}_M^R}\int d^4x \, \frac{1}{32\pi^2} F^{b,\mu\nu}\widetilde{F}^b_{\mu\nu}
ight\}$$

and
$$A_{G-G-\mathbb{Z}_{M}^{(R)}} = \sum_{f} \ell\left(\boldsymbol{r}^{(f)}\right) \cdot \boldsymbol{q}_{\psi^{(f)}} + q_{\theta} \ell(\operatorname{adj} G)$$

$$q_{\psi^{(f)}} = \left(q^{(f)} - q_{\theta}\right) \text{ with } q^{(f)} R \text{ charge of superfield}$$

Non–Abelian discrete R symmetries

Anomaly coefficients for discrete Abelian R and non-R symmetries

- Consider the action of one generator of the discrete group
- is Fermions acquire a $\mathbb{Z}_M^{(R)}$ phase: $\psi^{(f)} \to \mathrm{e}^{2\pi\mathrm{i}(q^{(f)}-q_{\theta})/M} \psi^{(f)}$
- Non-trivial transformation of the path integral measure

$$\prod_{f} \mathcal{D}\psi^{(f)} \, \mathcal{D}\overline{\psi}^{(f)} \, \rightarrow \, J^{-2} \, \prod_{f} \mathcal{D}\psi^{(f)} \, \mathcal{D}\overline{\psi}^{(f)}$$

with
$$J^{-2} = \exp\left\{\mathsf{i}\,\frac{2\pi}{M}A_{G-G-\mathbb{Z}_M^R}\,\int\!\mathsf{d}^4x\,\frac{1}{32\pi^2}\,F^{b,\mu\nu}\widetilde{F}^b_{\mu\nu}
ight\}$$

and
$$A_{G-G-\mathbb{Z}_{M}^{(R)}} = \sum_{f} \ell\left(\mathbf{r}^{(f)}\right) \cdot q_{\psi^{(f)}} + q_{\theta} \ell(\operatorname{adj} G)$$

discrete R charge of superspace coordinate

Non–Abelian discrete R symmetries

Anomaly coefficients for discrete Abelian R and non-R symmetries

- Consider the action of one generator of the discrete group
- is Fermions acquire a $\mathbb{Z}_M^{(R)}$ phase: $\psi^{(f)} \to \mathrm{e}^{2\pi\mathrm{i}(q^{(f)}-q_{\theta})/M} \psi^{(f)}$
- Non-trivial transformation of the path integral measure

$$\prod_{f} \mathcal{D}\psi^{(f)} \, \mathcal{D}\overline{\psi}^{(f)} \ \rightarrow \ J^{-2} \ \prod_{f} \mathcal{D}\psi^{(f)} \, \mathcal{D}\overline{\psi}^{(f)}$$

with
$$J^{-2} = \exp\left\{\mathsf{i}\,\frac{2\pi}{M}A_{G-G-\mathbb{Z}_M^R}\,\int\!\mathsf{d}^4x\,\frac{1}{32\pi^2}\,F^{b,\mu
u}\widetilde{F}^b_{\mu
u}
ight\}$$

and
$$A_{G-G-\mathbb{Z}_{M}^{(R)}} = \sum_{f} \ell\left(\mathbf{r}^{(f)}\right) \cdot q_{\psi^{(f)}} + q_{\theta} \ell(\operatorname{adj} G)$$

Dynkin index : $\delta_{ab} \ell(\mathbf{r}) = \operatorname{tr}\left[t_{a}(\mathbf{r}) t_{b}(\mathbf{r})\right]$

Non–Abelian discrete R symmetries

Discrete Green–Schwarz anomaly cancellation

Discrete Green–Schwarz anomaly cancellation

Coupling of 'axion' *a* to field strength of the continuous gauge symmetry

$$\mathscr{L}_{\mathrm{axion}} \supset -\frac{a}{8} F^b \widetilde{F}^b$$

Non-Abelian discrete R symmetries

Discrete Green–Schwarz anomaly cancellation

Discrete Green–Schwarz anomaly cancellation

Coupling of 'axion' *a* to field strength of the continuous gauge symmetry

$$\mathscr{L}_{\mathrm{axion}} \supset - \frac{a}{8} F^b \widetilde{F}^b$$

Discrete transformation u induces a shift

$$a \rightarrow a + \Delta^{(u)}$$

Discrete Green–Schwarz anomaly cancellation

Discrete Green–Schwarz anomaly cancellation

Coupling of 'axion' *a* to field strength of the continuous gauge symmetry

$$\mathscr{L}_{\mathrm{axion}} \supset - rac{a}{8} F^b \widetilde{F}^b$$

Discrete transformation u induces a shift

 $a \rightarrow a + \Delta^{(u)}$

$$A_{G-G-\mathbb{Z}_{M}} = 2 \pi M_{\mathsf{u}} \Delta^{(\mathsf{u})} \mod \frac{M_{\mathsf{u}}}{2}$$

order of $\mathsf{u} : \mathsf{u}^{M_{\mathsf{u}}} = 1$

Non-Abelian discrete R symmetries

Discrete Green–Schwarz anomaly cancellation

Comment on settings with more than one axions

 \square One can have several axions a_{α}

$$\mathscr{L}_{axion} \supset -F^b \widetilde{F}^b \sum_{\alpha} \frac{c_{\alpha}}{8} \frac{a_{\alpha}}{8}$$

real coefficients

Discrete Green–Schwarz anomaly cancellation

Comment on settings with more than one axions

 \square One can have several axions a_{α}

$$\mathscr{L}_{\mathrm{axion}} \supset -F^b \widetilde{F}^b \sum_{\alpha} \frac{c_{\alpha}}{8} a_{\alpha}$$

Solution Weights: However: there is always a unique linear combination of axions *a* that shifts: $a \propto \sum_{\alpha} c_{\alpha} \frac{a_{\alpha}}{a}$

Discrete Green–Schwarz anomaly cancellation

Comment on settings with more than one axions

 \square One can have several axions a_{α}

$$\mathscr{L}_{\mathrm{axion}} \supset -F^b \widetilde{F}^b \sum_{\alpha} \frac{c_{\alpha}}{8} a_{\alpha}$$

- Solution Weights: However: there is always a unique linear combination of axions *a* that shifts: $a \propto \sum_{\alpha} c_{\alpha} \frac{a_{\alpha}}{a}$
- Solution One can also have more than one gauge factor, i.e. $G = \prod_i G^{(i)}$

$$\mathscr{L}_{\mathrm{axion}} \supset -\frac{a}{8} \cdot \sum_{i} \lambda_{i} F_{b}^{(i)} \widetilde{F}_{b}^{(i)}$$

Discrete Green–Schwarz anomaly cancellation

Comment on settings with more than one axions

 \square One can have several axions a_{α}

$$\mathscr{L}_{\mathrm{axion}} \supset -F^b \widetilde{F}^b \sum_{\alpha} \frac{c_{\alpha}}{8} a_{\alpha}$$

- Solution Weights: However: there is always a unique linear combination of axions *a* that shifts: $a \propto \sum_{\alpha} c_{\alpha} \frac{a_{\alpha}}{a}$
- Solution One can also have more than one gauge factor, i.e. $G = \prod_i G^{(i)}$

$$\mathscr{L}_{\mathrm{axion}} \supset - rac{a}{8} \cdot \sum_i \lambda_i F_b^{(i)} \widetilde{F}_b^{(i)}$$

Lüdeling, Ruehle & Wieck (2012)

This allows one to cancel abritrary discrete anomalies

Discrete Green–Schwarz anomaly cancellation

Anomaly (non-)universality

However, in supersymmetric theories the axions are always accompanied by a superpartner 'saxion' field

Discrete Green–Schwarz anomaly cancellation

Anomaly (non-)universality

However, in supersymmetric theories the axions are always accompanied by a superpartner 'saxion' field

Non–universal λ_i coefficients for the SM gauge factors will spoil the picture of MSSM gauge coupling unification

Discrete Green-Schwarz anomaly cancellation

Anomaly (non-)universality

However, in supersymmetric theories the axions are always accompanied by a superpartner 'saxion' field

Non–universal λ_i coefficients for the SM gauge factors will spoil the picture of MSSM gauge coupling unification

Can be avoided by demanding anomaly universality

$$A_{G^{(i)}-G^{(i)}-\mathbb{Z}_M^{(R)}}=
ho \mod rac{M}{2} \hspace{0.2cm} orall \hspace{0.2cm} G^{(i)}$$

Non–Abelian discrete R symmetries

 \square Anomaly coefficients for non–Abelian discrete R and non–R symmetries

Non–Abelian discrete R symmetries

 \square Action of **u** on representation **d**

$$U_{u}(\boldsymbol{d}) = \exp\left(2\pi i \lambda_{u}(\boldsymbol{d}) / \boldsymbol{M}_{u}\right)$$
order of **u**

Non–Abelian discrete R symmetries

 \sqcup Anomaly coefficients for non–Abelian discrete R and non–R symmetries

Non–Abelian discrete R symmetries

 \square Action of **u** on representation **d**

$$U_{u}(\boldsymbol{d}) = \exp\left(2\pi i \lambda_{u}(\boldsymbol{d}) / \boldsymbol{M}_{u}\right)$$

matrix w/ integer eigenvalues

Non–Abelian discrete R symmetries

 \square Anomaly coefficients for non–Abelian discrete R and non–R symmetries

Non–Abelian discrete R symmetries

 \square Action of \blacksquare on representation d

 $U_{\mathsf{u}}(\boldsymbol{d}) = \exp\left(2\pi \mathrm{i} \lambda_{\mathsf{u}}(\boldsymbol{d}) / \boldsymbol{M}_{\mathsf{u}}\right)$

Transformation of fermions

$$\psi^{(f)} \rightarrow U_{\mathsf{u}}\left(\boldsymbol{d}^{(f)}\right)\psi^{(f)} = \exp\left[2\pi \mathrm{i}\,\lambda_{\mathsf{u}}\left(\boldsymbol{d}^{(f)}\right)/\boldsymbol{M}_{\mathsf{u}}\right]\psi^{(f)}$$

Anomaly coefficients for non-Abelian discrete R and non-R symmetries

Non–Abelian discrete R symmetries

 \square Action of \underline{u} on representation d

$$U_{\mathsf{u}}(\boldsymbol{d}) = \exp\left(2\pi \mathrm{i} \lambda_{\mathsf{u}}(\boldsymbol{d}) / \boldsymbol{M}_{\mathsf{u}}\right)$$

Transformation of fermions

$$\psi^{(f)} \rightarrow U_{\mathsf{u}}\left(\boldsymbol{d}^{(f)}\right)\psi^{(f)} = \exp\left[2\pi \mathrm{i}\,\lambda_{\mathsf{u}}\left(\boldsymbol{d}^{(f)}\right)/\boldsymbol{M}_{\mathsf{u}}\right]\psi^{(f)}$$

Solution Effective \mathbb{Z}_{M_u} charges

$$\delta_{\mathsf{u}}^{(\!f\!)} := \operatorname{tr}\left[\lambda_{\mathsf{u}}\left(\boldsymbol{d}^{(\!f\!)}
ight)
ight] = rac{M_{\mathsf{u}}}{2\pi\,\mathsf{i}}\,\operatorname{ln}\,\det\,U_{\mathsf{u}}\left(\boldsymbol{d}^{(\!f\!)}
ight)$$

 \square Anomaly coefficients for non–Abelian discrete R and non–R symmetries

Anomaly coefficients for non–Abelian discrete R symmetries

 ${}^{\tiny \mbox{\tiny ISS}}$ Relation between the transformation behavior of a superfield Φ and the corresponding fermion ψ

$$\boldsymbol{d}^{(\Phi)} = \boldsymbol{d}^{(\theta)} \otimes \boldsymbol{d}^{(\psi)}$$
1-dimensional representation

Anomaly coefficients for non–Abelian discrete R and non–R symmetries

Anomaly coefficients for non–Abelian discrete R symmetries

 ${\it \ensuremath{\mathbb S}}$ Relation between the transformation behavior of a superfield Φ and the corresponding fermion ψ

 $\boldsymbol{d}^{(\Phi)} = \boldsymbol{d}^{(\theta)} \otimes \boldsymbol{d}^{(\psi)}$

Relation between fermion and superfield anomaly contributions

$$\delta^{(\psi)} = \delta^{(\Phi)} - \dim\left(\boldsymbol{d}^{(\Phi)}\right) \cdot \boldsymbol{\delta}^{(\theta)}$$

 \square Anomaly coefficients for non–Abelian discrete R and non–R symmetries

Anomaly coefficients for non–Abelian discrete R symmetries (cont'd)

Anomaly coefficients for transformation u

$$A_{G-G-\mathbb{Z}^{R}_{M_{u}}} = \sum_{s} \ell(\boldsymbol{r}^{(s)}) \cdot \left[\delta^{(s)} - \dim\left(\boldsymbol{d}^{(s)}\right) \,\delta^{(\theta)}\right] + \ell\left(\operatorname{adj} G\right) \cdot \delta^{(\theta)}$$

superfield charges

 \square Anomaly coefficients for non–Abelian discrete R and non–R symmetries

Anomaly coefficients for non–Abelian discrete R symmetries (cont'd)

Anomaly coefficients for transformation u

$$\begin{split} A_{G-G-\mathbb{Z}_{M_{\mathsf{U}}}^{R}} &= \sum_{s} \ell(\boldsymbol{r}^{(s)}) \cdot \left[\delta^{(s)} - \dim\left(\boldsymbol{d}^{(s)}\right) \, \delta^{(\theta)}\right] + \ell \left(\operatorname{adj} G\right) \cdot \delta^{(\theta)} \\ A_{\mathrm{U}(1)-\mathrm{U}(1)-\mathbb{Z}_{M_{\mathsf{U}}}^{R}} &= \sum_{s} \left(\boldsymbol{Q}^{(s)}\right)^{2} \, \dim\left(\boldsymbol{r}^{(s)}\right) \cdot \left[\delta^{(s)} - \dim\left(\boldsymbol{d}^{(s)}\right) \, \delta^{(\theta)}\right] \end{split}$$

 \square Anomaly coefficients for non–Abelian discrete R and non–R symmetries

Anomaly coefficients for non–Abelian discrete R symmetries (cont'd)

Anomaly coefficients for transformation u

$$\begin{aligned} A_{G-G-\mathbb{Z}_{M_{u}}^{R}} &= \sum_{s} \ell(\boldsymbol{r}^{(s)}) \cdot \left[\delta^{(s)} - \dim\left(\boldsymbol{d}^{(s)}\right) \, \delta^{(\theta)} \right] + \ell \left(\operatorname{adj} G \right) \cdot \delta^{(\theta)} \\ A_{\mathrm{U}(1)-\mathrm{U}(1)-\mathbb{Z}_{M_{u}}^{R}} &= \sum_{s} \left(Q^{(s)} \right)^{2} \, \dim\left(\boldsymbol{r}^{(s)}\right) \cdot \left[\delta^{(s)} - \dim\left(\boldsymbol{d}^{(s)}\right) \, \delta^{(\theta)} \right] \\ A_{\mathrm{grav-grav-Z}_{M_{u}}^{R}} &= -21 \, \delta^{(\theta)} + \delta^{(\theta)} \, \sum_{G} \dim(\operatorname{adj} G) \\ &+ \sum_{s} \dim\left(\boldsymbol{r}^{(s)}\right) \cdot \left[\delta^{(s)} - \dim\left(\boldsymbol{d}^{(s)}\right) \, \delta^{(\theta)} \right] \end{aligned}$$

Anomaly relations

Anomaly coefficients for two group elements u of order $M_{\rm u}$ and v of order $M_{\rm v}$

$$A_{\sf u} =
ho \mod {M_{\sf u} \over 2}$$
 and $A_{\sf v} = \sigma \mod {M_{\sf v} \over 2}$

Anomaly relations

Anomaly coefficients for two group elements u of order $M_{\rm u}$ and v of order $M_{\rm v}$

$$A_{u} = \rho \mod \frac{M_{u}}{2}$$
 and $A_{v} = \sigma \mod \frac{M_{v}}{2}$

Anomaly coefficient of group element w = u · v of order M_w

$$\begin{split} A_{\mathsf{w}} &= \sum_{f} \ell\left(\boldsymbol{r}^{(f)}\right) \, \delta_{\mathsf{w}}^{(f)} + \ell\left(\operatorname{adj} G\right) \, \delta_{\mathsf{w}}^{(\theta)} \\ &= \sum_{f} \ell\left(\boldsymbol{r}^{(f)}\right) \cdot \left[\frac{M_{\mathsf{w}}}{M_{\mathsf{u}}} \, \delta_{\mathsf{u}}^{(f)} + \frac{M_{\mathsf{w}}}{M_{\mathsf{v}}} \, \delta_{\mathsf{v}}^{(f)}\right] + \ell\left(\operatorname{adj} G\right) \cdot \left[\frac{M_{\mathsf{w}}}{M_{\mathsf{u}}} \, \delta_{\mathsf{u}}^{(\theta)} + \frac{M_{\mathsf{w}}}{M_{\mathsf{v}}} \, \delta_{\mathsf{v}}^{(\theta)}\right] \\ &= \frac{M_{\mathsf{w}}}{M_{\mathsf{u}}} \left(\rho \mod \frac{M_{\mathsf{u}}}{2}\right) + \frac{M_{\mathsf{w}}}{M_{\mathsf{v}}} \left(\sigma \mod \frac{M_{\mathsf{v}}}{2}\right) \end{split}$$

Anomaly relations (cont'd)

Three cases:

• Neither u nor v generates an anomalous symmetry , i.e. $\rho = \sigma = 0$ \sim symmetry generated by {u, v} is anomaly–free

Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

Anomaly relations (cont'd)

Three cases:

• Neither u nor v generates an anomalous symmetry , i.e. $\rho = \sigma = 0$ \sim symmetry generated by {u, v} is anomaly–free

Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

2 Only one element, say u, generates an anomalous symmetry, i.e. $\rho \neq 0 = \sigma$ $\sim w = u \cdot v$ is anomalous with an anomaly coefficient $A_w = M_w \left(\frac{\rho}{M_u} \mod \frac{1}{2}\right)$

Anomaly relations (cont'd)

Three cases:

• Neither u nor v generates an anomalous symmetry , i.e. $\rho = \sigma = 0$ \sim symmetry generated by {u, v} is anomaly–free

Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

2 Only one element, say u, generates an anomalous symmetry, i.e. $\rho \neq 0 = \sigma$ $\sim w = u \cdot v$ is anomalous with an anomaly coefficient $A_w = M_w \left(\frac{\rho}{M_u} \mod \frac{1}{2}\right)$

8 Both u and v generate anomalous symmetries \sim anomaly coefficient for w is $A_{\text{w}} = M_{\text{w}} \cdot \left[\left(\frac{\rho}{M_{\text{u}}} + \frac{\sigma}{M_{\text{v}}} \right) \mod \frac{1}{2} \right]$

Non–Abelian discrete R symmetries

 \square Anomaly coefficients for non–Abelian discrete R and non–R symmetries

GS mechanism for non–Abelian discrete symmetries

- Two operations u and v induce shifts of the axion
 - $u : a \rightarrow a + \Delta^{(u)}$ and $v : a \rightarrow a + \Delta^{(v)}$

Non–Abelian discrete R symmetries

Anomaly coefficients for non–Abelian discrete R and non–R symmetries

GS mechanism for non–Abelian discrete symmetries

- Two operations u and v induce shifts of the axion
 - $u : a \rightarrow a + \Delta^{(u)}$ and $v : a \rightarrow a + \Delta^{(v)}$
- Action of these shifts on the axion is Abelian

Anomaly coefficients for non–Abelian discrete R and non–R symmetries

GS mechanism for non–Abelian discrete symmetries

- Two operations u and v induce shifts of the axion
 - $u : a \rightarrow a + \Delta^{(u)}$ and $v : a \rightarrow a + \Delta^{(v)}$
- Action of these shifts on the axion is Abelian
- Axions do not shift under so-called commutator elements

$$[\mathbf{u}, \mathbf{v}] := \mathbf{u} \, \mathbf{v} \, \mathbf{u}^{-1} \, \mathbf{v}^{-1} \quad \frown \quad U_{[\mathbf{u}, \mathbf{v}]} = U_{\mathbf{u}} \, U_{\mathbf{v}} \, U_{\mathbf{u}}^{-1} \, U_{\mathbf{v}}^{-1}$$

Non–Abelian discrete R symmetries

Anomaly coefficients for non-Abelian discrete R and non-R symmetries

GS mechanism for non–Abelian discrete symmetries

- Two operations u and v induce shifts of the axion
 - $\mathbf{u} : a \to a + \Delta^{(\mathbf{u})}$ and $\mathbf{v} : a \to a + \Delta^{(\mathbf{v})}$
- Action of these shifts on the axion is Abelian
- Axions do not shift under so-called commutator elements

$$[\mathbf{u}, \mathbf{v}] := \mathbf{u} \, \mathbf{v} \, \mathbf{u}^{-1} \, \mathbf{v}^{-1} \quad \frown \quad U_{[\mathbf{u}, \mathbf{v}]} = U_{\mathbf{u}} \, U_{\mathbf{v}} \, U_{\mathbf{u}}^{-1} \, U_{\mathbf{v}}^{-1}$$

Perfect groups are always anomaly-free

a perfect group equals its commutator subgroup

Anomaly coefficients for non–Abelian discrete R and non–R symmetries

GS mechanism for non–Abelian discrete symmetries

- Two operations u and v induce shifts of the axion
 - $u : a \rightarrow a + \Delta^{(u)}$ and $v : a \rightarrow a + \Delta^{(v)}$
- Action of these shifts on the axion is Abelian
- Axions do not shift under so-called commutator elements

$$[\mathbf{u}, \mathbf{v}] := \mathbf{u} \, \mathbf{v} \, \mathbf{u}^{-1} \, \mathbf{v}^{-1} \quad \frown \quad U_{[\mathbf{u}, \mathbf{v}]} = U_{\mathbf{u}} \, U_{\mathbf{v}} \, U_{\mathbf{u}}^{-1} \, U_{\mathbf{v}}^{-1}$$

- Perfect groups are always anomaly–free
- Simple (finite) non-Abelian groups are always perfect

Chen, Fallbacher, M.R., Trautner & Vaudrevange (in preparation)

Anomaly coefficients for non-Abelian discrete R and non-R symmetries

GS cancellation of anomalies

Two generating elements u and v

Non-Abelian discrete R symmetries

Anomaly coefficients for non-Abelian discrete R and non-R symmetries

GS cancellation of anomalies

- Two generating elements u and v
- Some combined operation $w = u \cdot v$ with anomaly coefficient

$$A_{u \cdot v} = \omega \mod \frac{M_w}{2}$$

Non-Abelian discrete R symmetries

Anomaly coefficients for non–Abelian discrete R and non–R symmetries

GS cancellation of anomalies

- Two generating elements u and v
- Solution $w = u \cdot v$ with anomaly coefficient

$$A_{u \cdot v} = \omega \mod \frac{M_w}{2}$$

Axion shift under $w = u \cdot v : a \rightarrow a + \Delta^{(u \cdot v)}$ $\Delta^{(u \cdot v)} = \Delta^{(u)} + \Delta^{(v)}$

Non-Abelian discrete R symmetries

Anomaly coefficients for non-Abelian discrete R and non-R symmetries

GS cancellation of anomalies

- Two generating elements u and v
- Some combined operation $w = u \cdot v$ with anomaly coefficient

$$A_{\mathsf{u}\cdot\mathsf{v}} = \omega \mod \frac{M_{\mathsf{w}}}{2}$$

So Axion shift under $w = u \cdot v : a \rightarrow a + \Delta^{(u \cdot v)}$

Consistency

$$A_{\mathsf{u}\cdot\mathsf{v}} = 2\pi M_{\mathsf{w}} \left(\Delta^{(\mathsf{u})} + \Delta^{(\mathsf{v})}\right) \mod \frac{M_{\mathsf{w}}}{2}$$
$$\Delta^{(\mathsf{u}\cdot\mathsf{v})} = \Delta^{(\mathsf{u})} + \Delta^{(\mathsf{v})}$$

Non-Abelian discrete R symmetries

Anomaly coefficients for non-Abelian discrete R and non-R symmetries

GS cancellation of anomalies

- Two generating elements u and v
- Some combined operation $w = u \cdot v$ with anomaly coefficient

$$A_{u \cdot v} = \omega \mod \frac{M_w}{2}$$

So Axion shift under $w = u \cdot v : a \rightarrow a + \Delta^{(u \cdot v)}$

Consistency

$$A_{u \cdot v} = 2 \pi M_{w} \left(\Delta^{(u)} + \Delta^{(v)} \right) \mod \frac{M_{w}}{2}$$

$$= \frac{M_{w}}{M_{u}} \left(\rho \mod \frac{M_{u}}{2} \right) + \frac{M_{w}}{M_{v}} \left(\sigma \mod \frac{M_{v}}{2} \right)$$

$$A_{u} = 2 \pi M_{u} \Delta^{(u)} \mod \frac{M_{u}}{2}$$

Non-Abelian discrete R symmetries

Anomaly coefficients for non-Abelian discrete R and non-R symmetries

GS cancellation of anomalies

- Two generating elements u and v
- Some combined operation $w = u \cdot v$ with anomaly coefficient

$$A_{\mathsf{u}\cdot\mathsf{v}} = \omega \mod \frac{M_{\mathsf{w}}}{2}$$

So Axion shift under $w = u \cdot v : a \rightarrow a + \Delta^{(u \cdot v)}$

 ${\scriptstyle \blacksquare \blacksquare}$ Consistency \checkmark

$$\begin{array}{lll} A_{\mathsf{u}\cdot\mathsf{v}} & = & 2\,\pi\,M_{\mathsf{w}}\,\left(\Delta^{(\mathsf{u})}+\Delta^{(\mathsf{v})}\right) \mod \frac{M_{\mathsf{w}}}{2} \\ & = & \frac{M_{\mathsf{w}}}{M_{\mathsf{u}}}\,\left(\rho \mod \frac{M_{\mathsf{u}}}{2}\right) + \frac{M_{\mathsf{w}}}{M_{\mathsf{v}}}\,\left(\sigma \mod \frac{M_{\mathsf{v}}}{2}\right) \end{array}$$

Discrete symmetries from

rhifolde

orbifolds

Orbifolds

1 start with some \mathbb{R}^d

- 1 start with some \mathbb{R}^d
- 2 compactify on a torus
 - choose basis vectors *e_a*

- 1 start with some \mathbb{R}^d
- ② compactify on a torus
 - choose basis vectors *e_a*
 - define torus lattice $\Lambda = \{m_{\alpha} e_{\alpha}; m_{\alpha} \in \mathbb{Z}\}$

- 1 start with some \mathbb{R}^d
- ② compactify on a torus
 - choose basis vectors e_a
 - define torus lattice $\Lambda = \{m_{\alpha} e_{\alpha}; m_{\alpha} \in \mathbb{Z}\}$
 - identify points differing by lattice vectors $\ell \in \Lambda$

- 1 start with some \mathbb{R}^d
- 2 compactify on a torus
- ③ mod out a symmetry of the lattice
 - choose discrete rotation ϑ which maps Λ onto itself

- 1 start with some \mathbb{R}^d
- ② compactify on a torus
- ③ mod out a symmetry of the lattice
 - choose discrete rotation θ which maps Λ onto itself
 - identify points related by ϑ

- 1 start with some \mathbb{R}^d
- 2 compactify on a torus
- ③ mod out a symmetry of the lattice
- (4) identify fixed points $\vartheta f = f + \ell$, $\ell \in \Lambda$
 - correspondence $f \leftrightarrow (\vartheta, \ell)$

- 1 start with some \mathbb{R}^d
- ② compactify on a torus
- ③ mod out a symmetry of the lattice
- (4) identify fixed points $\vartheta f = f + \ell$, $\ell \in \Lambda$
 - correspondence $f \leftrightarrow (\vartheta, \ell)$
 - ℓ is only determined up to translations $\lambda \in (\mathbb{1} \vartheta) \Lambda$

 ${}^{\scriptsize \mbox{\scriptsize \sc only}}$ $\mathbb O$ can also be defined as the quotient space of $\mathbb C^3$ by the so–called space group $\mathbb S$

- $\mathbb O$ can also be defined as the quotient space of $\mathbb C^3$ by the so–called B space group \$
- Solution Elements of \mathbb{S} are of the form $g = (\vartheta^k, n_\alpha e_\alpha)$ $n_\alpha \in \mathbb{Z}$

- ${}^{\mbox{\tiny ISO}}$ ${}^{\mbox{\tiny ISO}}$ can also be defined as the quotient space of ${}^{\mbox{\tiny C}^3}$ by the so–called space group ${}^{\mbox{\tiny S}}$
- Solution Elements of \$ are of the form $g = (\vartheta^k, n_\alpha e_\alpha)$

basis vectors of the torus lattice $\Lambda = \Lambda_{G_2} \oplus \Lambda_{SU(3)} \oplus \Lambda_{SO(4)}$

- ${}^{\mbox{\tiny ISO}}$ ${}^{\mbox{\tiny ISO}}$ can also be defined as the quotient space of ${}^{\mbox{\tiny C}^3}$ by the so–called space group ${}^{\mbox{\tiny S}}$
- Solution Elements of \mathbb{S} are of the form $g = \left(\vartheta^k, n_\alpha e_\alpha \right)$
- so Action of \mathbb{S} on \mathbb{C}^3 : $z \mapsto gz = \vartheta^k z + n_\alpha e_\alpha$

- ${}^{\mbox{\tiny ISO}}$ $\mathbb O$ can also be defined as the quotient space of $\mathbb C^3$ by the so–called space group $\mathbb S$
- Solution Elements of \mathbb{S} are of the form $g = (\vartheta^k, n_\alpha e_\alpha)$
- so Action of \mathbb{S} on \mathbb{C}^3 : $z \mapsto gz = \vartheta^k z + n_\alpha e_\alpha$
- Solution: $z \sim gz$

- ${}^{\scriptsize \mbox{\scriptsize \sc only}}$ $\mathbb O$ can also be defined as the quotient space of $\mathbb C^3$ by the so–called space group $\mathbb S$
- Solution Elements of \mathbb{S} are of the form $g = (\vartheta^k, n_\alpha e_\alpha)$
- so Action of \mathbb{S} on \mathbb{C}^3 : $z \mapsto gz = \vartheta^k z + n_\alpha e_\alpha$
- Solution: $z \sim gz$

$$z \xrightarrow{g} \vartheta^k z + n_\alpha e_\alpha$$
 and $X \xrightarrow{g} X + \pi \left(k V + n_\alpha W_\alpha \right)$
16-dimensional shift vector

- ${}^{\scriptsize \mbox{\scriptsize IS}}$ ${}^{\odot}$ can also be defined as the quotient space of ${}^{\mathbb C^3}$ by the so–called space group ${}^{\mathbb S}$
- Solution Elements of \mathbb{S} are of the form $g = (\vartheta^k, n_\alpha e_\alpha)$
- so Action of \mathbb{S} on \mathbb{C}^3 : $z \mapsto gz = \vartheta^k z + n_\alpha e_\alpha$
- Solution: $z \sim gz$

$$z \xrightarrow{g} \vartheta^k z + n_\alpha e_\alpha$$
 and $X \xrightarrow{g} X + \pi (k V + n_\alpha W_\alpha)$
"Wilson lines"

- ${}^{\scriptsize \mbox{\scriptsize IS}}$ ${}^{\odot}$ can also be defined as the quotient space of ${}^{\mathbb C^3}$ by the so–called space group ${}^{\mathbb S}$
- Solution Elements of \mathbb{S} are of the form $g = (\vartheta^k, n_\alpha e_\alpha)$
- so Action of \mathbb{S} on \mathbb{C}^3 : $z \mapsto gz = \vartheta^k z + n_\alpha e_\alpha$
- Solution: $z \sim gz$
- Reference of $g \in \mathbb{S}$ on the 16 gauge degrees of freedom X^I of $\mathbb{E}_8 imes \mathbb{E}_8$

$$z \stackrel{g}{\mapsto} \vartheta^k z + n_\alpha e_\alpha \quad \text{and} \quad X \stackrel{g}{\mapsto} X + \pi \left(k \, V + n_\alpha \, W_\alpha \right)$$

Groot Nibbelink, Hillenbach, Kobayashi & Walter (2004)

$$\mathbb{S} g = (\vartheta^k, n_{\alpha} e_{\alpha}) \quad \leftrightarrow \quad \begin{cases} \text{ local twist } : \quad v_g = k v \\ \text{ local shift } : \quad V_g = k V + n_{\alpha} W_{\alpha} \end{cases}$$

Boundary condition: $\mathbf{Z}(\tau, \sigma + \pi) = g \mathbf{Z}(\tau, \sigma)$

$$g = (\vartheta^k, n_\alpha e_\alpha) \in \mathbb{S}$$

Boundary condition: $\mathbf{Z}(\tau, \sigma + \pi) = g \mathbf{Z}(\tau, \sigma)$

Label states by boundary conditions

$$\begin{array}{ll} \left| p_{\mathrm{sh}}, q_{\mathrm{sh}}, \widetilde{N}, \widetilde{N}^{*}, g \right\rangle & = & \left| q_{\mathrm{sh}} \right\rangle_{\mathsf{R}} \otimes \left(\widetilde{\alpha}_{-\omega_{i}}^{i} \right)^{\widetilde{N}^{i}} \left(\widetilde{\alpha}_{-1+\omega_{i}}^{\overline{\imath}} \right)^{\widetilde{N}^{*i}} \left| p_{\mathrm{sh}} \right\rangle_{\mathsf{L}} \otimes \left| g \right\rangle \\ \\ & \text{shifted left-mover} \\ & \text{momentum } p_{\mathrm{sh}} = p + V_{g} \\ & \text{with } p \in \Lambda_{\mathrm{E}_{8} \times \mathrm{E}_{8}} \end{array}$$

shifted r

Massless closed (twisted) string

Boundary condition: $\mathbf{Z}(\tau, \sigma + \pi) = g \mathbf{Z}(\tau, \sigma)$ B

Label states by boundary conditions B

$$\begin{array}{ll} \left| p_{\mathrm{sh}}, q_{\mathrm{sh}}, \widetilde{N}, \widetilde{N}^{*}, g \right\rangle &= \left| q_{\mathrm{sh}} \right\rangle_{\mathsf{R}} \otimes \left(\widetilde{\alpha}_{-\omega_{i}}^{i} \right)^{\widetilde{N}^{i}} \left(\widetilde{\alpha}_{-1+\omega_{i}}^{\widetilde{i}} \right)^{\widetilde{N}^{*i}} \left| p_{\mathrm{sh}} \right\rangle_{\mathsf{L}} \otimes \left| g \right\rangle \\ \\ \text{shifted right-mover} \\ \text{momentum } q_{\mathrm{sh}} = q + v_{g} \text{ with } q \in \Lambda_{\mathrm{SO}(8)} \end{array}$$

& $q_{sh}(boson) = q_{sh}(fermion) + (1/2, -1/2, -1/2, -1/2)$

- Boundary condition: $\mathbf{Z}(\tau, \sigma + \pi) = g \mathbf{Z}(\tau, \sigma)$
- Label states by boundary conditions

$$|p_{sh}, q_{sh}, \widetilde{N}, \widetilde{N}^*, g \rangle = |q_{sh}\rangle_{\mathsf{R}} \otimes (\widetilde{\alpha}^{i}_{\omega_{i}})^{\widetilde{N}^{i}} (\widetilde{\alpha}^{\overline{i}}_{-1+\omega_{i}})^{\widetilde{N}^{*i}} |p_{sh}\rangle_{\mathsf{L}} \otimes |g\rangle$$

oscillator operators

- Boundary condition: $\mathbf{Z}(\tau, \sigma + \pi) = g \mathbf{Z}(\tau, \sigma)$
- Label states by boundary conditions

$$|p_{sh}, q_{sh}, \widetilde{N}, \widetilde{N}^*, g \rangle = |q_{sh}\rangle_{\mathsf{R}} \otimes \left(\widetilde{\alpha}^{i}_{-\omega_{i}}\right)^{\widetilde{N}^{i}} \left(\widetilde{\alpha}^{\overline{i}}_{-1+\omega_{i}}\right)^{\widetilde{N}^{*i}} |p_{sh}\rangle_{\mathsf{L}} \otimes |g\rangle$$

$$\text{oscillator operators}$$

- Boundary condition: $\mathbf{Z}(\tau, \sigma + \pi) = g \mathbf{Z}(\tau, \sigma)$
- Label states by boundary conditions

$$\left| p_{\mathrm{sh}}, q_{\mathrm{sh}}, \widetilde{N}, \widetilde{N}^{*}, g
ight
angle \; = \; \left| q_{\mathrm{sh}}
ight
angle_{\mathsf{R}} \otimes \left(\widetilde{lpha}^{i}_{-\omega_{i}}
ight)^{\widetilde{N}^{i}} \left(\widetilde{lpha}^{\overline{\imath}}_{-1+\omega_{i}}
ight)^{\widetilde{N}^{*i}} \left| p_{\mathrm{sh}}
ight
angle_{\mathsf{L}} \otimes \left| g
ight
angle$$

state is created by the vertex operator (in -1 ghost picture)

$$\mathbf{V}_{-1}^{(g)} = e^{-\phi} e^{2iq_{sh}\cdot\mathbf{H}} e^{2ip_{sh}\cdot\mathbf{X}} \prod_{i=1}^{3} \left(\partial \mathbf{Z}^{i}\right)^{\widetilde{N}^{i}} \left(\partial \mathbf{Z}^{*i}\right)^{\widetilde{N}^{*i}} \sigma_{g}$$
(bosonized) right-moving coordinates

- Boundary condition: $\mathbf{Z}(\tau, \sigma + \pi) = g \mathbf{Z}(\tau, \sigma)$
- Label states by boundary conditions

$$\left| p_{\mathrm{sh}}, q_{\mathrm{sh}}, \widetilde{N}, \widetilde{N}^{*}, g
ight
angle \; = \; \left| q_{\mathrm{sh}}
ight
angle_{\mathsf{R}} \otimes \left(\widetilde{lpha}^{i}_{-\omega_{i}}
ight)^{\widetilde{N}^{i}} \left(\widetilde{lpha}^{\overline{\imath}}_{-1+\omega_{i}}
ight)^{\widetilde{N}^{*i}} \left| p_{\mathrm{sh}}
ight
angle_{\mathsf{L}} \otimes \left| g
ight
angle$$

state is created by the vertex operator (in -1 ghost picture)

$$\mathbf{V}_{-1}^{(g)} = \mathbf{e}^{-\phi} \mathbf{e}^{2iq_{sh}\cdot \mathbf{H}} \mathbf{e}^{2ip_{sh}\cdot \mathbf{X}} \prod_{i=1}^{3} \left(\partial \mathbf{Z}^{i}\right)^{\widetilde{N}^{i}} \left(\partial \mathbf{Z}^{*i}\right)^{\widetilde{N}^{*i}} \sigma_{g}$$

bosonized superconformal ghost

- Boundary condition: $\mathbf{Z}(\tau, \sigma + \pi) = g \mathbf{Z}(\tau, \sigma)$
- Label states by boundary conditions

$$\left| p_{\mathrm{sh}}, q_{\mathrm{sh}}, \widetilde{N}, \widetilde{N}^{*}, g
ight
angle \; = \; \left| q_{\mathrm{sh}}
ight
angle_{\mathsf{R}} \otimes \left(\widetilde{lpha}^{i}_{-\omega_{i}}
ight)^{\widetilde{N}^{i}} \left(\widetilde{lpha}^{\overline{\imath}}_{-1+\omega_{i}}
ight)^{\widetilde{N}^{*i}} \left| p_{\mathrm{sh}}
ight
angle_{\mathsf{L}} \otimes \left| g
ight
angle$$

state is created by the vertex operator (in -1 ghost picture)

$$\mathbf{V}_{-1}^{(g)} = \mathbf{e}^{-\phi} \mathbf{e}^{2iq_{\mathrm{sh}}\cdot\mathbf{H}} \mathbf{e}^{2ip_{\mathrm{sh}}\cdot\mathbf{X}} \prod_{i=1}^{3} \left(\partial \mathbf{Z}^{i}\right)^{\widetilde{N}^{i}} \left(\partial \mathbf{Z}^{*i}\right)^{\widetilde{N}^{*i}} \sigma_{\mathbf{g}}$$
 twist field

Selection rules

Hamidi & Vafa (1987); Dixon, Friedan, Martinec & Shenker (1987)

Font, Ibáñez, Nilles & Quevedo (1988b, a); Font, Ibáñez, Quevedo & Sierra (1990)

Superpotential from correlators of vertex operators

$$\mathcal{A} = \left\langle \boldsymbol{V}_{-1/2}^{(g_1)} \, \boldsymbol{V}_{-1/2}^{(g_2)} \, \boldsymbol{V}_{-1}^{(g_3)} \, \boldsymbol{V}_{0}^{(g_4)} \dots \, \boldsymbol{V}_{0}^{(g_L)} \right\rangle$$

Selection rules

Hamidi & Vafa (1987); Dixon, Friedan, Martinec & Shenker (1987)

Font, Ibáñez, Nilles & Quevedo (1988b, a); Font, Ibáñez, Quevedo & Sierra (1990)

Superpotential from correlators of vertex operators

$$\mathcal{A} = \left\langle \boldsymbol{V}_{-1/2}^{(g_1)} \, \boldsymbol{V}_{-1/2}^{(g_2)} \, \boldsymbol{V}_{-1}^{(g_3)} \, \boldsymbol{V}_{0}^{(g_4)} \dots \, \boldsymbol{V}_{0}^{(g_L)} \right\rangle$$

Correlation function factorizes into correlators involving separately the fields ϕ , X^{I} , σ_{g} , H and Z^{i}

Orbifolds $_$ The \mathbb{Z}_6 -II orbifold

The \mathbb{Z}_6 –II orbifold

Senerator of \mathbb{Z}_6 is represented by the twist vector $v = (0, \frac{1}{6}, \frac{1}{3}, -\frac{1}{2})$

The \mathbb{Z}_6 –II orbifold

- Generator of \mathbb{Z}_6 is represented by the twist vector $v = (0, \frac{1}{6}, \frac{1}{3}, -\frac{1}{2})$
- Complex torus–coordinates zⁱ get mapped according to

$$z^i \stackrel{\vartheta}{\mapsto} \mathrm{e}^{2\pi\mathrm{i}\,v^i} z^i$$
 for $i=1,2,3$

Orbifolds The \mathbb{Z}_6 –II orbifold

The \mathbb{Z}_6 –II orbifold

- Generator of \mathbb{Z}_6 is represented by the twist vector $v = \left(0, \frac{1}{6}, \frac{1}{3}, -\frac{1}{2}\right)$
- Complex torus–coordinates zⁱ get mapped according to

$$z^i \stackrel{\vartheta}{\mapsto} \mathrm{e}^{2\pi \mathrm{i} v^i} z^i$$
 for $i = 1, 2, 3$

Solution Consider the factorized six-torus $\mathbb{T}^6 = \mathbb{T}^2_{G_2} \times \mathbb{T}^2_{SU(3)} \times \mathbb{T}^2_{SU(2) \times SU(2)}$

Orbifolds L The \mathbb{Z}_6 -II orbifold

The \mathbb{Z}_6 –II orbifold

- Generator of \mathbb{Z}_6 is represented by the twist vector $v = \left(0, \frac{1}{6}, \frac{1}{3}, -\frac{1}{2}\right)$
- Complex torus–coordinates zⁱ get mapped according to

$$z^i \stackrel{\vartheta}{\mapsto} \mathrm{e}^{2\pi\mathrm{i}\,v^i} z^i$$
 for $i=1,2,3$

Solution Consider the factorized six-torus $\mathbb{T}^6 = \mathbb{T}^2_{G_2} \times \mathbb{T}^2_{SU(3)} \times \mathbb{T}^2_{SU(2) \times SU(2)}$

Orbifolds L The \mathbb{Z}_6 -II orbifold

The \mathbb{Z}_6 –II orbifold

- Generator of \mathbb{Z}_6 is represented by the twist vector $v = \left(0, \frac{1}{6}, \frac{1}{3}, -\frac{1}{2}\right)$
- Complex torus-coordinates zⁱ get mapped according to

$$z^i \stackrel{\vartheta}{\mapsto} \mathrm{e}^{2\pi\mathrm{i}\,v^i} z^i$$
 for $i=1,2,3$

Solution Consider the factorized six-torus $\mathbb{T}^6 = \mathbb{T}^2_{G_2} \times \mathbb{T}^2_{SU(3)} \times \mathbb{T}^2_{SU(2) \times SU(2)}$

└─ The ℤ₆−II orbifold

Discrete R symmetries and sublattice rotations

Discrete R symmetries and sublattice rotations

- $\ {f \mbox{\tiny IM}} \ {f \mbox{\scriptsize O}}$ respects symmetries beyond the elements of ${f \mbox{\scriptsize S}}$
- Solutions $\mathfrak{P}^{(i)}$ Discrete R symmetries \leftrightarrow sublattice rotations $\mathfrak{P}^{(i)}$

$$\mathbf{Z}^{j} \xrightarrow{i} \mathbf{P}^{(i)} \mathbf{e}^{2\pi \mathbf{i} (r_{i})^{j}} \mathbf{Z}^{j} \text{ for } i = 1, 2, 3$$
$$\mathbf{r}_{1} = (0, \frac{1}{6}, 0, 0)$$

Discrete R symmetries and sublattice rotations

- $\ {f \mbox{\tiny IM}} \ {f \mbox{\scriptsize O}}$ respects symmetries beyond the elements of ${f \mbox{\scriptsize S}}$
- Solutions $\mathfrak{P}^{(i)}$ Discrete R symmetries \leftrightarrow sublattice rotations $\mathfrak{P}^{(i)}$

$$\mathbf{Z}^{j} \xrightarrow{i^{(i)}} \mathrm{e}^{2\pi \mathrm{i} (r_{i})^{j}} \mathbf{Z}^{j}$$
 for $i = 1, 2, 3$
 $r_{2} = (0, 0, \frac{1}{3}, 0)$

Discrete R symmetries and sublattice rotations

- $\ {f \mbox{\tiny IM}} \ {f \mbox{\scriptsize O}}$ respects symmetries beyond the elements of ${f \mbox{\scriptsize S}}$
- Solutions $\mathfrak{P}^{(i)}$ Discrete R symmetries \leftrightarrow sublattice rotations $\mathfrak{P}^{(i)}$

$$\mathbf{Z}^{j} \xrightarrow{\phi^{(i)}} e^{2\pi i (r_{i})^{j}} \mathbf{Z}^{j} \text{ for } i = 1, 2, 3$$

$$r_{3} = (0, 0, 0, \pm \frac{1}{2})$$

Orbifolds └─ The ℤ₆–II orbifold

Discrete R symmetries and sublattice rotations

- $\ {f \mbox{\tiny IM}} \ {f \mbox{\scriptsize O}}$ respects symmetries beyond the elements of ${f \mbox{\scriptsize S}}$
- Solutions $\mathfrak{P}^{(i)}$ Discrete R symmetries \leftrightarrow sublattice rotations $\mathfrak{P}^{(i)}$

$$\mathbf{Z}^{j} \stackrel{\vartheta^{(i)}}{\longmapsto} \mathrm{e}^{2\pi \mathrm{i} (r_{i})^{j}} \mathbf{Z}^{j}$$
 for $i = 1, 2, 3$

More explicitly

$$\left(egin{array}{c} \mathbf{Z}^1 \ \mathbf{Z}^2 \ \mathbf{Z}^3 \end{array}
ight) \stackrel{artheta}{\mapsto} \left(egin{array}{c} \mathrm{e}^{2\pi\,\mathrm{i}/6} & 0 & 0 \ 0 & \mathrm{e}^{2\pi\,\mathrm{i}/3} & 0 \ 0 & 0 & \mathrm{e}^{-2\pi\,\mathrm{i}/2} \end{array}
ight) \left(egin{array}{c} \mathbf{Z}^1 \ \mathbf{Z}^2 \ \mathbf{Z}^3 \end{array}
ight)$$

with

$$\left(\begin{array}{ccc} e^{2\pi\,i/6} & 0 & 0 \\ 0 & e^{2\pi\,i/3} & 0 \\ 0 & 0 & e^{-2\pi\,i/2} \end{array}\right) \ \in \ SU(3)_{hol}$$

Orbifolds \square The \mathbb{Z}_6 –II orbifold

Discrete R symmetries and sublattice rotations

- $\ {f \mbox{\tiny IM}} \ {f \mbox{\scriptsize O}}$ respects symmetries beyond the elements of ${f \mbox{\scriptsize S}}$
- Solutions $\mathfrak{P}^{(i)}$ Discrete R symmetries \leftrightarrow sublattice rotations $\mathfrak{P}^{(i)}$

$$\mathbf{Z}^{j} \xrightarrow{\vartheta^{(i)}} \mathrm{e}^{2\pi \mathrm{i} (r_{i})^{j}} \mathbf{Z}^{j}$$
 for $i = 1, 2, 3$

More explicitly

$$\left(egin{array}{c} {oldsymbol Z}^1 \ {oldsymbol Z}^2 \ {oldsymbol Z}^3 \end{array}
ight) \stackrel{artheta^{(1)}}{\longmapsto} \left(egin{array}{c} {
m e}^{2\pi\,{
m i}/6} & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight) \left(egin{array}{c} {oldsymbol Z}^1 \ {oldsymbol Z}^2 \ {oldsymbol Z}^3 \end{array}
ight)$$

with

$$\left(\begin{array}{ccc} e^{2\pi\,i/6} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) \ \notin \ SU(3)_{hol}$$

Orbifolds \square The \mathbb{Z}_6 –II orbifold

Discrete R symmetries and sublattice rotations

- $\ {f \mbox{\tiny IM}} \ {f \mbox{\scriptsize O}}$ respects symmetries beyond the elements of ${f \mbox{\scriptsize S}}$
- Solutions $\mathfrak{P}^{(i)}$ Discrete R symmetries \leftrightarrow sublattice rotations $\mathfrak{P}^{(i)}$

$$\mathbf{Z}^{j} \xrightarrow{\vartheta^{(i)}} \mathrm{e}^{2\pi \mathrm{i} (r_{i})^{j}} \mathbf{Z}^{j}$$
 for $i = 1, 2, 3$

More explicitly

$$\left(egin{array}{c} \mathbf{Z}^1 \ \mathbf{Z}^2 \ \mathbf{Z}^3 \end{array}
ight) \stackrel{artheta^{(2)}}{\longmapsto} \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & \mathrm{e}^{2\pi\mathrm{i}/3} & 0 \ 0 & 0 & 1 \end{array}
ight) \left(egin{array}{c} \mathbf{Z}^1 \ \mathbf{Z}^2 \ \mathbf{Z}^3 \end{array}
ight)$$

with

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & e^{2\pi\,i/3} & 0 \\ 0 & 0 & 1 \end{array}\right) \ \notin \ SU(3)_{hol}$$

Discrete R symmetries and sublattice rotations

- ${}^{\tiny \hbox{\tiny IMS}}$ ${}^{\tiny \hbox{\tiny O}}$ respects symmetries beyond the elements of ${}^{\scriptsize \hbox{\tiny S}}$
- Solutions $\mathfrak{P}^{(i)}$ Sublattice rotations $\mathfrak{P}^{(i)}$

$$\mathbf{Z}^{j} \xrightarrow{\vartheta^{(i)}} \mathrm{e}^{2\pi \mathrm{i} (r_{i})^{j}} \mathbf{Z}^{j}$$
 for $i = 1, 2, 3$

Transformation of the oscillators

$$\begin{pmatrix} \widetilde{\alpha}^{j}_{-\omega_{i}} \end{pmatrix}^{\widetilde{N}^{j}} \begin{pmatrix} \widetilde{\alpha}^{\overline{j}}_{-1+\omega_{j}} \end{pmatrix}^{\widetilde{N}^{*j}} \stackrel{\theta^{(i)}}{\longmapsto} e^{-2\pi i \Delta \widetilde{N}^{*} r_{i}} \begin{pmatrix} \widetilde{\alpha}^{j}_{-\omega_{j}} \end{pmatrix}^{\widetilde{N}^{j}} \begin{pmatrix} \widetilde{\alpha}^{\overline{j}}_{-1+\omega_{j}} \end{pmatrix}^{\widetilde{N}^{*j}}$$

$$\Delta \widetilde{N}^{j} = \widetilde{N}^{*j} - \widetilde{N}^{j}$$

Discrete R symmetries and sublattice rotations

- $\ {f \mbox{\tiny IM}} \ {f \mbox{\scriptsize O}}$ respects symmetries beyond the elements of ${f \mbox{\scriptsize S}}$
- Solutions $\mathfrak{P}^{(i)}$ Sublattice rotations $\mathfrak{P}^{(i)}$

$$\mathbf{Z}^{j} \xrightarrow{\vartheta^{(i)}} \mathrm{e}^{2\pi \mathrm{i} (r_{i})^{j}} \mathbf{Z}^{j}$$
 for $i = 1, 2, 3$

 \square Transformation of the oscillators and $|q_{sh}\rangle_{\sf R}$

$$\left(\widetilde{\alpha}^{j}_{-\omega_{i}}\right)^{\widetilde{N}^{j}}\left(\widetilde{\alpha}^{\overline{j}}_{-1+\omega_{j}}\right)^{\widetilde{N}^{*j}} \stackrel{\scriptscriptstyle(\beta^{(i)})}{\longmapsto} e^{-2\pi i \Delta \widetilde{N} \cdot r_{i}} \left(\widetilde{\alpha}^{j}_{-\omega_{j}}\right)^{\widetilde{N}^{j}} \left(\widetilde{\alpha}^{\overline{j}}_{-1+\omega_{j}}\right)^{\widetilde{N}^{*j}}$$

 $|q_{\rm sh}\rangle_{\rm R} \mapsto {\rm e}^{-2\pi {\rm i} q_{\rm sh}, r_i} |q_{\rm sh}\rangle_{\rm R}$ and equivalently $\boldsymbol{H} \mapsto \boldsymbol{H} - \pi r_i$

Discrete R symmetries and sublattice rotations

- $\ {f \mbox{\tiny IM}} \ {f \mbox{\scriptsize O}}$ respects symmetries beyond the elements of ${f \mbox{\scriptsize S}}$
- Solutions $\mathfrak{P}^{(i)}$ Discrete R symmetries \leftrightarrow sublattice rotations $\mathfrak{P}^{(i)}$

$$\mathbf{Z}^{j} \xrightarrow{\vartheta^{(i)}} \mathrm{e}^{2\pi \mathrm{i} (r_{i})^{j}} \mathbf{Z}^{j}$$
 for $i = 1, 2, 3$

 \square Transformation of the oscillators and $|q_{sh}\rangle_{R}$

$$\left(\widetilde{\alpha}^{j}_{-\omega_{i}}\right)^{\widetilde{N}^{j}}\left(\widetilde{\alpha}^{\overline{j}}_{-1+\omega_{j}}\right)^{\widetilde{N}^{*j}} \stackrel{\scriptscriptstyle{\vartheta^{(i)}}}{\longmapsto} e^{-2\pi \mathrm{i}\,\Delta\widetilde{N}\cdot r_{i}}\left(\widetilde{\alpha}^{j}_{-\omega_{j}}\right)^{\widetilde{N}^{j}}\left(\widetilde{\alpha}^{\overline{j}}_{-1+\omega_{j}}\right)^{\widetilde{N}^{*j}}$$

 $|q_{sh}\rangle_{\mathsf{R}} \mapsto \mathrm{e}^{-2\pi \mathrm{i} q_{sh} \cdot r_i} |q_{sh}\rangle_{\mathsf{R}}$ and equivalently $\boldsymbol{H} \mapsto \boldsymbol{H} - \pi r_i$

crucial:

 $\vartheta \in SU(3)_{hol}$ while $\vartheta^{(i)} \notin SU(3)_{hol} \frown$ superspace coordinate θ transforms non-trivially under $\vartheta^{(i)}$

R charges and γ phases

\blacksquare 'Old' R charges

$$R^{\text{KRZ},j} = q^{j}_{\text{sh}} + \Delta \widetilde{N}^{j}$$

Kobayashi, Raby & Zhang (2005)

Orbifolds \Box The \mathbb{Z}_6 -II orbifold

R charges and γ phases

 \blacksquare 'Old' R charges

 $R^{\text{KRZ},j} = q_{\text{sh}}^j + \Delta \widetilde{N}^j$

Kobayashi, Raby & Zhang (2005)

Cabo Bizet, Kobayashi, Mayorga Pena, Parameswaran, Schmitz, Zavala (2013)

 ${}^{\tiny \hbox{\tiny IMS}}$ However, |g
angle transforms non–trivially under sublattice rotations

Orbifolds \Box The \mathbb{Z}_6 -II orbifold

R charges and γ phases

- \blacksquare 'Old' R charges
 - $R^{\text{KRZ},j} = q_{\text{sh}}^j + \Delta \widetilde{N}^j$

Kobayashi, Raby & Zhang (2005)

Cabo Bizet, Kobayashi, Mayorga Pena, Parameswaran, Schmitz, Zavala (2013)

- ${}^{\tiny \hbox{\tiny IMS}}$ However, |g
 angle transforms non–trivially under sublattice rotations
- Three diagonal T moduli T_j associated with the size of the $j^{\rm th}$ two–torus

$$T_{j} \sim |q_{sh}\rangle_{\mathsf{R}} \otimes \tilde{\alpha}_{-1}^{\overline{j}} |0\rangle_{\mathsf{L}} \otimes |(1,0)\rangle$$

$$q_{sh} = \begin{cases} (0,-1,0,0) & \text{for } \overline{j} = \overline{1} \\ (0,0,-1,0) & \text{for } \overline{j} = \overline{2} \\ (0,0,0,-1) & \text{for } \overline{j} = \overline{3} \end{cases}$$

Orbifolds \Box The \mathbb{Z}_6 –II orbifold

R charges and γ phases

- \blacksquare 'Old' R charges
 - $R^{\text{KRZ},j} = q_{\text{sh}}^j + \Delta \widetilde{N}^j$

Kobayashi, Raby & Zhang (2005)

Cabo Bizet, Kobayashi, Mayorga Pena, Parameswaran, Schmitz, Zavala (2013)

- Bowever, |g> transforms non-trivially under sublattice rotations
- Three diagonal T moduli T_j associated with the size of the $j^{\rm th}$ two–torus

$$T_{j} ~\sim~ |q_{
m sh}
angle_{\sf R} \otimes \widetilde{lpha}_{-1}^{ar{\jmath}} \ket{0}_{\sf L} \otimes |(\mathbb{1},0)
angle$$

 $\mathbb{R}^{\mathrm{KRZ}}$ can be motivated as the unique combination of q_{sh} and $\Delta \widetilde{N}$ such that VEVs of the T moduli do not break the corresponding R symmetries

Orbifolds \Box The \mathbb{Z}_6 –II orbifold

R charges and γ phases

- \blacksquare 'Old' R charges
 - $R^{\text{KRZ},j} = q_{\text{sh}}^j + \Delta \widetilde{N}^j$

Kobayashi, Raby & Zhang (2005)

Cabo Bizet, Kobayashi, Mayorga Pena, Parameswaran, Schmitz, Zavala (2013)

- ${}^{\tiny \hbox{\tiny IMS}}$ However, $|g\rangle$ transforms non-trivially under sublattice rotations
- Three diagonal T moduli T_j associated with the size of the $j^{\rm th}$ two–torus

$$T_{j} ~\sim~ |q_{
m sh}
angle_{\sf R} \otimes \widetilde{lpha}_{-1}^{ar{\jmath}} \ket{0}_{\sf L} \otimes |(\mathbb{1},0)
angle$$

 $\mathbb{R}^{\mathsf{KRZ}}$ can be motivated as the unique combination of q_{sh} and $\Delta \widetilde{N}$ such that VEVs of the T moduli do not break the corresponding R symmetries . . . but there is the freedom to add further contributions

Conjugacy classes

 ${}^{\hspace*{-0.5ex} {\scriptscriptstyle \mathbb{S}}}$ g transforms, in general, non–trivially under the action of $h\in\mathbb{S}$

$$g \stackrel{h}{\mapsto} h \cdot g \cdot h^{-1} = g'$$

Conjugacy classes

 ${}^{\bowtie}g$ transforms, in general, non–trivially under the action of $h\in\mathbb{S}$

$$g \stackrel{h}{\mapsto} h \cdot g \cdot h^{-1} = g'$$

Conjugacy class

$$[g] = \{h \cdot g \cdot h^{-1} \mid h \in \mathbb{S}\}$$

Conjugacy classes

 ${}^{\bowtie}g$ transforms, in general, non–trivially under the action of $h\in\mathbb{S}$

$$g \stackrel{h}{\mapsto} h \cdot g \cdot h^{-1} = g'$$

Conjugacy class

$$[g] = \{h \cdot g \cdot h^{-1} \mid h \in \mathbb{S}\}$$

For example, the constructing elements g_2 and g_3 belong to the same conjugacy class

└─ The ℤ₆–II orbifold

The "geometrical eigenstate" $|[g]\rangle$

 \mathbb{G} "Geometrical eigenstate" $|[g]\rangle$

$$|[g]\rangle = \sum_{h} \mathrm{e}^{-2\pi \mathrm{i} \gamma(g,h)} \left| h \cdot g \cdot h^{-1} \right\rangle$$

 \blacksquare "Geometrical eigenstate" $|[g]\rangle$

$$|[g]\rangle = \sum_{h} \mathrm{e}^{-2\pi \mathrm{i} \gamma(g,h)} \left| h \cdot g \cdot h^{-1} \right\rangle$$

$$|[g]\rangle \xrightarrow{h} e^{2\pi i \gamma(g,h)} |[g]\rangle$$
$$\gamma(g,h) \equiv 0 \text{ if } g \cdot h = h \cdot g$$
$$`\equiv` \text{ means `modulo 1'}$$

 \blacksquare "Geometrical eigenstate" $|[g]\rangle$

$$|[g]\rangle = \sum_{h} \mathrm{e}^{-2\pi \mathrm{i} \gamma(g,h)} \left| h \cdot g \cdot h^{-1} \right\rangle$$

 ${\ensuremath{\,{\rm space}}}\xspace{-}$ group transformations up to the phase γ

$$|[g]\rangle \stackrel{h}{\mapsto} \mathrm{e}^{2\pi\mathrm{i}\,\gamma(g,h)} |[g]\rangle$$

▶ Redefinition of the twist fields σ_g

 \blacksquare "Geometrical eigenstate" $|[g]\rangle$

$$|[g]\rangle = \sum_{h} \mathrm{e}^{-2\pi \mathrm{i} \gamma(g,h)} \left| h \cdot g \cdot h^{-1} \right\rangle$$

 ${\ensuremath{\,{\rm space}}}\xspace{-}$ group transformations up to the phase γ

$$|[g]\rangle \stackrel{h}{\mapsto} \mathrm{e}^{2\pi\mathrm{i}\,\gamma(g,h)} |[g]\rangle$$

- \blacktriangleright Redefinition of the twist fields σ_g
- ▶ Full physical state $|p_{sh}, q_{sh}, \widetilde{N}, \widetilde{N}^*, g\rangle$ is invariant under the action of every $h \in S$

 \blacksquare "Geometrical eigenstate" $|[g]\rangle$

$$|[g]\rangle = \sum_{h} \mathrm{e}^{-2\pi \mathrm{i} \gamma(g,h)} \left| h \cdot g \cdot h^{-1} \right\rangle$$

 ${\ensuremath{\,{\rm space}}}\xspace{-}$ group transformations up to the phase γ

$$|[g]\rangle \stackrel{h}{\mapsto} \mathrm{e}^{2\pi\mathrm{i}\,\gamma(g,h)} |[g]\rangle$$

- \blacktriangleright Redefinition of the twist fields σ_g
- ▶ Full physical state $|p_{sh}, q_{sh}, \widetilde{N}, \widetilde{N}^*, g\rangle$ is invariant under the action of every $h \in S$

Some properties of the γ phases

For fixed $g \in \mathbb{S}, \gamma(g,h)$ is a homomorphism from the space group \mathbb{S} to \mathbb{Z}_6

 $\gamma(g,h_1\cdot h_2) \,\equiv \gamma(g,h_1) + \gamma(g,h_2)$

Some properties of the γ phases

For fixed $g \in \mathbb{S}$, $\gamma(g,h)$ is a homomorphism from the space group \mathbb{S} to \mathbb{Z}_6

$$\gamma(g,h_1\cdot h_2) \,\equiv \gamma(g,h_1) + \gamma(g,h_2)$$

Solution For
$$h = (\vartheta^{\ell}, m_{\alpha} e_{\alpha})$$
 one has

$$\gamma(g,h) \equiv \ell \gamma(g,\vartheta) + m_{\alpha} \gamma(g,e_{\alpha})$$
$$\gamma(g,\vartheta) := \gamma(g,(\vartheta,0))$$

Some properties of the γ phases

For fixed $g \in \mathbb{S}$, $\gamma(g,h)$ is a homomorphism from the space group \mathbb{S} to \mathbb{Z}_6

$$\gamma(g,h_1\cdot h_2) \equiv \gamma(g,h_1) + \gamma(g,h_2)$$

Solution For
$$h = (\vartheta^{\ell}, m_{\alpha} e_{\alpha})$$
 one has

$$\gamma(g,h) \equiv \ell \gamma(g,\vartheta) + m_{\alpha} \gamma(g,e_{\alpha})$$
$$\gamma(g,e_{\alpha}) := \gamma(g,(\mathbb{1},e_{\alpha}))$$

γ charges for sublattice rotations

γ charges for sublattice rotations

- It turns out that, in its action on $|[g]\rangle$, $\vartheta^{(j)}$ is equivalent to an appropriate space–group transformation $h \in \mathbb{S}$
- Geometrical eigenstates |[g]⟩ are eigenstates with respect to a sublattice rotation ϑ^(j)

$$|[g]\rangle \xrightarrow{\vartheta^{(j)}} e^{2\pi i \gamma(g, \vartheta^{(j)})} |[g]\rangle$$

γ charges for sublattice rotations

- It turns out that, in its action on $|[g]\rangle$, $\vartheta^{(j)}$ is equivalent to an appropriate space–group transformation $h \in \mathbb{S}$
- Geometrical eigenstates |[g]⟩ are eigenstates with respect to a sublattice rotation ϑ^(j)

$$|[g]\rangle \xrightarrow{\vartheta^{(j)}} e^{2\pi i \gamma(g, \vartheta^{(j)})} |[g]\rangle$$

► Phase $\gamma(g, \vartheta^{(j)})$ can be expressed in terms of $\gamma(g, \vartheta)$ and $\gamma(g, e_{\alpha})$

γ charges for sublattice rotations

- It turns out that, in its action on $|[g]\rangle$, $\vartheta^{(j)}$ is equivalent to an appropriate space–group transformation $h \in \mathbb{S}$
- Geometrical eigenstates |[g]⟩ are eigenstates with respect to a sublattice rotation ϑ^(j)

$$|[g]\rangle \xrightarrow{\vartheta^{(j)}} \mathrm{e}^{2\pi\mathrm{i}\gamma(g,\vartheta^{(j)})} |[g]\rangle$$

▶ Phase $\gamma(g, \vartheta^{(j)})$ can be expressed in terms of $\gamma(g, \vartheta)$ and $\gamma(g, e_{\alpha})$

bottom-line:

 $\vartheta^{(j)}$ are conjugacy–class preserving outer automorphisms of the space group ${\mathbb S}$

Orbifolds

└─ The ℤ₆–II orbifold

R charges for twisted fields

 \square Proper R charges

Nilles, Ramos-Sánchez, M.R. & Vaudrevange (2013)

$$R^{j} = q^{j}_{sh} + \Delta \widetilde{N}^{j} - N^{j} \gamma(g, \vartheta^{(j)})$$
order of the sublattice rotation

Orbifolds _____The \mathbb{Z}_6 –II orbifold

R charges for twisted fields

 \square Proper R charges

Nilles, Ramos-Sánchez, M.R. & Vaudrevange (2013)

$$R^{j} = q^{j}_{sh} + \Delta \widetilde{N}^{j} - N^{j} \gamma(g, \vartheta^{(j)})$$

 ${
m Invariance}$ of $\left| p_{
m sh}, q_{
m sh}, \widetilde{N}, \widetilde{N}^{*}, g
ight
angle$ under ${
m S}$ implies

$$p_{\mathsf{sh}} \cdot V_h - \left(q_{\mathsf{sh}} + \Delta \widetilde{N}\right) \cdot v_h - \frac{1}{2} \left(V_g \cdot V_h - v_g \cdot v_h\right) + \gamma(g,h) \stackrel{!}{=} 0$$

Orbifolds └─ The ℤ₆–II orbifold

R charges for twisted fields

 \square Proper R charges

Nilles, Ramos-Sánchez, M.R. & Vaudrevange (2013)

$$R^{j} = q^{j}_{sh} + \Delta \widetilde{N}^{j} - N^{j} \gamma(g, \vartheta^{(j)})$$

 \mathbb{I} Invariance of $\left| p_{
m sh}, q_{
m sh}, \widetilde{N}, \widetilde{N}^*, g
ight
angle$ under \mathbb{S} implies

$$p_{\mathsf{sh}} \cdot V_h - \left(q_{\mathsf{sh}} + \Delta \widetilde{N}\right) \cdot v_h - \frac{1}{2} \left(V_g \cdot V_h - v_g \cdot v_h\right) + \gamma(g,h) \stackrel{!}{=} 0$$

This allows us to compute, for a given $g \in S$, the γ phases $\gamma(g, h)$ for all $h \in S$

Orbifolds

└─ The ℤ₆–II orbifold

R charges for twisted fields: example

Nilles, Ramos-Sánchez, M.R. & Vaudrevange (2013)

Solution E.g. second two-torus (
$$\vartheta$$
 acts as \mathbb{Z}_3)

$$[g_a] \rangle = \sum_{m_3, m_4} e^{-2\pi i (m_3 + m_4) \gamma (g_a, e_3)} \\ \left| \left(\vartheta^k, (n_3 + m_3 + m_4) e_3 + (n_4 + 2m_4 - m_3) e_4 \right) \right\rangle$$

Orbifolds

└─ The ℤ₆–II orbifold

R charges for twisted fields: example

Nilles, Ramos-Sánchez, M.R. & Vaudrevange (2013)

Solution E.g. second two-torus (
$$\vartheta$$
 acts as \mathbb{Z}_3)

$$[g_a] \rangle = \sum_{m_3, m_4} e^{-2\pi i (m_3 + m_4) \gamma (g_a, e_3)} \\ \left| \left(\vartheta^k, (n_3 + m_3 + m_4) e_3 + (n_4 + 2m_4 - m_3) e_4 \right) \right\rangle$$

Compare

$$|[g_a]\rangle \xrightarrow{h=(\mathbb{1},s_3e_3+s_4e_4)} e^{2\pi i (s_3+s_4)\gamma(g_a,e_3)} |[g_a]\rangle$$

and

$$|[g_a]\rangle \xrightarrow{(\vartheta^{(2)},0)} e^{-2\pi i (n_3+n_4) \gamma(g_a,e_3)} |[g_a]\rangle$$

Orbifolds

└─ The ℤ₆–II orbifold

R charges for twisted fields: example

Nilles, Ramos-Sánchez, M.R. & Vaudrevange (2013)

Solution E.g. second two-torus (
$$\vartheta$$
 acts as \mathbb{Z}_3)

$$[g_a] \rangle = \sum_{m_3, m_4} e^{-2\pi i (m_3 + m_4) \gamma(g_a, e_3)} \\ \left| \left(\vartheta^k, (n_3 + m_3 + m_4) e_3 + (n_4 + 2m_4 - m_3) e_4 \right) \right\rangle$$

Compare

$$|[g_a]\rangle \xrightarrow{h=(1,s_3e_3+s_4e_4)} e^{2\pi i (s_3+s_4)\gamma(g_a,e_3)} |[g_a]\rangle$$

and

$$|[g_a]\rangle \xrightarrow{(\vartheta^{(2)},0)} e^{-2\pi i (n_3+n_4)\gamma(g_a,e_3)} |[g_a]\rangle$$

$$\Rightarrow \gamma \left(g_a, \vartheta^{(2)}\right) \equiv -k \left(n_3 + n_4\right) \gamma (g_a, e_3)$$

R charges for \mathbb{Z}_6 –II

\blacksquare Effective R charges

$$\begin{aligned} R^{1} &= -6 \left[q_{\rm sh}^{1} + \Delta \widetilde{N}^{1} - 6 \,\gamma(g, \theta) \right. \\ &- 6 \,k \left(n_{3} + n_{4} \right) \gamma(g, e_{3}) + 6 \left(n_{5} \,\gamma(g, e_{5}) + n_{6} \,\gamma(g, e_{6}) \right) \right] \\ R^{2} &= -6 \left[q_{\rm sh}^{2} + \Delta \widetilde{N}^{2} + 3 \,k \left(n_{3} + n_{4} \right) \gamma(g, e_{3}) \right] \\ R^{3} &= -2 \left[q_{\rm sh}^{3} + \Delta \widetilde{N}^{3} - 2 \left(n_{5} \,\gamma(g, e_{5}) + n_{6} \,\gamma(g, e_{6}) \right) \right] \end{aligned}$$

Flavor symmetries from orbifolds

 $\vdash_{\mathsf{Example: } \mathbb{S}^1/\mathbb{Z}_2}$

Example: $\mathbb{S}^1/\mathbb{Z}_2$

Flavor symmetries from orbifolds

 $\sqsubseteq_{\mathsf{Example: } \mathbb{S}^1/\mathbb{Z}_2}$

 $\sqsubseteq_{\mathsf{Example: } \mathbb{S}^1/\mathbb{Z}_2}$

 $\vdash_{\mathsf{Example: } \mathbb{S}^1/\mathbb{Z}_2}$

 $\sqsubseteq_{\mathsf{Example: } \mathbb{S}^1/\mathbb{Z}_2}$

Solution 2 fixed points: $(\vartheta, 0)$ and (ϑ, e_1)

- Solution 2 fixed points: $(\vartheta, 0)$ and (ϑ, e_1)
- Space group rule

$$\prod_{j=1}^{n} \left(\vartheta, m^{(j)} e_{j}\right) \simeq (1, 0)$$

$$\in (1 - \vartheta) \Lambda$$

- Solution 2 fixed points: $(\vartheta, 0)$ and (ϑ, e_1)
- Space group rule

$$\prod_{j=1}^n \left(\vartheta, m^{(j)} e_j\right) \simeq (1, 0)$$

• Coupling between n localized states $\left(\vartheta^{n^{(j)}}, m^{(j)} e_j\right)$ only allowed if

① $n \stackrel{!}{=} \text{even} \curvearrowright \text{`first' } \mathbb{Z}_2 \text{ symmetry}$ ② $\sum_i m^{(j)} \stackrel{!}{=} \text{even} \curvearrowright \text{`second' } \mathbb{Z}_2 \text{ symmetry}$

- Solution 2 fixed points: $(\vartheta, 0)$ and (ϑ, e_1)
- Space group rule

$$\prod_{j=1}^{n} \left(\vartheta, \boldsymbol{m}^{(j)} \boldsymbol{e}_{j} \right) \simeq (1, 0)$$

- ► Coupling between *n* localized states $\left(\vartheta^{n^{(j)}}, m^{(j)} e_j\right)$ only allowed if
 - ① $n \stackrel{!}{=} \text{even} \curvearrowright \text{`first' } \mathbb{Z}_2 \text{ symmetry}$ ② $\sum_j m^{(j)} \stackrel{!}{=} \text{even} \curvearrowright \text{`second' } \mathbb{Z}_2 \text{ symmetry}$
- Combine localized states in doublets

$$|\Psi_{\rm loc}\rangle \ = \ \left(\begin{array}{c} |(\vartheta,0)\rangle \\ |(\vartheta,e_1)\rangle \end{array}\right)$$

- Solution 2 fixed points: $(\vartheta, 0)$ and (ϑ, e_1)
- Space group rule

$$\prod_{j=1}^{n} \left(\vartheta, m^{(j)} e_j \right) \simeq (1, 0)$$

- Coupling between *n* localized states (∂^{n⁽ⁱ⁾}, m^(j) e_j) only allowed if
 ① *n* [!] even ~ 'first' Z₂ symmetry
 ② ∑_i m^(j) [!] even ~ 'second' Z₂ symmetry
 - (2) $\sum_j m^{\circ} = \text{even} \frown \text{second } \mathbb{Z}_2$ symmetric
- Combine localized states in doublets

$$|\Psi_{\rm loc}\rangle = \begin{pmatrix} |(\vartheta,0)\rangle \\ |(\vartheta,e_1)\rangle \end{pmatrix} \xrightarrow{\oplus} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} |(\vartheta,0)\rangle \\ |(\vartheta,e_1)\rangle \end{pmatrix}$$

- Solution 2 fixed points: $(\vartheta, 0)$ and (ϑ, e_1)
- Space group rule

$$\prod_{j=1}^{n} \left(\vartheta, m^{(j)} e_j \right) \simeq (1, 0)$$

- Coupling between *n* localized states (∂^{n^(j)}, m^(j) e_j) only allowed if
 ① n [!] even ~ 'first' Z₂ symmetry
 ② ∑_j m^(j) [!] even ~ 'second' Z₂ symmetry
- Combine localized states in doublets

$$\begin{split} |\Psi_{\text{loc}}\rangle \ = \ \begin{pmatrix} |(\vartheta,0)\rangle \\ |(\vartheta,e_1)\rangle \end{pmatrix} \ \stackrel{\odot}{\to} \ \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} |(\vartheta,0)\rangle \\ |(\vartheta,e_1)\rangle \end{pmatrix} \\ \stackrel{@}{\to} \ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} |(\vartheta,0)\rangle \\ |(\vartheta,e_1)\rangle \end{pmatrix} \end{split}$$

Flavor symmetries from orbifolds \vdash Example: $\mathbb{S}^1/\mathbb{Z}_2$

Example: $\mathbb{S}^1/\mathbb{Z}_2$

 $\label{eq:spacegroup} \begin{tabular}{l} \begin{t$

```
\label{eq:space-group-rule} \ \Leftrightarrow \ \left\{ \begin{array}{l} \ \mbox{couplings invariant} \\ \ \mbox{under } |\Psi_{loc}\rangle \ \to \ - \mbox{1}_2 \ |\Psi\rangle \\ \ \ \mbox{and } |\Psi_{loc}\rangle \ \to \ \sigma_3 \ |\Psi\rangle \end{array} \right.
```

In absence of background fields: fixed points are equivalent B (spectra of fields living at the fixed points coincide)

space group rule \Leftrightarrow

couplings invariant
under
$$|\Psi_{loc}\rangle \rightarrow -\mathbb{1}_2 |\Psi\rangle$$

and $|\Psi_{loc}\rangle \rightarrow \sigma_3 |\Psi\rangle$

- In absence of background fields: fixed points are equivalent
- ► Theory invariant under relabeling $m^{(j)} = 0 \iff m^{(j)} = 1$

 $\label{eq:spacegroup} \ensuremath{\mathbb{I}} \ensuremath{\mathbb{S}}^{\ast} \ensuremath{\text{space group rule}} \ \Leftrightarrow \ \left\{ \begin{array}{l} \mbox{couplings invariant} \\ \mbox{under } |\Psi_{loc}\rangle \ \to \ - \ 1_2 \ |\Psi\rangle \\ \mbox{and } |\Psi_{loc}\rangle \ \to \ \sigma_3 \ |\Psi\rangle \end{array} \right.$

- In absence of background fields: fixed points are equivalent
- Theory invariant under relabeling $m^{(j)} = 0 \iff m^{(j)} = 1$
- 'Permutation' symmetry

$$\begin{pmatrix} |(\vartheta, \mathbf{0})\rangle \\ |(\vartheta, \mathbf{e_1})\rangle \end{pmatrix} \xrightarrow{\pi} \begin{pmatrix} |(\vartheta, \mathbf{e_1})\rangle \\ |(\vartheta, \mathbf{0})\rangle \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{pmatrix} \begin{pmatrix} |(\vartheta, \mathbf{e_1})\rangle \\ |(\vartheta, \mathbf{0})\rangle \end{pmatrix}$$

 $\label{eq:space-group-rule} \ \Leftrightarrow \ \left\{ \begin{array}{l} \ \mbox{couplings invariant} \\ \ \mbox{under} \ |\Psi_{loc}\rangle \ \to \ - \ 1_2 \ |\Psi\rangle \\ \ \mbox{and} \ |\Psi_{loc}\rangle \ \to \ \sigma_3 \ |\Psi\rangle \end{array} \right.$

- In absence of background fields: fixed points are equivalent
- ► Theory invariant under relabeling $m^{(j)} = 0 \iff m^{(j)} = 1$
- 'Permutation' symmetry

$$\begin{pmatrix} |(\vartheta, \mathbf{0})\rangle \\ |(\vartheta, \mathbf{e}_1)\rangle \end{pmatrix} \xrightarrow{\pi} \begin{pmatrix} |(\vartheta, \mathbf{e}_1)\rangle \\ |(\vartheta, \mathbf{0})\rangle \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{pmatrix} \begin{pmatrix} |(\vartheta, \mathbf{e}_1)\rangle \\ |(\vartheta, \mathbf{0})\rangle \end{pmatrix}$$

bottom-line:

couplings need to be invariant under $|\Psi_{\rm loc}\rangle \rightarrow T |\Psi_{\rm loc}\rangle$ where $T \in \{-1, \sigma_3, \sigma_1\}$

Flavor symmetry arising from the space group rule is the multiplicative closure of an S_2 permutation symmetry with $\mathbb{Z}_2 \times \mathbb{Z}_2$

 $G_{\text{flavor}} = S_2 \cup (\mathbb{Z}_2 \times \mathbb{Z}_2) = S_2 \ltimes (\mathbb{Z}_2 \times \mathbb{Z}_2) = D_4$

 $D_4 = \{\pm \mathbb{1}, \pm \sigma_1, \pm i\sigma_2, \pm \sigma_3\}$

Dixon, Friedan, Martinec & Shenker (1987)

Flavor symmetry arising from the space group rule is the multiplicative closure of an S_2 permutation symmetry with $\mathbb{Z}_2 \times \mathbb{Z}_2$

$$G_{\text{flavor}} = S_2 \cup (\mathbb{Z}_2 \times \mathbb{Z}_2) = S_2 \ltimes (\mathbb{Z}_2 \times \mathbb{Z}_2) = D_4$$

$$D_4 = \{\pm \mathbb{1}, \pm \sigma_1, \pm i\sigma_2, \pm \sigma_3\}$$

Dixon, Friedan, Martinec & Shenker (1987) Kobayashi, Nilles, Plöger, Raby & M.R. (2007)

Lesson 1:

whenever there are equivalent fixed points, there is a non-Abelian discrete flavor symmetry

Flavor symmetry arising from the space group rule is the multiplicative closure of an S_2 permutation symmetry with $\mathbb{Z}_2 \times \mathbb{Z}_2$

$$G_{\text{flavor}} = S_2 \cup (\mathbb{Z}_2 \times \mathbb{Z}_2) = S_2 \ltimes (\mathbb{Z}_2 \times \mathbb{Z}_2) = D_4$$

$$D_4 = \{\pm \mathbb{1}, \pm \sigma_1, \pm i\sigma_2, \pm \sigma_3\}$$

Dixon, Friedan, Martinec & Shenker (1987) Kobayashi, Nilles, Plöger, Raby & M.R. (2007)

Lesson 1:

whenever there are equivalent fixed points, there is a non-Abelian discrete flavor symmetry

Lesson 2:

the non–Abelian flavor symmetry is **larger** than the symmetry of compact space

Flavor symmetry arising from the space group rule is the multiplicative closure of an S_2 permutation symmetry with $\mathbb{Z}_2 \times \mathbb{Z}_2$

$$G_{\text{flavor}} = S_2 \cup (\mathbb{Z}_2 \times \mathbb{Z}_2) = S_2 \ltimes (\mathbb{Z}_2 \times \mathbb{Z}_2) = D_4$$

$$D_4 = \{\pm \mathbb{1}, \pm \sigma_1, \pm i\sigma_2, \pm \sigma_3\}$$

Dixon, Friedan, Martinec & Shenker (1987) Kobayashi, Nilles, Plöger, Raby & M.R. (2007)

Lesson 1:

whenever there are equivalent fixed points, there is a non-Abelian discrete flavor symmetry

Lesson 2:

the non–Abelian flavor symmetry is **larger** than the symmetry of compact space

Other orbifolds: same conclusions

Character table for D_4

representation	1	-1	$\pm \sigma_1$	$\pm \sigma_3$	$\mp i\sigma_2$
doublet D	2	-2	0	0	0
singlet A_1	1	1	1	1	1
singlet B_1	1	1	1	-1	-1
singlet B_2	1	1	-1	1	-1
singlet A_2	1	1	-1	-1	1

$$D_1 \overline{D}_1 + D_2 \overline{D}_2 \sim A_1$$

 $D_1 \overline{D}_1 - D_2 \overline{D}_2 \sim B_2$

 $D_1 \overline{D}_2 + D_2 \overline{D}_1 \sim B_1$ $D_1 \overline{D}_2 - D_2 \overline{D}_1 \sim A_2$

Symmetry enhancement (I)

Solution Consider \mathbb{Z}_2 plane $\mathbb{T}^2/\mathbb{Z}_2$ with special symmetries:

 e_1 and e_2 have the same length and enclose an angle of 120°

Symmetry enhancement (I)

Solution Consider \mathbb{Z}_2 plane $\mathbb{T}^2/\mathbb{Z}_2$ with special symmetries:

 e_1 and e_2 have the same length and enclose an angle of 120°

Distances between all orbifold fixed points coincide

Symmetry enhancement (I)

Solution Consider \mathbb{Z}_2 plane $\mathbb{T}^2/\mathbb{Z}_2$ with special symmetries:

 e_1 and e_2 have the same length and enclose an angle of 120°

- Distances between all orbifold fixed points coincide
- Symmetry enhancement

Symmetry enhancement (I)

Solution Consider \mathbb{Z}_2 plane $\mathbb{T}^2/\mathbb{Z}_2$ with special symmetries:

 e_1 and e_2 have the same length and enclose an angle of 120°

- Distances between all orbifold fixed points coincide
- Symmetry enhancement
- Orbifold is a regular tetrahedron

Flavor symmetries from orbifolds

Symmetry enhancement

Tetrahedron

Tetrahedron

The tetrahedron is invariant under 120° rotations around an axis that goes through one of its vertices and hits the center of the opposite face, corresponding to

$$T = \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right)$$

acting on

Tetrahedron

The tetrahedron is invariant under 180° rotations around an axis that hits to opposite edges in their middle, corresponding to

$$S = \left(\begin{array}{rrrrr} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

acting on

Flavor symmetries from orbifolds

- Symmetry enhancement

Symmetry enhancement

Symmetry enhancement (II)

 ${}^{\tiny
m I\!S\!\circ}$ Tetrahedron is invariant under a discrete rotation by 120°

$$T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \text{ acting on } \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

Invariance under the 180° rotations to the further symmetry transformations

$$S = \left(egin{array}{cc} \sigma_1 & 0 \ 0 & \sigma_1 \end{array}
ight)$$
 and $S' = \left(egin{array}{cc} 0 & \mathbb{1}_2 \ \mathbb{1}_2 & 0 \end{array}
ight)$

- Symmetry enhancement

Symmetry enhancement (II)

 ${}^{\tiny \hbox{\tiny IMS}}$ Tetrahedron is invariant under a discrete rotation by 120°

$$T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \text{ acting on } \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

 ${\ensuremath{\,{\rm \tiny I\!S}}}$ Invariance under the 180° rotations to the further symmetry transformations

$$S = \left(egin{array}{cc} \sigma_1 & 0 \ 0 & \sigma_1 \end{array}
ight)$$
 and $S' = \left(egin{array}{cc} 0 & \mathbb{1}_2 \ \mathbb{1}_2 & 0 \end{array}
ight)$

 \square Symmetry of the tetrahedron is A_4

- Symmetry enhancement

Symmetry enhancement (II)

 ${}^{\tiny \hbox{\tiny IMS}}$ Tetrahedron is invariant under a discrete rotation by 120°

$$T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \text{ acting on } \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

 ${\ensuremath{\,{\rm \tiny I\!S}}}$ Invariance under the 180° rotations to the further symmetry transformations

$$S = \left(egin{array}{cc} \sigma_1 & 0 \ 0 & \sigma_1 \end{array}
ight)$$
 and $S' = \left(egin{array}{cc} 0 & \mathbb{1}_2 \ \mathbb{1}_2 & 0 \end{array}
ight)$

- Symmetry of the tetrahedron is A_4
- \blacksquare A_4 arises as multiplicative closure of the \mathbb{Z}_2 and \mathbb{Z}_3 groups with elements $\{1, S\}$ and $\{1, T, T^2\}$

Symmetry enhancement (III)

If A_4 is **not** the full relabeling symmetry because the geometric relations between the fixed points do not change upon reflections

Flavor symmetries from orbifolds

Symmetry enhancement

- $\$ A_4 is **not** the full relabeling symmetry because the geometric relations between the fixed points do not change upon reflections
- Full relabeling symmetry is S_4 and full flavor symmetry is SG(192, 1493)

- $\$ A_4 is **not** the full relabeling symmetry because the geometric relations between the fixed points do not change upon reflections
- Full relabeling symmetry is S_4 and full flavor symmetry is SG(192, 1493)
- Symmetry breakdown when the angle between e_1 and e_2 and/or their length ratio changes

- $\$ A_4 is **not** the full relabeling symmetry because the geometric relations between the fixed points do not change upon reflections
- Full relabeling symmetry is S_4 and full flavor symmetry is SG(192, 1493)
- Symmetry breakdown when the angle between e_1 and e_2 and/or their length ratio changes
- Angle and ratio are parametrized by a field Z.

complex structure modulus

- If A_4 is **not** the full relabeling symmetry because the geometric relations between the fixed points do not change upon reflections
- Full relabeling symmetry is S_4 and full flavor symmetry is SG(192, 1493)
- Symmetry breakdown when the angle between e_1 and e_2 and/or their length ratio changes
- ${}^{\,\,
 m sol}$ Angle and ratio are parametrized by a field Z
- Coupling strengths respect an enhanced symmetry if Z takes special values

- $\$ A_4 is **not** the full relabeling symmetry because the geometric relations between the fixed points do not change upon reflections
- Full relabeling symmetry is S_4 and full flavor symmetry is SG(192, 1493)
- Symmetry breakdown when the angle between e_1 and e_2 and/or their length ratio changes
- ${}^{\,\,
 m sc}$ Angle and ratio are parametrized by a field Z
- Coupling strengths respect an enhanced symmetry if Z takes special values
- In other words, the fluctuations of Z around the critical value furnish a non-trivial representation under the symmetry

Flavor symmetries from orbifolds

Symmetry enhancement

Full flavor symmetry SG(192, 1493)

Character table

1	1	1	1	1	1	1	1	1	1	1	1	1	1
1'	1	-1	1	-1	1	-1	-1	1	1	-1	1	1	1
2	2	0	2	0	-1	0	0	2	2	0	-1	2	2
3	3	-1	-1	1	0	1	-1	3	-1	-1	0	-1	3
$\overline{3}$	3	-1	3	-1	0	1	1	-1	-1	-1	0	-1	3
3 '	3	1	-1	-1	0	-1	1	3	-1	1	0	-1	3
$\overline{3}'$	3	1	3	1	0	-1	-1	-1	-1	1	0	-1	3
$3^{\prime\prime}$	3	-1	-1	1	0	-1	1	-1	3	-1	0	-1	3
$\overline{3}^{\prime\prime}$	3	1	-1	-1	0	1	-1	-1	3	1	0	$^{-1}$	3
4	4	2	0	0	1	0	0	0	0	-2	-1	0	-4
4	4	-2	0	0	1	0	0	0	0	2	-1	0	-4
6	6	0	-2	0	0	0	0	-2	-2	0	0	2	6
8	8	0	0	0	-1	0	0	0	0	0	1	0	-8

Symmetry enhancement (IV)

 ${\ensuremath{\,{\rm symmetry}}}$ generated by S is discrete rotational symmetry of order 6

- ${\it I}{\it S}$ Symmetry generated by S is discrete rotational symmetry of order 6
- Also bulk fields transform non-trivially

- ${\it I}{\it S}$ Symmetry generated by S is discrete rotational symmetry of order 6
- Also bulk fields transform non-trivially

- ${\it I}{\it S}{\it Symmetry}$ generated by S is discrete rotational symmetry of order 6
- Also bulk fields transform non-trivially
- ➡ Hence it is a discrete R symmetry of order 12

- ${\it I}{\it S}$ Symmetry generated by S is discrete rotational symmetry of order 6
- Also bulk fields transform non-trivially
- ➡ Hence it is a discrete R symmetry of order 12
- ${\ensuremath{\,{\scriptscriptstyle \boxtimes}\,}} \ensuremath{\,\mathbb{Z}_{12}}$ can always be written as $\mathbb{Z}_4\times\mathbb{Z}_3$, e.g.

\mathbb{Z}_{12}	0	1	2	3	4	5	6	7	8	9	10	11
\mathbb{Z}_4	0	3	2	1	0	3	2	1	0	3	2	1
\mathbb{Z}_4 \mathbb{Z}_3	0	1	2	0	1	2	0	1	2	0	1	2

- ${\it I}{\it S}$ Symmetry generated by S is discrete rotational symmetry of order 6
- Also bulk fields transform non-trivially
- ➡ Hence it is a discrete R symmetry of order 12
- $\boxtimes \mathbb{Z}_{12}$ can always be written as $\mathbb{Z}_4 \times \mathbb{Z}_3$
- \blacktriangleright θ has \mathbb{Z}_4 charge 3 and \mathbb{Z}_3 charge 1

- ${\it I}{\it S}$ Symmetry generated by S is discrete rotational symmetry of order 6
- Also bulk fields transform non-trivially
- ➡ Hence it is a discrete R symmetry of order 12
- \mathbb{Z}_{12} can always be written as $\mathbb{Z}_4 \times \mathbb{Z}_3$
- \blacktriangleright θ has \mathbb{Z}_4 charge 3 and \mathbb{Z}_3 charge 1
- Symmetry can be witten as $\mathbb{Z}_4^R \times \mathbb{Z}_3^R$ for bulk fields

- ${\it I}{\it S}$ Symmetry generated by S is discrete rotational symmetry of order 6
- Also bulk fields transform non-trivially
- ➡ Hence it is a discrete R symmetry of order 12
- \mathbb{Z}_{12} can always be written as $\mathbb{Z}_4 \times \mathbb{Z}_3$
- \blacktriangleright θ has \mathbb{Z}_4 charge 3 and \mathbb{Z}_3 charge 1
- Symmetry can be witten as $\mathbb{Z}_4^R \times \mathbb{Z}_3^R$ for bulk fields

bottom-line:

non–Abelian discrete ${\boldsymbol R}$ symmetries can arise from Abelian orbifolds

Symmetry enhancement (V)

Consider a torus where e_1 and e_2 have the same length and enclose 90°

Origin of non-Abelian discrete symmetries

Symmetry enhancement

- Consider a torus where e_1 and e_2 have the same length and enclose 90°
- Switch on two identical Wilson lines

- Consider a torus where e_1 and e_2 have the same length and enclose 90°
- Switch on two identical Wilson lines
- Two pairs of equivalent fixed points:

$$\left(\begin{array}{c} \mathbf{0}\\ \mathbf{0} \end{array}\right) \quad \text{and} \quad \left(\begin{array}{c} \mathbf{2}\\ \mathbf{0} \end{array}\right)$$

Symmetry enhancement (V)

- Consider a torus where e_1 and e_2 have the same length and enclose 90°
- Switch on two identical Wilson lines
- Two pairs of equivalent fixed points:

$$\left(\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array}\right) \quad \text{and} \quad \left(\begin{array}{c} \mathbf{2} \\ \mathbf{0} \end{array}\right)$$

Setting can give rise to models with 2 + 1 generations

- R symmetries can be non–Abelian even in \mathcal{N} = 1 SUSY
 - superspace coordinate transforms in non-trivial 1-dimensional representation

Green–Schwarz anomaly cancellation also available for non–Abelian symmetries

- GS axion transforms in non-trivial 1-dimensional representation
- · Perfect groups are always anomaly-free

R symmetries can be non–Abelian even in $\mathcal{N}=1~\text{SUSY}$

-

••

Green–Schwarz anomaly cancellation also available for non–Abelian symmetries

•••

Non–Abelian discrete ${\boldsymbol R}$ symmetries can emerge from Abelian orbifolds

R symmetries can be non–Abelian even in \mathcal{N} = 1 SUSY

-

Green–Schwarz anomaly cancellation also available for non–Abelian symmetries

Non–Abelian discrete ${\boldsymbol R}$ symmetries can emerge from Abelian orbifolds

Applications to model building appear to be quite rich One single symmetry to

- explain flavor structure
- solve μ & proton decay problems
- flavon VEV alignment

Aspen Summer 2014: August 3- 31, 2014 Model Building in the LHC Era

Organizers: Mu-Chun Chen, Stuart Raby, Michael Ratz, Carlos Wagner

Anticipating 14 TeV: Insights into Matter from the LHC and Beyond (June 29 – July 24, 2015) Csaba Csaki, Lisa Randall, Michael Ratz, Andreas Weiler

Vielen Dank!

Orbifold classification

Complete classification of symmetric toroidal orbifolds

	" (01 10) (AL 11	Fischer, M.R., To	rado & Vaudrevange (2013)
# of generators	# of SUSY	Abelian	non-Abelian	cf. talk by M. Fischer
1	$\mathcal{N}=4$	1	0	
	$\mathcal{N}=2$	4	0	
	$\mathcal{N}=1$	9	0	
		14	0	
2	$\mathcal{N}=4$	0	0	
	$\mathcal{N}=2$	0	3	
	$\mathcal{N}=1$	8	32	
		8	35	
3	$\mathcal{N}=4$	0	0	
	$\mathcal{N}=2$	0	0	
	$\mathcal{N}=1$	0	3	
		0	3	
total:	$\mathcal{N}=4$	1	0	
	$\mathcal{N}=2$	4	3	
	$\mathcal{N}=1$	17	35	
		22	38]

Crbifold classification

Abelian orbifolds with N = 1 SUSY

label of	twist	# of	# of affine
Q–class	vector(s)	ℤ–classes	classes
\mathbb{Z}_3	$\frac{1}{2}(1, 1, -2)$	1	1
\mathbb{Z}_4	$\frac{1}{4}(1, 1, -2)$	3	3
ℤ ₆ –I	$\frac{\frac{1}{6}}{1}(1,1,-2)$	2	2
ℤ ₆ –II	$\frac{1}{6}(1,2,-3)$	4	4
\mathbb{Z}_7	$\frac{1}{7}(1,2,-3)$	1	1
\mathbb{Z}_8 –I	$\frac{1}{8}(1,2,-3)$	3	3
ℤ ₈ –II	$\frac{1}{8}(1,3,-4)$	2	2
\mathbb{Z}_{12} –l	$\frac{1}{12}(1,4,-5)$	2	2
\mathbb{Z}_{12} –II	$\frac{11}{12}(1,5,-6)$	1	1
$\mathbb{Z}_2 \times \mathbb{Z}_2$	$\frac{1}{2}(0,1,-1)$, $\frac{1}{2}(1,0,-1)$	12	35
$\mathbb{Z}_2 \times \mathbb{Z}_4$	$\frac{1}{2}(0,1,-1), \frac{1}{4}(1,0,-1)$	10	41
$\mathbb{Z}_2 \times \mathbb{Z}_6 - I$	$\frac{1}{2}(0,1,-1)$, $\frac{1}{6}(1,0,-1)$	2	4
$\mathbb{Z}_2 \times \mathbb{Z}_6$ –II	$\frac{1}{2}(0, 1, -1), \frac{1}{6}(1, 1, -2)$	4	4
$\mathbb{Z}_3 \times \mathbb{Z}_3$	$\frac{1}{3}(0,1,-1), \frac{1}{3}(1,0,-1)$	5	15
$\mathbb{Z}_3 \times \mathbb{Z}_6$	$\frac{1}{3}(0,1,-1)$, $\frac{1}{6}(1,0,-1)$	2	4
$\mathbb{Z}_4 \times \mathbb{Z}_4$	$\frac{1}{4}(0,1,-1), \frac{1}{4}(1,0,-1)$	5	15
$\mathbb{Z}_6 \times \mathbb{Z}_6$	$\frac{1}{6}(0,1,-1)$, $\frac{1}{6}(1,0,-1)$	1	1
# of Abelian	N = 1	60	138

Fischer et al. (2013) cf. talk by M. Fischer

$\mathbb{T}^2/\mathbb{Z}_3$ orbifold

$\mathbb{T}^2/\mathbb{Z}_3$ orbifold

 $\Delta(54)$ from the \mathbb{Z}_3 orbifold

$\mathbb{T}^2/\mathbb{Z}_3$ orbifold

$$n = 3 imes (ext{integer}) \wedge \sum_{j=1}^n m_1^{(j)} = 0 \mod 3$$

$\mathbb{T}^2/\mathbb{Z}_3$ orbifold

$$\begin{pmatrix} |(\vartheta, 0)\rangle \\ |(\vartheta, e_1)\rangle \\ |(\vartheta, 2e_1)\rangle \end{pmatrix} \rightarrow \begin{pmatrix} |(\vartheta, 0)\rangle \\ |(\vartheta, e_1)\rangle \\ |(\vartheta, 2e_1)\rangle \end{pmatrix}$$

$$n = 3 imes (integer) \wedge \sum_{j=1}^{n} m_1^{(j)} = 0 \mod 3$$

$\mathbb{T}^2/\mathbb{Z}_3$ orbifold

$$n = 3 \times (\text{integer}) \wedge \sum_{j=1}^{n} m_1^{(j)} = 0 \mod 3$$

$\mathbb{T}^2/\mathbb{Z}_3$ orbifold

$$\begin{pmatrix} |(\vartheta, 0)\rangle \\ |(\vartheta, e_1)\rangle \\ |(\vartheta, 2e_1)\rangle \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix} \begin{pmatrix} |(\vartheta, 0)\rangle \\ |(\vartheta, e_1)\rangle \\ |(\vartheta, 2e_1)\rangle \end{pmatrix}$$

$$n = 3 \times (\text{integer}) \wedge \sum_{j=1}^{n} m_1^{(j)} = 0 \mod 3$$

 $\mathbb{T}^2/\mathbb{Z}_3$ orbifold

 $\Delta(54)$ from the \mathbb{Z}_3 orbifold

$$n = 3 imes (ext{integer}) \wedge \sum_{j=1}^n m_1^{(j)} = 0 \mod 3$$

Flavor symmetry

$$S_3 \cup (\mathbb{Z}_3 \times \mathbb{Z}_3) = S_3 \ltimes (\mathbb{Z}_3 \times \mathbb{Z}_3) = \Delta(54)$$

Solution Note: $\Delta(54)$ is a 'type l' group

talk by Mu-Chun

Chen, Fallbacher, Mahanthappa, M.R. & Trautner (2014)

Character table of $\Delta(54)$

irrep	1a	6a	6b	3a	3b	Зc	2a	3d	3e	Зf
	(1)	(9)	(9)	(6)	(6)	(6)	(9)	(6)	(1)	(1)
1 ₁	1	1	1	1	1	1	1	1	1	1
1_2	1	-1	-1	1	1	1	-1	1	1	1
2_1	2	0	0	2	-1	-1	0	-1	2	2
2_2	2	0	0	-1	$^{-1}$	-1	0	2	2	2
2 ₃	2	0	0	-1	-1	2	0	-1	2	2
2_4	2	0	0	-1	2	-1	0	-1	2	2
3′	3	$-\overline{\omega}$	$-\omega$	0	0	0	-1	0	$3\overline{\omega}$	3ω
<u>3'</u>	3	$-\omega$	$-\overline{\omega}$	0	0	0	-1	0	3ω	$3\overline{\omega}$
3	3	ω	$\overline{\omega}$	0	0	0	1	0	3ω	$3\overline{\omega}$
3	3	$\overline{\omega}$	ω	0	0	0	1	0	$3\overline{\omega}$	3ω

Origin of non-Abelian discrete symmetries

Backup slides

Survey of flavor symmetries

orbifold	flavor symmetry	sector	string fundamental states
$\mathbb{S}^1/\mathbb{Z}_2$	D_4	U	1
		T_1	2
$\mathbb{T}^2/\mathbb{Z}_2$	$(D_4 imes D_4)/\mathbb{Z}_2$	U	1
		T_1	4
$\mathbb{T}^2/\mathbb{Z}_3$	$\Delta(54)$	U	1
		T_1	3
		T_2	$\overline{3}$
$\mathbb{T}^2/\mathbb{Z}_4$		U	1
	$(D_4 imes \mathbb{Z}_4)/\mathbb{Z}_2$	T_1	2
		T_2	$1_{A_1} + 1_{B_1} + 1_{B_2} + 1_{A_2}$
$\mathbb{T}^2/\mathbb{Z}_6$	trivial		

Origin of non-Abelian discrete symmetries

Backup slides

 $\Delta(54)$ from the \mathbb{Z}_3 orbifold

Survey of flavor symmetries (cont'd)

orbifold	flavor symmetry	sector	string fundamental states
$\mathbb{T}^4/\mathbb{Z}_8$		U	1
		T_1	2
	$(D_4 imes \mathbb{Z}_8)/\mathbb{Z}_2$	T_2	$1_{A_1} + 1_{B_1} + 1_{B_2} + 1_{A_2}$
		T_3	2
		T_4	$4 \times (1_{A_1} + 1_{B_1} + 1_{B_2} + 1_{A_2})$
$\mathbb{T}^4/\mathbb{Z}_{12}$	trivial		
$\mathbb{T}^6/\mathbb{Z}_7$		U	1
	$S_7\ltimes (\mathbb{Z}_7)^6$	T_k	7
		T_{7-k}	7

back

References I

- Takeshi Araki. Anomalies of discrete symmetries & gauge coupling unification. <u>Prog. Theor. Phys.</u>, 117:1119–1138, 2007.
- Takeshi Araki, Tatsuo Kobayashi, Jisuke Kubo, Saúl Ramos-Sánchez, Michael Ratz, et al. (Non-)Abelian discrete anomalies. <u>Nucl.Phys.</u>, B805:124–147, 2008. doi: 10.1016/j.nuclphysb.2008.07.005.
- Tom Banks & Michael Dine. Note on discrete gauge anomalies. <u>Phys.Rev.</u>, D45:1424–1427, 1992. doi: 10.1103/PhysRevD.45.1424.
- Nana G. Cabo Bizet, Tatsuo Kobayashi, Damian K. Mayorga Pena, Susha L. Parameswaran, Matthias Schmitz, et al. R-charge Conservation & More in Factorizable & Non-Factorizable Orbifolds. JHEP, 1305:076, 2013. doi: 10.1007/JHEP05(2013)076.
- Mu-Chun Chen, Michael Ratz & Andreas Trautner. Non-Abelian discrete *R* symmetries. <u>JHEP</u>, 1309:096, 2013. doi: 10.1007/JHEP09(2013)096.

References II

- Mu-Chun Chen, Maximilian Fallbacher, K.T. Mahanthappa, Michael Ratz & Andreas Trautner. CP Violation from Finite Groups. <u>Nucl.Phys.</u>, B883:267, 2014.
- Lance J. Dixon, Daniel Friedan, Emil J. Martinec & Stephen H. Shenker. The Conformal Field Theory of Orbifolds. <u>Nucl. Phys.</u>, B282:13–73, 1987.
- Maximilian Fischer, Michael Ratz, Jesus Torrado & Patrick K.S. Vaudrevange. Classification of symmetric toroidal orbifolds. <u>JHEP</u>, 1301:084, 2013. doi: 10.1007/JHEP01(2013)084.
- A. Font, Luis E. Ibáñez, Hans Peter Nilles & F. Quevedo. Yukawa couplings in degenerate orbifolds: Towards a realistic SU(3)×SU(2)×U(1) superstring. <u>Phys. Lett.</u>, B210:101, 1988a. Erratum <u>ibid.</u> B213.
- A. Font, Luis E. Ibáñez, Hans Peter Nilles & F. Quevedo. Degenerate orbifolds. <u>Nucl. Phys.</u>, B307:109, 1988b. Erratum <u>ibid.</u> **B310**.

References III

- A. Font, Luis E. Ibáñez, F. Quevedo & A. Sierra. The construction of 'realistic' four-dimensional strings through orbifolds. <u>Nucl. Phys.</u>, B331:421–474, 1990.
- Kazuo Fujikawa. Path integral measure for gauge invariant fermion theories. <u>Phys. Rev. Lett.</u>, 42:1195, 1979.
- Stefan Groot Nibbelink, Mark Hillenbach, Tatsuo Kobayashi & Martin G. A. Walter. Localization of heterotic anomalies on various hyper surfaces of T(6)/Z(4). <u>Phys. Rev.</u>, D69:046001, 2004.
- Shahram Hamidi & Cumrun Vafa. Interactions on Orbifolds. <u>Nucl. Phys.</u>, B279:465, 1987.
- Luis E. Ibáñez & Graham G. Ross. Discrete gauge symmetry anomalies. Phys. Lett., B260:291–295, 1991.
- Luis E. Ibáñez & Graham G. Ross. Discrete gauge symmetries & the origin of baryon & lepton number conservation in supersymmetric versions of the standard model. <u>Nucl.Phys.</u>, B368:3–37, 1992. doi: 10.1016/0550-3213(92)90195-H.

References IV

- Tatsuo Kobayashi, Stuart Raby & Ren-Jie Zhang. Searching for realistic 4d string models with a Pati-Salam symmetry: Orbifold grand unified theories from heterotic string compactification on a Z(6) orbifold. <u>Nucl. Phys.</u>, B704:3–55, 2005.
- Tatsuo Kobayashi, Hans Peter Nilles, Felix Plöger, Stuart Raby & Michael Ratz. Stringy origin of non-Abelian discrete flavor symmetries. <u>Nucl.</u> <u>Phys.</u>, B768:135–156, 2007.
- Lawrence M. Krauss & Frank Wilczek. Discrete gauge symmetry in continuum theories. Phys. Rev. Lett., 62:1221, 1989.
- Christoph Lüdeling, Fabian Ruehle & Clemens Wieck. Non-Universal Anomalies in Heterotic String Constructions. <u>Phys.Rev.</u>, D85: 106010, 2012. doi: 10.1103/PhysRevD.85.106010.
- Hans Peter Nilles, Saúl Ramos-Sánchez, Michael Ratz & Patrick K.S. Vaudrevange. A note on discrete R symmetries in \mathbb{Z}_6 -II orbifolds with Wilson lines. <u>Phys.Lett.</u>, B726:876–881, 2013. doi: 10.1016/j.physletb.2013.09.041.