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Origin of non–Abelian discrete symmetries Introduction

Non–Abelian discrete R symmetries
Textbook knowledge:

Ê Maximal R symmetry of N = 1 supersymmetry is Abelian, i.e. U(1)R

Ë

+ One aim of this talk: convince you that this is not entirely correct

+ Clearly, there cannot be a non–Abelian continuous R symmetry GR
as this would require more than one supercharge

+ However: non–Abelian discrete symmetries can have non–trivial
1–dimensional representations 1non−trivial Chen, M.R. & Trautner (2013)

å This allows us to consider settings in which the superspace
coordinate transforms as 1non−trivial

å Likewise, the axion may shift under the action of the elements of the
discrete group

http://inspirehep.net/search?p=Chen:2013dpa
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Reminder: Abelian discrete R symmetries

+ Superpotential transforms as

W → e2π i qW /M W

qW = 2qθ

+ Superfields Φ(f ) = φ(f ) +
√

2 θψ(f ) + θθF(f ) transform as

Φ(f ) → e2π i q(f )/M Φ(f )



Origin of non–Abelian discrete symmetries Non–Abelian discrete R symmetries

Reminder: Abelian discrete R symmetries

Reminder: Abelian discrete R symmetries

+ Superpotential transforms as

W → e2π i qW /M W

qW = 2qθ
+ Superfields Φ(f ) = φ(f ) +

√
2 θψ(f ) + θθF(f ) transform as

Φ(f ) → e2π i q(f )/M Φ(f )



Origin of non–Abelian discrete symmetries Non–Abelian discrete R symmetries

Reminder: Abelian discrete R symmetries

Reminder: Anomalies in Abelian discrete symmetries
Krauss & Wilczek (1989); Ibáñez & Ross (1991, 1992); Banks & Dine (1992)

+ Discrete symmetries can have anomalies

Fujikawa (1979)

+ Most convenient way to compute anomalies: path integral approach
Araki (2007); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

+ Works both for Abelian and non–Abelian discrete symmetries

http://inspirehep.net/search?p=Krauss:1988zc,Ibanez:1991hv,Ibanez:1991pr,Banks:1991xj
http://inspirehep.net/search?p=Fujikawa:1979ay
http://inspirehep.net/search?p=Araki:2006mw,Araki:2008ek
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Anomaly coefficients for discrete Abelian R and non–R symmetries

Anomaly coefficients for Abelian Z(R)
M symmetries

+ Consider the action of one generator of the discrete group

+ Fermions acquire a Z(R)
M phase: ψ(f ) → e2π i (q(f )−qθ)/M ψ(f )

Z
(R)
M charge of superfieldZ

(R)
M charge of superspace coordinate θ

å Non–trivial transformation of the path integral measure∏
f

Dψ(f )Dψ
(f )
→ J−2

∏
f

Dψ(f )Dψ
(f )

with J−2 = exp
{

i
2π
M

AG−G−ZR
M

∫
d4x

1
32π2 Fb,µνF̃b

µν

}
and AG−G−Z(R)

M
=
∑

f

`
(

r(f )
)
· qψ(f ) + qθ `(adj G)

representation of ψ(f )qψ(f ) =
(
q(f ) − qθ

)
with q(f ) R charge of superfielddiscrete R charge of superspace coordinateDynkin index : δab `(r) = tr [ta(r) tb(r)]



Origin of non–Abelian discrete symmetries Non–Abelian discrete R symmetries

Anomaly coefficients for discrete Abelian R and non–R symmetries

Anomaly coefficients for Abelian Z(R)
M symmetries

+ Consider the action of one generator of the discrete group

+ Fermions acquire a Z(R)
M phase: ψ(f ) → e2π i (q(f )−qθ)/M ψ(f )

Z
(R)
M charge of superfield

Z
(R)
M charge of superspace coordinate θ

å Non–trivial transformation of the path integral measure∏
f

Dψ(f )Dψ
(f )
→ J−2

∏
f

Dψ(f )Dψ
(f )

with J−2 = exp
{

i
2π
M

AG−G−ZR
M

∫
d4x

1
32π2 Fb,µνF̃b

µν

}
and AG−G−Z(R)

M
=
∑

f

`
(

r(f )
)
· qψ(f ) + qθ `(adj G)

representation of ψ(f )qψ(f ) =
(
q(f ) − qθ

)
with q(f ) R charge of superfielddiscrete R charge of superspace coordinateDynkin index : δab `(r) = tr [ta(r) tb(r)]



Origin of non–Abelian discrete symmetries Non–Abelian discrete R symmetries

Anomaly coefficients for discrete Abelian R and non–R symmetries

Anomaly coefficients for Abelian Z(R)
M symmetries

+ Consider the action of one generator of the discrete group

+ Fermions acquire a Z(R)
M phase: ψ(f ) → e2π i (q(f )−qθ)/M ψ(f )

Z
(R)
M charge of superfieldZ

(R)
M charge of superspace coordinate θ

å Non–trivial transformation of the path integral measure∏
f

Dψ(f )Dψ
(f )
→ J−2

∏
f

Dψ(f )Dψ
(f )

with J−2 = exp
{

i
2π
M

AG−G−ZR
M

∫
d4x

1
32π2 Fb,µνF̃b

µν

}
and AG−G−Z(R)

M
=
∑

f

`
(

r(f )
)
· qψ(f ) + qθ `(adj G)

representation of ψ(f )qψ(f ) =
(
q(f ) − qθ

)
with q(f ) R charge of superfielddiscrete R charge of superspace coordinateDynkin index : δab `(r) = tr [ta(r) tb(r)]



Origin of non–Abelian discrete symmetries Non–Abelian discrete R symmetries

Anomaly coefficients for discrete Abelian R and non–R symmetries

Anomaly coefficients for Abelian Z(R)
M symmetries

+ Consider the action of one generator of the discrete group

+ Fermions acquire a Z(R)
M phase: ψ(f ) → e2π i (q(f )−qθ)/M ψ(f )

Z
(R)
M charge of superfieldZ

(R)
M charge of superspace coordinate θ

å Non–trivial transformation of the path integral measure∏
f

Dψ(f )Dψ
(f )
→ J−2

∏
f

Dψ(f )Dψ
(f )

with J−2 = exp
{

i
2π
M

AG−G−ZR
M

∫
d4x

1
32π2 Fb,µνF̃b

µν

}
and AG−G−Z(R)

M
=
∑

f

`
(

r(f )
)
· qψ(f ) + qθ `(adj G)

representation of ψ(f )

qψ(f ) =
(
q(f ) − qθ

)
with q(f ) R charge of superfielddiscrete R charge of superspace coordinateDynkin index : δab `(r) = tr [ta(r) tb(r)]



Origin of non–Abelian discrete symmetries Non–Abelian discrete R symmetries

Anomaly coefficients for discrete Abelian R and non–R symmetries

Anomaly coefficients for Abelian Z(R)
M symmetries

+ Consider the action of one generator of the discrete group

+ Fermions acquire a Z(R)
M phase: ψ(f ) → e2π i (q(f )−qθ)/M ψ(f )

Z
(R)
M charge of superfieldZ

(R)
M charge of superspace coordinate θ

å Non–trivial transformation of the path integral measure∏
f

Dψ(f )Dψ
(f )
→ J−2

∏
f

Dψ(f )Dψ
(f )

with J−2 = exp
{

i
2π
M

AG−G−ZR
M

∫
d4x

1
32π2 Fb,µνF̃b

µν

}
and AG−G−Z(R)

M
=
∑

f

`
(

r(f )
)
· qψ(f ) + qθ `(adj G)

representation of ψ(f )qψ(f ) =
(
q(f ) − qθ

)
with q(f ) R charge of superfield

discrete R charge of superspace coordinateDynkin index : δab `(r) = tr [ta(r) tb(r)]



Origin of non–Abelian discrete symmetries Non–Abelian discrete R symmetries

Anomaly coefficients for discrete Abelian R and non–R symmetries

Anomaly coefficients for Abelian Z(R)
M symmetries

+ Consider the action of one generator of the discrete group

+ Fermions acquire a Z(R)
M phase: ψ(f ) → e2π i (q(f )−qθ)/M ψ(f )

Z
(R)
M charge of superfieldZ

(R)
M charge of superspace coordinate θ

å Non–trivial transformation of the path integral measure∏
f

Dψ(f )Dψ
(f )
→ J−2

∏
f

Dψ(f )Dψ
(f )

with J−2 = exp
{

i
2π
M

AG−G−ZR
M

∫
d4x

1
32π2 Fb,µνF̃b

µν

}
and AG−G−Z(R)

M
=
∑

f

`
(

r(f )
)
· qψ(f ) + qθ `(adj G)

representation of ψ(f )qψ(f ) =
(
q(f ) − qθ

)
with q(f ) R charge of superfielddiscrete R charge of superspace coordinate

Dynkin index : δab `(r) = tr [ta(r) tb(r)]



Origin of non–Abelian discrete symmetries Non–Abelian discrete R symmetries

Anomaly coefficients for discrete Abelian R and non–R symmetries

Anomaly coefficients for Abelian Z(R)
M symmetries

+ Consider the action of one generator of the discrete group

+ Fermions acquire a Z(R)
M phase: ψ(f ) → e2π i (q(f )−qθ)/M ψ(f )

Z
(R)
M charge of superfieldZ

(R)
M charge of superspace coordinate θ

å Non–trivial transformation of the path integral measure∏
f

Dψ(f )Dψ
(f )
→ J−2

∏
f

Dψ(f )Dψ
(f )

with J−2 = exp
{

i
2π
M

AG−G−ZR
M

∫
d4x

1
32π2 Fb,µνF̃b

µν

}
and AG−G−Z(R)

M
=
∑

f

`
(

r(f )
)
· qψ(f ) + qθ `(adj G)

representation of ψ(f )qψ(f ) =
(
q(f ) − qθ

)
with q(f ) R charge of superfielddiscrete R charge of superspace coordinateDynkin index : δab `(r) = tr [ta(r) tb(r)]



Origin of non–Abelian discrete symmetries Non–Abelian discrete R symmetries

Discrete Green–Schwarz anomaly cancellation

Discrete Green–Schwarz anomaly cancellation

+ Coupling of ‘axion’ a to field strength of the continuous gauge
symmetry

Laxion ⊃ −
a
8

FbF̃b

+ Discrete transformation u induces a shift

a → a + ∆(u)

+ Relation between ∆(u) and AG−G−ZM

AG−G−ZM = 2 πMu ∆(u) mod
Mu

2

order of u : uMu = 1
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Discrete Green–Schwarz anomaly cancellation

Comment on settings with more than one axions

+ One can have several axions aα

Laxion ⊃ − FbF̃b
∑
α

cα
8

aα

real coefficients

+ However: there is always a unique linear combination of axions a
that shifts: a ∝

∑
α cα aα

+ One can also have more than one gauge factor, i.e. G =
∏

i G(i)

Laxion ⊃ −
a
8
·
∑

i

λi F(i)
b F̃(i)

b

Lüdeling, Ruehle & Wieck (2012)

+ This allows one to cancel abritrary discrete anomalies

http://inspirehep.net/search?p=Ludeling:2012cu
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Discrete Green–Schwarz anomaly cancellation

Anomaly (non-)universality

+ However, in supersymmetric theories the axions are always
accompanied by a superpartner ‘saxion’ field

Non–universal λi coefficients for the SM gauge factors will spoil the
picture of MSSM gauge coupling unification

Can be avoided by demanding anomaly universality
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(R)
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Anomaly coefficients for non–Abelian discrete R and non–R symmetries

Non–Abelian discrete R symmetries

+ Action of u on representation d

Uu(d) = exp
(
2π i λu(d) /Mu

)
order of u

matrix w/ integer eigenvalues
å Transformation of fermions

ψ(f ) → Uu

(
d(f )
)
ψ(f ) = exp

[
2π i λu

(
d(f )
)
/Mu

]
ψ(f )

+ Effective ZMu charges

δ
(f )
u := tr

[
λu

(
d(f )
)]

=
Mu

2π i
ln det Uu

(
d(f )
)



Origin of non–Abelian discrete symmetries Non–Abelian discrete R symmetries

Anomaly coefficients for non–Abelian discrete R and non–R symmetries

Non–Abelian discrete R symmetries

+ Action of u on representation d

Uu(d) = exp
(
2π i λu(d) /Mu

)
order of umatrix w/ integer eigenvalues

å Transformation of fermions

ψ(f ) → Uu

(
d(f )
)
ψ(f ) = exp

[
2π i λu

(
d(f )
)
/Mu

]
ψ(f )

+ Effective ZMu charges

δ
(f )
u := tr

[
λu

(
d(f )
)]

=
Mu

2π i
ln det Uu

(
d(f )
)



Origin of non–Abelian discrete symmetries Non–Abelian discrete R symmetries

Anomaly coefficients for non–Abelian discrete R and non–R symmetries

Non–Abelian discrete R symmetries

+ Action of u on representation d

Uu(d) = exp
(
2π i λu(d) /Mu

)
order of umatrix w/ integer eigenvalues

å Transformation of fermions

ψ(f ) → Uu

(
d(f )
)
ψ(f ) = exp

[
2π i λu

(
d(f )
)
/Mu

]
ψ(f )

+ Effective ZMu charges

δ
(f )
u := tr

[
λu

(
d(f )
)]

=
Mu

2π i
ln det Uu

(
d(f )
)



Origin of non–Abelian discrete symmetries Non–Abelian discrete R symmetries

Anomaly coefficients for non–Abelian discrete R and non–R symmetries

Non–Abelian discrete R symmetries

+ Action of u on representation d

Uu(d) = exp
(
2π i λu(d) /Mu

)
order of umatrix w/ integer eigenvalues

å Transformation of fermions

ψ(f ) → Uu

(
d(f )
)
ψ(f ) = exp

[
2π i λu

(
d(f )
)
/Mu

]
ψ(f )

+ Effective ZMu charges

δ
(f )
u := tr

[
λu

(
d(f )
)]

=
Mu

2π i
ln det Uu

(
d(f )
)



Origin of non–Abelian discrete symmetries Non–Abelian discrete R symmetries

Anomaly coefficients for non–Abelian discrete R and non–R symmetries

Anomaly coefficients for non–Abelian discrete R
symmetries

+ Relation between the transformation behavior of a superfield Φ and
the corresponding fermion ψ

d(Φ)
= d(θ) ⊗ d(ψ)

1–dimensional representation

+ Relation between fermion and superfield anomaly contributions

δ(ψ) = δ(Φ) − dim
(

d(Φ)
)
· δ(θ)
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Anomaly coefficients for non–Abelian discrete R
symmetries (cont’d)

+ Anomaly coefficients for transformation u

AG−G−ZR
Mu

=
∑

s

`(r(s)) ·
[
δ(s) − dim

(
d(s)
)
δ(θ)
]

+ `
(
adj G

)
· δ(θ)

superfield charges

AU(1)−U(1)−ZR
Mu

=
∑

s

(
Q(s))2 dim

(
r(s)) · [δ(s) − dim

(
d(s)
)
δ(θ)
]

Agrav−grav−ZR
Mu

= −21 δ(θ) + δ(θ)
∑

G

dim(adj G)

+
∑

s

dim
(
r(s)) · [δ(s) − dim

(
d(s)
)
δ(θ)
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Anomaly coefficients for non–Abelian discrete R and non–R symmetries

Anomaly relations

+ Anomaly coefficients for two group elements u of order Mu and v of
order Mv

Au = ρ mod
Mu

2
and Av = σ mod

Mv

2

å Anomaly coefficient of group element w = u · v of order Mw

Aw =
∑

f

`
(

r(f )
)
δ

(f )
w + `

(
adj G

)
δ(θ)

w

=
∑

f

`
(

r(f )
)
·

[
Mw

Mu
δ

(f )
u +

Mw

Mv
δ

(f )
v

]
+ `
(
adj G

)
·
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Mw

Mu
δ(θ)
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δ(θ)
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Anomaly coefficients for non–Abelian discrete R and non–R symmetries

Anomaly relations (cont’d)
Three cases:

Ê Neither u nor v generates an anomalous symmetry , i.e. ρ = σ = 0
y symmetry generated by {u, v} is anomaly–free

Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

Ë Only one element, say u, generates an anomalous symmetry, i.e.
ρ , 0 = σ
y w = u · v is anomalous with an anomaly coefficient
Aw = Mw

(
ρ

Mu
mod 1

2

)
Ì Both u and v generate anomalous symmetries
y anomaly coefficient for w is Aw = Mw ·

[(
ρ

Mu
+ σ

Mv

)
mod 1

2

]

http://inspirehep.net/search?p=Araki:2008ek
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Anomaly coefficients for non–Abelian discrete R and non–R symmetries

GS mechanism for non–Abelian discrete symmetries

+ Two operations u and v induce shifts of the axion

u : a → a + ∆(u) and v : a → a + ∆(v)

+ Action of these shifts on the axion is Abelian

+ Axions do not shift under so–called commutator elements

[u, v] := u v u−1 v−1 y U[u,v] = Uu Uv Uu
−1 Uv

−1

+ Perfect groups are always anomaly–free

a perfect group equals
its commutator subgroup

+ Simple (finite) non–Abelian groups are always perfect
Chen, Fallbacher, M.R., Trautner & Vaudrevange (in preparation)
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Anomaly coefficients for non–Abelian discrete R and non–R symmetries

GS cancellation of anomalies

+ Two generating elements u and v

+ Combined operation w = u · v with anomaly coefficient

Au·v = ω mod
Mw

2

+ Axion shift under w = u · v : a → a + ∆(u·v)

∆(u·v) = ∆(u) + ∆(v)+ Consistency

Au·v = 2 πMw
(
∆(u) + ∆(v)) mod

Mw

2

∆(u·v) = ∆(u) + ∆(v)=
Mw

Mu

(
ρ mod

Mu

2

)
+

Mw

Mv

(
σ mod

Mv

2

)

Au = 2 πMu ∆(u) mod Mu
2
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À start with some Rd

Á compactify on a torus

Â mod out a symmetry of the lattice

Ã identify fixed points ϑ f = f + ` , ` ∈ Λ
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Origin of non–Abelian discrete symmetries Orbifolds

Orbifold and space group

+ O can also be defined as the quotient space of C3 by the so–called
space group S

+ Elements of S are of the form g =
(
ϑk,nα eα

)
nα ∈ Zbasis vectors of the torus lattice

Λ = ΛG2 ⊕ ΛSU(3) ⊕ ΛSO(4)

+ Action of S on C3 : z 7→ g z = ϑk z + nα eα

+ Equivalence relation: z ∼ g z

+ Action of g ∈ S on the 16 gauge degrees of freedom XI of E8 × E8

z
g
7−→ ϑk z + nα eα and X

g
7−→ X + π

(
k V + nα Wα

)
16–dimensional shift vector“Wilson lines”

Groot Nibbelink, Hillenbach, Kobayashi & Walter (2004)

+ g =
(
ϑk,nα eα

)
↔

{
local twist : vg = k v
local shift : Vg = k V + nα Wα

http://inspirehep.net/search?p=GrootNibbelink:2003rc
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Origin of non–Abelian discrete symmetries Orbifolds

Massless closed (twisted) string

+ Boundary condition: Z(τ, σ + π) = g Z(τ, σ)

g =
(
ϑk,nα eα

)
∈ S

+ Label states by boundary conditions∣∣∣psh,qsh, Ñ, Ñ∗, g
〉

= |qsh〉R ⊗
(
α̃i
−ωi

)Ñi (
α̃ı−1+ωi

)Ñ∗i
|psh〉L ⊗ |g〉

shifted left–mover
momentum psh = p + Vg
with p ∈ ΛE8×E8

shifted right–mover
momentum qsh = q + vg with q ∈ ΛSO(8)
& qsh(boson) = qsh(fermion) + (1/2,−1/2,−1/2,−1/2)

oscillator operatorsoscillator operators
+ State is created by the vertex operator (in −1 ghost picture)

V(g)
−1 = e−φ e2i qsh·H e2i psh·X

3∏
i=1

(
∂Zi
)Ñi (

∂Z∗ i
)Ñ∗i

σg

(bosonized) right–moving coordinatesbosonized superconformal ghost twist field
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〉
= |qsh〉R ⊗

(
α̃i
−ωi
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)Ñ∗i
|psh〉L ⊗ |g〉

shifted left–mover
momentum psh = p + Vg
with p ∈ ΛE8×E8

shifted right–mover
momentum qsh = q + vg with q ∈ ΛSO(8)
& qsh(boson) = qsh(fermion) + (1/2,−1/2,−1/2,−1/2)

oscillator operatorsoscillator operators
+ State is created by the vertex operator (in −1 ghost picture)

V(g)
−1 = e−φ e2i qsh·H e2i psh·X

3∏
i=1

(
∂Zi
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)Ñi (

∂Z∗ i
)Ñ∗i
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Origin of non–Abelian discrete symmetries Orbifolds

Selection rules
Hamidi & Vafa (1987); Dixon, Friedan, Martinec & Shenker (1987)

Font, Ibáñez, Nilles & Quevedo (1988b, a); Font, Ibáñez, Quevedo & Sierra (1990)

+ Superpotential from correlators of vertex operators

A =
〈

V(g1)
−1/2 V(g2)

−1/2 V(g3)
−1 V(g4)

0 . . .V(gL)
0

〉
V

(1)
−1/2

V
(2)
−1/2

V
(1)
−1

V
(1)
0

V
(N−3)
0

+ Correlation function factorizes into correlators involving separately
the fields φ, XI, σg, H and Zi

http://inspirehep.net/search?p=Hamidi:1986vh,Dixon:1986qv
http://inspirehep.net/search?p=Font:1988tp,Font:1988mm,Font:1989aj
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Origin of non–Abelian discrete symmetries Orbifolds

TheZ6–II orbifold

The Z6–II orbifold

+ Generator of Z6 is represented by the twist vector v =
(
0, 1

6 ,
1
3 ,−

1
2

)

å Complex torus–coordinates zi get mapped according to

zi ϑ
7−→ e2π i vi

zi for i = 1,2,3

+ Consider the factorized six–torus T6 = T2
G2
×T2

SU(3) ×T
2
SU(2)×SU(2)
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Origin of non–Abelian discrete symmetries Orbifolds

TheZ6–II orbifold

The Z6–II orbifold

+ Generator of Z6 is represented by the twist vector v =
(
0, 1

6 ,
1
3 ,−

1
2

)
å Complex torus–coordinates zi get mapped according to

zi ϑ
7−→ e2π i vi

zi for i = 1,2,3
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Origin of non–Abelian discrete symmetries Orbifolds

TheZ6–II orbifold

Discrete R symmetries and sublattice rotations

+ O respects symmetries beyond the elements of S

+ Discrete R symmetries↔ sublattice rotations ϑ(i)

Zj ϑ(i)

7−−→ e2π i (ri)j Zj for i = 1,2,3

r1 =
(
0, 1

6 ,0,0
)

r2 =
(
0,0, 1

3 ,0
)

r3 =
(
0,0,0,± 1

2

)+ Transformation of the oscillators(
α̃

j
−ωi

)Ñj (
α̃

−1+ωj

)Ñ∗j ϑ(i)

7−−→ e−2π i ∆Ñ·ri
(
α̃

j
−ωj

)Ñj (
α̃

−1+ωj

)Ñ∗j

∆Ñj = Ñ∗j − Ñj|qsh〉R 7→ e−2π i qsh·ri |qsh〉R and equivalently H 7→ H − π ri

crucial:

ϑ ∈ SU(3)hol while ϑ(i) < SU(3)hol y superspace
coordinate θ transforms non–trivially under ϑ(i)
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+ O respects symmetries beyond the elements of S

+ Discrete R symmetries↔ sublattice rotations ϑ(i)

Zj ϑ(i)

7−−→ e2π i (ri)j Zj for i = 1,2,3

r1 =
(
0, 1

6 ,0,0
)

r2 =
(
0,0, 1

3 ,0
)

r3 =
(
0,0,0,± 1

2

)+ More explicitly Z1
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+ Transformation of the oscillators(
α̃

j
−ωi

)Ñj (
α̃
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−1+ωj

)Ñ∗j ϑ(i)

7−−→ e−2π i ∆Ñ·ri
(
α̃

j
−ωj

)Ñj (
α̃

−1+ωj

)Ñ∗j

∆Ñj = Ñ∗j − Ñj|qsh〉R 7→ e−2π i qsh·ri |qsh〉R and equivalently H 7→ H − π ri

crucial:

ϑ ∈ SU(3)hol while ϑ(i) < SU(3)hol y superspace
coordinate θ transforms non–trivially under ϑ(i)
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(
α̃

j
−ωj
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R charges and γ phases
Kobayashi, Raby & Zhang (2005)+ ‘Old’ R charges

RKRZ, j = qj
sh + ∆Ñj

Cabo Bizet, Kobayashi, Mayorga Pena, Parameswaran, Schmitz, Zavala (2013)

+ However, |g〉 transforms non–trivially under sublattice rotations

+ Three diagonal T moduli Tj associated with the size of the jth

two–torus

Tj ∼ |qsh〉R ⊗ α̃

−1 |0〉L ⊗ |(1,0)〉

qsh =


(0,−1,0,0) for  = 1
(0,0,−1,0) for  = 2
(0,0,0,−1) for  = 3

+ RKRZ can be motivated as the unique combination of qsh and ∆Ñ
such that VEVs of the T moduli do not break the corresponding R
symmetries . . . but there is the freedom to add further contributions

http://inspirehep.net/search?p=Kobayashi:2004ya
http://inspirehep.net/search?p=Bizet:2013gf
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TheZ6–II orbifold

Conjugacy classes

+ g transforms, in general, non–trivially under the action of h ∈ S

g
h
7−→ h · g · h−1 = g′

+ Conjugacy class

[g] =
{

h · g · h−1 | h ∈ S
}

+ For example, the constructing elements g2 and g3 belong to the
same conjugacy class

e1

e2

bcu
bcu
g2

bcu
g3

bcug
′
2 +e1

ϑ
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The “geometrical eigenstate” |[g]〉

+ “Geometrical eigenstate” |[g]〉

|[g]〉 =
∑

h

e−2π i γ(g,h)
∣∣h · g · h−1〉

+ |[g]〉 is invariant under all space–group transformations up to the
phase γ

|[g]〉
h
7−→ e2π i γ(g,h) |[g]〉

γ(g,h) ≡ 0 if g · h = h · g
‘≡’ means ‘modulo 1’å Redefinition of the twist fields σg

å Full physical state
∣∣∣psh,qsh, Ñ, Ñ∗, g

〉
is invariant under the action of

every h ∈ S
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〉
is invariant under the action of

every h ∈ S



Origin of non–Abelian discrete symmetries Orbifolds

TheZ6–II orbifold

The “geometrical eigenstate” |[g]〉

+ “Geometrical eigenstate” |[g]〉

|[g]〉 =
∑

h

e−2π i γ(g,h)
∣∣h · g · h−1〉

+ |[g]〉 is invariant under all space–group transformations up to the
phase γ

|[g]〉
h
7−→ e2π i γ(g,h) |[g]〉

γ(g,h) ≡ 0 if g · h = h · g
‘≡’ means ‘modulo 1’å Redefinition of the twist fields σg

å Full physical state
∣∣∣psh,qsh, Ñ, Ñ∗, g

〉
is invariant under the action of

every h ∈ S



Origin of non–Abelian discrete symmetries Orbifolds

TheZ6–II orbifold

The “geometrical eigenstate” |[g]〉

+ “Geometrical eigenstate” |[g]〉

|[g]〉 =
∑

h

e−2π i γ(g,h)
∣∣h · g · h−1〉

+ |[g]〉 is invariant under all space–group transformations up to the
phase γ

|[g]〉
h
7−→ e2π i γ(g,h) |[g]〉

γ(g,h) ≡ 0 if g · h = h · g
‘≡’ means ‘modulo 1’å Redefinition of the twist fields σg

å Full physical state
∣∣∣psh,qsh, Ñ, Ñ∗, g
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Some properties of the γ phases

+ For fixed g ∈ S, γ(g,h) is a homomorphism from the space group S
to Z6

γ(g,h1 · h2) ≡ γ(g,h1) + γ(g,h2)

+ For h =
(
ϑ`,mα eα

)
one has

γ(g,h) ≡ ` γ(g, ϑ) + mα γ(g, eα)

γ(g, ϑ) := γ
(
g, (ϑ,0)

)
γ(g, eα) := γ

(
g, (1, eα)

)
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γ charges for sublattice rotations

+ It turns out that, in its action on |[g]〉, ϑ(j) is equivalent to an
appropriate space–group transformation h ∈ S

e3

e4

bc

bcu
g2

bcubcu

bcu

bcu

bcu

bcu

bcu

bcu

bcu

ϑ(2)

å Geometrical eigenstates |[g]〉 are eigenstates with respect to a
sublattice rotation ϑ(j)

|[g]〉
ϑ(j)

7−−→ e2π i γ(g,ϑ(j)) |[g]〉

å Phase γ
(
g, ϑ(j)

)
can be expressed in terms of γ(g, ϑ) and γ(g, eα)

bottom–line:

ϑ(j) are conjugacy–class preserving outer
automorphisms of the space group S
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γ charges for sublattice rotations

+ It turns out that, in its action on |[g]〉, ϑ(j) is equivalent to an
appropriate space–group transformation h ∈ S

å Geometrical eigenstates |[g]〉 are eigenstates with respect to a
sublattice rotation ϑ(j)

|[g]〉
ϑ(j)

7−−→ e2π i γ(g,ϑ(j)) |[g]〉

å Phase γ
(
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)
can be expressed in terms of γ(g, ϑ) and γ(g, eα)

bottom–line:

ϑ(j) are conjugacy–class preserving outer
automorphisms of the space group S
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TheZ6–II orbifold

R charges for twisted fields
Nilles, Ramos-Sánchez, M.R. & Vaudrevange (2013)+ Proper R charges

Rj = qj
sh + ∆Ñj −Nj γ(g, ϑ(j))

order of the sublattice rotation

+ Invariance of
∣∣∣psh,qsh, Ñ, Ñ∗, g

〉
under S implies

psh · Vh −
(

qsh + ∆Ñ
)
· vh −

1
2
(
Vg · Vh − vg · vh

)
+ γ(g,h)

!
≡ 0

+ This allows us to compute, for a given g ∈ S, the γ phases γ(g,h) for
all h ∈ S

http://inspirehep.net/search?p=Nilles:2013lda
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R charges for twisted fields: example
Nilles, Ramos-Sánchez, M.R. & Vaudrevange (2013)

+ E.g. second two–torus (ϑ acts as Z3)

|[ga]〉 =
∑

m3,m4

e−2π i (m3+m4) γ(ga,e3)

∣∣∣(ϑk, (n3 + m3 + m4) e3 + (n4 + 2m4 −m3) e4
)〉

+ Compare

|[ga]〉
h=(1,s3 e3+s4 e4)
7−−−−−−−−−−−−→ e2π i (s3+s4) γ(ga,e3) |[ga]〉

and

|[ga]〉
(ϑ(2),0)
7−−−−−→ e−2π i (n3+n4) γ(ga,e3) |[ga]〉

å γ
(
ga, ϑ

(2)
)
≡ − k (n3 + n4) γ(ga, e3)

http://inspirehep.net/search?p=Nilles:2013lda
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R charges for Z6–II

+ Effective R charges

R1 = −6
[
q1

sh + ∆Ñ1 − 6 γ(g, θ)

− 6 k (n3 + n4) γ(g, e3) + 6
(
n5 γ(g, e5) + n6 γ(g, e6)

)]
R2 = −6

[
q2

sh + ∆Ñ2 + 3 k (n3 + n4) γ(g, e3)
]

R3 = −2
[
q3

sh + ∆Ñ3 − 2
(
n5 γ(g, e5) + n6 γ(g, e6)

)]
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Example: S1/Z2

Example: S1/Z2

+ 2 fixed points: (ϑ,0) and (ϑ, e1)

+ Space group rule

n∏
j=1

(
ϑ,m(j) ej

)
' (1,0)

∈ (1 − ϑ) Λå Coupling between n localized states
(
ϑn(j)

,m(j) ej

)
only allowed if

À n !
= eveny ‘first’ Z2 symmetry

Á
∑

j m(j) !
= eveny ‘second’ Z2 symmetry

+ Combine localized states in doublets

|Ψloc〉 =

(
|(ϑ,0)〉
|(ϑ, e1)〉

)
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+ space group rule ⇔

 couplings invariant
under |Ψloc〉 → − 12 |Ψ〉

and |Ψloc〉 → σ3 |Ψ〉

+ In absence of background fields: fixed points are equivalent

å Theory invariant under relabeling m(j) = 0 ↔ m(j) = 1

å ‘Permutation’ symmetry(
|(ϑ,0)〉
|(ϑ, e1)〉

)
π
→

(
|(ϑ, e1)〉
|(ϑ,0)〉

)
=

(
0 1
1 0

) (
|(ϑ, e1)〉
|(ϑ,0)〉

)

bottom–line:

couplings need to be invariant under |Ψloc〉 → T |Ψloc〉 where
T ∈ {−1, σ3, σ1}
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Example: S1/Z2

+ Flavor symmetry arising from the space group rule is the
multiplicative closure of an S2 permutation symmetry with Z2 × Z2

Gflavor = S2 ∪ (Z2 × Z2) = S2 n (Z2 × Z2) = D4

D4 = {±1 , ±σ1 , ±iσ2 , ±σ3} Dixon, Friedan, Martinec & Shenker (1987)

Kobayashi, Nilles, Plöger, Raby & M.R. (2007)

Lesson 1:

whenever there are equivalent fixed points, there is a
non–Abelian discrete flavor symmetry

Lesson 2:

the non–Abelian flavor symmetry is larger than the
symmetry of compact space

+ Other orbifolds: same conclusions

http://inspirehep.net/search?p=Dixon:1986qv
http://inspirehep.net/search?p=Kobayashi:2006wq


Origin of non–Abelian discrete symmetries Flavor symmetries from orbifolds

Example: S1/Z2

Example: S1/Z2

+ Flavor symmetry arising from the space group rule is the
multiplicative closure of an S2 permutation symmetry with Z2 × Z2

Gflavor = S2 ∪ (Z2 × Z2) = S2 n (Z2 × Z2) = D4

D4 = {±1 , ±σ1 , ±iσ2 , ±σ3} Dixon, Friedan, Martinec & Shenker (1987)

Kobayashi, Nilles, Plöger, Raby & M.R. (2007)

Lesson 1:

whenever there are equivalent fixed points, there is a
non–Abelian discrete flavor symmetry

Lesson 2:

the non–Abelian flavor symmetry is larger than the
symmetry of compact space

+ Other orbifolds: same conclusions

http://inspirehep.net/search?p=Dixon:1986qv
http://inspirehep.net/search?p=Kobayashi:2006wq


Origin of non–Abelian discrete symmetries Flavor symmetries from orbifolds

Example: S1/Z2

Example: S1/Z2

+ Flavor symmetry arising from the space group rule is the
multiplicative closure of an S2 permutation symmetry with Z2 × Z2

Gflavor = S2 ∪ (Z2 × Z2) = S2 n (Z2 × Z2) = D4

D4 = {±1 , ±σ1 , ±iσ2 , ±σ3} Dixon, Friedan, Martinec & Shenker (1987)

Kobayashi, Nilles, Plöger, Raby & M.R. (2007)

Lesson 1:

whenever there are equivalent fixed points, there is a
non–Abelian discrete flavor symmetry

Lesson 2:

the non–Abelian flavor symmetry is larger than the
symmetry of compact space

+ Other orbifolds: same conclusions

http://inspirehep.net/search?p=Dixon:1986qv
http://inspirehep.net/search?p=Kobayashi:2006wq


Origin of non–Abelian discrete symmetries Flavor symmetries from orbifolds

Example: S1/Z2

Example: S1/Z2

+ Flavor symmetry arising from the space group rule is the
multiplicative closure of an S2 permutation symmetry with Z2 × Z2

Gflavor = S2 ∪ (Z2 × Z2) = S2 n (Z2 × Z2) = D4

D4 = {±1 , ±σ1 , ±iσ2 , ±σ3} Dixon, Friedan, Martinec & Shenker (1987)

Kobayashi, Nilles, Plöger, Raby & M.R. (2007)

Lesson 1:

whenever there are equivalent fixed points, there is a
non–Abelian discrete flavor symmetry

Lesson 2:

the non–Abelian flavor symmetry is larger than the
symmetry of compact space

+ Other orbifolds: same conclusions

http://inspirehep.net/search?p=Dixon:1986qv
http://inspirehep.net/search?p=Kobayashi:2006wq


Origin of non–Abelian discrete symmetries Flavor symmetries from orbifolds

Example: S1/Z2

Character table for D4

representation 1 −1 ±σ1 ±σ3 ∓iσ2

doublet D 2 –2 0 0 0
singlet A1 1 1 1 1 1
singlet B1 1 1 1 –1 –1
singlet B2 1 1 –1 1 –1
singlet A2 1 1 –1 –1 1

D1 D1 + D2 D2 ∼ A1 D1 D2 + D2 D1 ∼ B1

D1 D1 −D2 D2 ∼ B2 D1 D2 −D2 D1 ∼ A2
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Symmetry enhancement

Symmetry enhancement (I)

+ Consider Z2 plane T2/Z2 with special symmetries:
e1 and e2 have the same length and enclose an angle of 120◦

e1

e2

bcb bcb

bcb bcb

å Distances between all orbifold fixed points coincide

å Symmetry enhancement

+ Orbifold is a regular tetrahedron
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Symmetry enhancement

Tetrahedron

bcb bcb

b cb bcb
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Symmetry enhancement

Tetrahedron

The tetrahedron is
invariant under 120◦
rotations around an axis
that goes through one of
its vertices and hits the
center of the opposite face,
corresponding to

T =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


acting on

Ê
Ë
Ì
Í


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Symmetry enhancement

Tetrahedron

The tetrahedron is
invariant under 180◦
rotations around an axis
that hits to opposite edges
in their middle,
corresponding to

S =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


acting on

Ê
Ë
Ì
Í


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Symmetry enhancement

Symmetry enhancement (II)

bcb bcb

b cb bcb

➊ ➋

➍ ➌

+ Tetrahedron is invariant under a discrete rotation by 120◦

T =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 acting on


Ê
Ë
Ì
Í



+ Invariance under the 180◦ rotations to the further symmetry
transformations

S =

(
σ1 0
0 σ1

)
and S′ =

(
0 12
12 0

)

+ Symmetry of the tetrahedron is A4

+ A4 arises as multiplicative closure of the Z2 and Z3 groups with
elements {1,S} and {1,T,T2}
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elements {1,S} and {1,T,T2}
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Symmetry enhancement

Symmetry enhancement (II)

+ Tetrahedron is invariant under a discrete rotation by 120◦

T =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 acting on


Ê
Ë
Ì
Í


+ Invariance under the 180◦ rotations to the further symmetry

transformations

S =

(
σ1 0
0 σ1

)
and S′ =

(
0 12
12 0

)

+ Symmetry of the tetrahedron is A4

+ A4 arises as multiplicative closure of the Z2 and Z3 groups with
elements {1,S} and {1,T,T2}
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Symmetry enhancement

Symmetry enhancement (III)

+ A4 is not the full relabeling symmetry because the geometric
relations between the fixed points do not change upon reflections

+ Full relabeling symmetry is S4 and full flavor symmetry is SG(192,
1493) name from GAP

+ Symmetry breakdown when the angle between e1 and e2 and/or
their length ratio changes

+ Angle and ratio are parametrized by a field Z

complex structure modulus+ Coupling strengths respect an enhanced symmetry if Z takes
special values

+ In other words, the fluctuations of Z around the critical value furnish
a non–trivial representation under the symmetry

http://www.gap-system.org
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relations between the fixed points do not change upon reflections
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Symmetry enhancement

Full flavor symmetry SG(192, 1493)

+ Character table

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1’ 1 −1 1 −1 1 −1 −1 1 1 −1 1 1 1
2 2 0 2 0 −1 0 0 2 2 0 −1 2 2
3 3 −1 −1 1 0 1 −1 3 −1 −1 0 −1 3
3 3 −1 3 −1 0 1 1 −1 −1 −1 0 −1 3
3′ 3 1 −1 −1 0 −1 1 3 −1 1 0 −1 3
3′ 3 1 3 1 0 −1 −1 −1 −1 1 0 −1 3
3′′ 3 −1 −1 1 0 −1 1 −1 3 −1 0 −1 3
3′′ 3 1 −1 −1 0 1 −1 −1 3 1 0 −1 3
4 4 2 0 0 1 0 0 0 0 −2 −1 0 −4
4 4 −2 0 0 1 0 0 0 0 2 −1 0 −4
6 6 0 −2 0 0 0 0 −2 −2 0 0 2 6
8 8 0 0 0 −1 0 0 0 0 0 1 0 −8
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Symmetry enhancement

Symmetry enhancement (IV)

+ Symmetry generated by S is discrete rotational symmetry of order 6

å Also bulk fields transform non–trivially

+ R charges of bosons and fermions differ by 1/2

å Hence it is a discrete R symmetry of order 12

+ Z12 can always be written as Z4 × Z3

å θ has Z4 charge 3 and Z3 charge 1

å Symmetry can be witten as ZR
4 × Z

R
3 for bulk fields

bottom–line:

non–Abelian discrete R symmetries can arise from
Abelian orbifolds
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Symmetry enhancement (IV)

+ Symmetry generated by S is discrete rotational symmetry of order 6

å Also bulk fields transform non–trivially

+ R charges of bosons and fermions differ by 1/2

å Hence it is a discrete R symmetry of order 12

+ Z12 can always be written as Z4 × Z3 , e.g.

Z12 0 1 2 3 4 5 6 7 8 9 10 11
Z4 0 3 2 1 0 3 2 1 0 3 2 1
Z3 0 1 2 0 1 2 0 1 2 0 1 2
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Symmetry enhancement

Symmetry enhancement (V)

+ Consider a torus where e1 and e2 have the same length and enclose
90◦

+ Switch on two identical Wilson lines

å Two pairs of equivalent fixed points:(
Ê
Ì

)
and

(
Ë
Í

)
å Setting can give rise to models with 2 + 1 generations
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Symmetry enhancement (V)
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and
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Summary

R symmetries can be non–Abelian even in N = 1 SUSY
• superspace coordinate transforms in non–trivial 1–dimensional

representation

Green–Schwarz anomaly cancellation also available for non–Abelian
symmetries

Non–Abelian discrete R symmetries can emerge from Abelian
orbifolds

Applications to model building appear to be quite rich
One single symmetry to

• explain flavor structure
• solve µ & proton decay problems
• flavon VEV alignment
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Orbifold classification

Complete classification of symmetric toroidal orbifolds
Fischer, M.R., Torrado & Vaudrevange (2013)

cf. talk by M. Fischer# of generators # of SUSY Abelian non–Abelian
1 N = 4 1 0

N = 2 4 0
N = 1 9 0

14 0
2 N = 4 0 0

N = 2 0 3
N = 1 8 32

8 35
3 N = 4 0 0

N = 2 0 0
N = 1 0 3

0 3
total: N = 4 1 0

N = 2 4 3
N = 1 17 35

22 38
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Orbifold classification

Abelian orbifolds with N = 1 SUSY
Fischer et al. (2013)

cf. talk by M. Fischerlabel of twist # of # of affine
Q–class vector(s) Z–classes classes

Z3
1
3 (1,1,−2) 1 1

Z4
1
4 (1,1,−2) 3 3

Z6–I 1
6 (1,1,−2) 2 2

Z6–II 1
6 (1,2,−3) 4 4

Z7
1
7 (1,2,−3) 1 1

Z8–I 1
8 (1,2,−3) 3 3

Z8–II 1
8 (1,3,−4) 2 2

Z12–I 1
12 (1,4,−5) 2 2

Z12–II 1
12 (1,5,−6) 1 1

Z2 × Z2
1
2 (0,1,−1) , 1

2 (1,0,−1) 12 35
Z2 × Z4

1
2 (0,1,−1) , 1

4 (1,0,−1) 10 41
Z2 × Z6–I 1

2 (0,1,−1) , 1
6 (1,0,−1) 2 4

Z2 × Z6–II 1
2 (0,1,−1) , 1

6 (1,1,−2) 4 4
Z3 × Z3

1
3 (0,1,−1) , 1

3 (1,0,−1) 5 15
Z3 × Z6

1
3 (0,1,−1) , 1

6 (1,0,−1) 2 4
Z4 × Z4

1
4 (0,1,−1) , 1

4 (1,0,−1) 5 15
Z6 × Z6

1
6 (0,1,−1) , 1

6 (1,0,−1) 1 1
# of Abelian N = 1 60 138
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∆(54) from theZ3 orbifold

T
2/Z3 orbifold

e1

e2

+ Coupling between n localized states
∣∣(ϑ,m(j) e1)

〉
only allowed if

n = 3 × (integer) ∧

n∑
j=1

m(j)
1 = 0 mod 3

å Flavor symmetry

S3 ∪ (Z3 × Z3) = S3 n (Z3 × Z3) = ∆(54)

talk by Mu–Chun

Chen, Fallbacher, Mahanthappa, M.R. & Trautner (2014)+ Note: ∆(54) is a ‘type I’ group

http://inspirehep.net/search?p=Chen:2014tpa
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T
2/Z3 orbifold

e1

e2

+ Coupling between n localized states
∣∣(ϑ,m(j) e1)

〉
only allowed if

n = 3 × (integer) ∧

n∑
j=1

m(j)
1 = 0 mod 3

å Flavor symmetry

S3 ∪ (Z3 × Z3) = S3 n (Z3 × Z3) = ∆(54)

talk by Mu–Chun

Chen, Fallbacher, Mahanthappa, M.R. & Trautner (2014)+ Note: ∆(54) is a ‘type I’ group

http://inspirehep.net/search?p=Chen:2014tpa
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∆(54) from theZ3 orbifold

T
2/Z3 orbifold

e1

e2

bcb
(ϑ, 0)

bcb (ϑ, e1)
bcb(ϑ, 2 e1)

+ Coupling between n localized states
∣∣(ϑ,m(j) e1)

〉
only allowed if

n = 3 × (integer) ∧

n∑
j=1

m(j)
1 = 0 mod 3

å Flavor symmetry

S3 ∪ (Z3 × Z3) = S3 n (Z3 × Z3) = ∆(54)

talk by Mu–Chun

Chen, Fallbacher, Mahanthappa, M.R. & Trautner (2014)+ Note: ∆(54) is a ‘type I’ group

http://inspirehep.net/search?p=Chen:2014tpa
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∆(54) from theZ3 orbifold

T
2/Z3 orbifold

 |(ϑ,0)〉
|(ϑ, e1)〉
|(ϑ,2e1)〉

 →

 |(ϑ,0)〉
|(ϑ, e1)〉
|(ϑ,2e1)〉



+ Coupling between n localized states
∣∣(ϑ,m(j) e1)

〉
only allowed if

n = 3 × (integer) ∧

n∑
j=1

m(j)
1 = 0 mod 3

å Flavor symmetry

S3 ∪ (Z3 × Z3) = S3 n (Z3 × Z3) = ∆(54)

talk by Mu–Chun

Chen, Fallbacher, Mahanthappa, M.R. & Trautner (2014)+ Note: ∆(54) is a ‘type I’ group

http://inspirehep.net/search?p=Chen:2014tpa
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∆(54) from theZ3 orbifold

T
2/Z3 orbifold

 |(ϑ,0)〉
|(ϑ, e1)〉
|(ϑ,2e1)〉

 →

 ω 0 0
0 ω 0
0 0 ω


ω = e2π i/3

 |(ϑ,0)〉
|(ϑ, e1)〉
|(ϑ,2e1)〉



+ Coupling between n localized states
∣∣(ϑ,m(j) e1)

〉
only allowed if

n = 3 × (integer) ∧

n∑
j=1

m(j)
1 = 0 mod 3

å Flavor symmetry

S3 ∪ (Z3 × Z3) = S3 n (Z3 × Z3) = ∆(54)

talk by Mu–Chun

Chen, Fallbacher, Mahanthappa, M.R. & Trautner (2014)+ Note: ∆(54) is a ‘type I’ group

http://inspirehep.net/search?p=Chen:2014tpa
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∆(54) from theZ3 orbifold

T
2/Z3 orbifold

 |(ϑ,0)〉
|(ϑ, e1)〉
|(ϑ,2e1)〉

 →

 1 0 0
0 ω 0
0 0 ω2

  |(ϑ,0)〉
|(ϑ, e1)〉
|(ϑ,2e1)〉



+ Coupling between n localized states
∣∣(ϑ,m(j) e1)

〉
only allowed if

n = 3 × (integer) ∧

n∑
j=1

m(j)
1 = 0 mod 3

å Flavor symmetry

S3 ∪ (Z3 × Z3) = S3 n (Z3 × Z3) = ∆(54)

talk by Mu–Chun

Chen, Fallbacher, Mahanthappa, M.R. & Trautner (2014)+ Note: ∆(54) is a ‘type I’ group

http://inspirehep.net/search?p=Chen:2014tpa
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∆(54) from theZ3 orbifold

T
2/Z3 orbifold

+ Coupling between n localized states
∣∣(ϑ,m(j) e1)

〉
only allowed if

n = 3 × (integer) ∧

n∑
j=1

m(j)
1 = 0 mod 3

å Flavor symmetry

S3 ∪ (Z3 × Z3) = S3 n (Z3 × Z3) = ∆(54)

talk by Mu–Chun

Chen, Fallbacher, Mahanthappa, M.R. & Trautner (2014)+ Note: ∆(54) is a ‘type I’ group

http://inspirehep.net/search?p=Chen:2014tpa
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∆(54) from theZ3 orbifold

Character table of ∆(54)
irrep 1a 6a 6b 3a 3b 3c 2a 3d 3e 3f

(1) (9) (9) (6) (6) (6) (9) (6) (1) (1)

11 1 1 1 1 1 1 1 1 1 1
12 1 −1 −1 1 1 1 −1 1 1 1
21 2 0 0 2 −1 −1 0 −1 2 2
22 2 0 0 −1 −1 −1 0 2 2 2
23 2 0 0 −1 −1 2 0 −1 2 2
24 2 0 0 −1 2 −1 0 −1 2 2
3′ 3 −ω −ω 0 0 0 −1 0 3ω 3ω
3′ 3 −ω −ω 0 0 0 −1 0 3ω 3ω
3 3 ω ω 0 0 0 1 0 3ω 3ω
3 3 ω ω 0 0 0 1 0 3ω 3ω
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∆(54) from theZ3 orbifold

Survey of flavor symmetries
orbifold flavor symmetry sector string fundamental states
S1/Z2 D4 U 1

T1 2
T2/Z2 (D4 ×D4)/Z2 U 1

T1 4
T2/Z3 ∆(54) U 1

T1 3
T2 3

T2/Z4 U 1
(D4 × Z4)/Z2 T1 2

T2 1A1 + 1B1 + 1B2 + 1A2

T2/Z6 trivial
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∆(54) from theZ3 orbifold

Survey of flavor symmetries (cont’d)
orbifold flavor symmetry sector string fundamental states
T4/Z8 U 1

T1 2
(D4 × Z8)/Z2 T2 1A1 + 1B1 + 1B2 + 1A2

T3 2
T4 4 × (1A1 + 1B1 + 1B2 + 1A2 )

T4/Z12 trivial
T6/Z7 U 1

S7 n (Z7)6 Tk 7
T7−k 7

back
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