Origin of non-Abelian discrete symmetries

Michael Ratz

Bethe workshop, Bonn, June 05, 2014

Based on:

- T. Kobayashi, H.P. Nilles, F. Plöger, S. Raby \& M.R.. Nucl. Phys. B768, 135
- H.P. Nilles, M.R. \& P. Vaudrevange, Fortsch. Phys. 61, 493
- M.-C. Chen, M.R. \& A. Trautner, JHEP 1309, 096
- H.P. Nilles, S. Ramos-Sánchez, M.R. \& P. Vaudrevange, Phys. Lett. B726, 876
- M.-C. Chen, M. Fallbacher, K.T. Mahanthappa, M.R. \& A. Trautner, Nucl. Phys. B883, 267

Outline

non-Abelian discrete R and non- R symmetries

Outline

because it is an R symmetry

super-

 symmetry breaking
Outline

Outline

e.g. \mathbb{Z}_{4}^{R} symmetry

nucleon stability

Outline

Outline

Outline

Outline

symmetries

talk by Mu-Chun

CP violation

Outline

Outline

one of the central themes of this talk

symmetry breaking

geometry
 of compact dimensions

Outline

Outline

Non-Abelian discrete R symmetries

Textbook knowledge:
(1) Maximal R symmetry of $\mathcal{N}=1$ supersymmetry is Abelian, i.e. $\mathrm{U}(1)_{R}$

Non-Abelian discrete R symmetries

Textbook knowledge:
(1) Maximal R symmetry of $\mathcal{N}=1$ supersymmetry is Abelian, i.e. $\mathrm{U}(1)_{R}$
(2) Green-Schwarz (GS) anomaly cancellation is only available for Abelian symmetries

Non-Abelian discrete R symmetries

Textbook knowledge:
(1) Maximal R symmetry of $\mathcal{N}=1$ supersymmetry is Abelian, i.e. $\mathrm{U}(1)_{R}$
(2) Green-Schwarz (GS) anomaly cancellation is only available for Abelian symmetries

Eso One aim of this talk: convince you that this is not entirely correct

Non-Abelian discrete R symmetries

Textbook knowledge:
(1) Maximal R symmetry of $\mathcal{N}=1$ supersymmetry is Abelian, i.e. $\mathrm{U}(1)_{R}$
(2) Green-Schwarz (GS) anomaly cancellation is only available for Abelian symmetries
(One aim of this talk: convince you that this is not entirely correct
Clearly, there cannot be a non-Abelian continuous R symmetry G_{R} as this would require more than one supercharge

Non-Abelian discrete R symmetries

Textbook knowledge:
(1) Maximal R symmetry of $\mathcal{N}=1$ supersymmetry is Abelian, i.e. $\mathrm{U}(1)_{R}$
(2) Green-Schwarz (GS) anomaly cancellation is only available for Abelian symmetries

One aim of this talk: convince you that this is not entirely correct
Clearly, there cannot be a non-Abelian continuous R symmetry G_{R} as this would require more than one supercharge

However: non-Abelian discrete symmetries can have non-trivial 1-dimensional representations $\mathbf{1}_{\text {non-trivial }}$

Non-Abelian discrete R symmetries

Textbook knowledge:
(1) Aaximal R symmetry of $\mathcal{N}=1$ supersymmetry is Abelian, i.e. $\mathrm{U}(1)_{R}$
(2) Green-Schwarz (GS) anomaly cancellation is only available for Abelian symmetries

One aim of this talk: convince you that this is not entirely correct
Clearly, there cannot be a non-Abelian continuous R symmetry G_{R} as this would require more than one supercharge

However: non-Abelian discrete symmetries can have non-trivial 1-dimensional representations $\mathbf{1}_{\text {non-trivial }}$
\Rightarrow This allows us to consider settings in which the superspace coordinate transforms as $\mathbf{1}_{\text {non-trivial }}$

Non-Abelian discrete R symmetries

Textbook knowledge:
(1) Aaximal R symmetry of $\mathcal{N}=1$ supersymmetry is Abelian, i.e. $\mathrm{U}(1)_{R}$
(2) Green-Schwarz (GS) anomaly cancellation is only available for Abelian symmetries

One aim of this talk: convince you that this is not entirely correct
Clearly, there cannot be a non-Abelian continuous R symmetry G_{R} as this would require more than one supercharge

However: non-Abelian discrete symmetries can have non-trivial 1-dimensional representations $\mathbf{1}_{\text {non-trivial }}$
\Rightarrow This allows us to consider settings in which the superspace coordinate transforms as $\mathbf{1}_{\text {non-trivial }}$
\Rightarrow Likewise, the axion may shift under the action of the elements of the discrete group

Non-Abelian discrete R symmetries

Textbook knowledge:
(1) Aaximal R symmetry of $\mathcal{N}=1$ supersymmetry is Abelian, i.e. $\mathrm{U}(1)_{R}$
(2) Green-Schwarz anomaly cancellation is only available for Abelian symmetries

One aim of this talk: convince you that this is not entirely correct
Clearly, there cannot be a non-Abelian continuous R symmetry G_{R} as this would require more than one supercharge

However: non-Abelian discrete symmetries can have non-trivial 1-dimensional representations $\mathbf{1}_{\text {non-trivial }}$
\Rightarrow This allows us to consider settings in which the superspace coordinate transforms as $\mathbf{1}_{\text {non-trivial }}$
\Rightarrow Likewise, the axion may shift under the action of the elements of the discrete group

Outline

(1) Introduction
(2) Non-Abelian discrete R symmetries

Reminder: Abelian discrete R symmetries
Anomaly coefficients for discrete Abelian R and non- R symmetries
Discrete Green-Schwarz anomaly cancellation
Anomaly coefficients for non-Abelian discrete R and non- R
symmetries
(3) Orbifolds

The \mathbb{Z}_{6}-II orbifold
(4) Flavor symmetries from orbifolds

Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$
Symmetry enhancement
(5) Summary

6 Backup slides
Orbifold classification
$\boldsymbol{\Delta} \mathbf{(5 4)}$ from the \mathbb{Z}_{3} orbifold References

Non-Abelian

discrete \boldsymbol{R}

symmetries

Reminder: Abelian discrete R symmetries

Superpotential transforms as

$$
\begin{aligned}
\mathscr{W} \rightarrow \mathrm{e}^{2 \pi \mathrm{i} q_{\mathscr{W}}} / M \mathscr{W} \\
\\
q_{\mathscr{W}}=2 q_{\theta}
\end{aligned}
$$

Reminder: Abelian discrete R symmetries

Superpotential transforms as

$$
\mathscr{W} \rightarrow \mathrm{e}^{2 \pi \mathrm{i} q_{\mathscr{W}} / M_{\mathscr{W}}} \mathscr{W}
$$

Superfields $\Phi^{(f)}=\phi^{(f)}+\sqrt{2} \theta \psi^{(f)}+\theta \theta F^{(f)}$ transform as

$$
\Phi^{(f)} \rightarrow \mathrm{e}^{2 \pi \mathrm{i} q^{(f)} / M} \Phi^{(f)}
$$

Reminder: Anomalies in Abelian discrete symmetries

Krauss \& Wilczek (1989); Ibán̄ez \& Ross (1991, 1992); Banks \& Dine (1992)

Dis Discrete symmetries can have anomalies

Reminder: Anomalies in Abelian discrete symmetries

Krauss \& Wilczek (1989); Ibáñez \& Ross (1991, 1992); Banks \& Dine (1992)
Discrete symmetries can have anomalies
Fujikawa (1979)
Most convenient way to compute anomalies: path integral approach

Reminder: Anomalies in Abelian discrete symmetries

Krauss \& Wilczek (1989); Ibáñez \& Ross (1991, 1992); Banks \& Dine (1992)
Dis Discrete symmetries can have anomalies

Most convenient way to compute anomalies: path integral approach

Works both for Abelian and non-Abelian discrete symmetries

Anomaly coefficients for Abelian $\mathbb{Z}_{M}^{(R)}$ symmetries

Consider the action of one generator of the discrete group

Anomaly coefficients for Abelian $\mathbb{Z}_{M}^{(R)}$ symmetries

Consider the action of one generator of the discrete group
Fermions acquire a $\mathbb{Z}_{M}^{(R)}$ phase: $\psi^{(f)} \rightarrow \mathrm{e}^{2 \pi \mathrm{i}\left(q^{(f)}-q_{\theta}\right) / M} \psi^{(f)}$
$\mathbb{Z}_{M}^{(R)}$ charge of superfield

Anomaly coefficients for Abelian $\mathbb{Z}_{M}^{(R)}$ symmetries

Consider the action of one generator of the discrete group
Fermions acquire a $\mathbb{Z}_{M}^{(R)}$ phase: $\psi^{(f)} \rightarrow \mathrm{e}^{2 \pi \mathrm{i}\left(q^{(f)}-q_{q}\right) / M} \psi^{(f)}$
$\mathbb{Z}_{M}^{(R)}$ charge of superspace coordinate

Anomaly coefficients for Abelian $\mathbb{Z}_{M}^{(R)}$ symmetries

Consider the action of one generator of the discrete group
Fermions acquire a $\mathbb{Z}_{M}^{(R)}$ phase: $\psi^{(f)} \rightarrow \mathrm{e}^{2 \pi \mathrm{i}\left(q^{(f)}-q_{\theta}\right) / M} \psi^{(f)}$
\Leftrightarrow Non-trivial transformation of the path integral measure

$$
\begin{gathered}
\prod_{f} \mathcal{D} \psi^{(f)} \mathcal{D} \bar{\psi}^{(f)} \rightarrow J^{-2} \prod_{f} \mathcal{D} \psi^{(f)} \mathcal{D} \bar{\psi}^{(f)} \\
\text { with } J^{-2}=\exp \left\{\mathrm{i} \frac{2 \pi}{M} A_{G-G-\mathbb{Z}_{M}^{R}} \int \mathrm{~d}^{4} x \frac{1}{32 \pi^{2}} F^{b, \mu \nu} \widetilde{F}_{\mu \nu}^{b}\right\} \\
\text { and } A_{G-G-\mathbb{Z}_{M}^{(R)}}=\sum_{f} \ell\left(r^{(f)}\right) \cdot q_{\psi^{(f)}}+q_{\theta} \ell(\operatorname{adj} G) \\
\text { representation of } \psi^{(f)}
\end{gathered}
$$

Anomaly coefficients for Abelian $\mathbb{Z}_{M}^{(R)}$ symmetries

Consider the action of one generator of the discrete group
Fermions acquire a $\mathbb{Z}_{M}^{(R)}$ phase: $\psi^{(f)} \rightarrow \mathrm{e}^{2 \pi \mathrm{i}\left(q^{(f)}-q_{\theta}\right) / M} \psi^{(f)}$
\Leftrightarrow Non-trivial transformation of the path integral measure

$$
\begin{aligned}
& \prod_{f} \mathcal{D} \psi^{(f)} \mathcal{D} \bar{\psi}^{(f)} \rightarrow J^{-2} \prod_{f} \mathcal{D} \psi^{(f)} \mathcal{D} \bar{\psi}^{(f)} \\
& \text { with } J^{-2}=\exp \left\{\mathrm{i} \frac{2 \pi}{M} A_{G-G-\mathbb{Z}_{M}^{R}} \int \mathrm{~d}^{4} x \frac{1}{32 \pi^{2}} F^{b, \mu \nu} \widetilde{F}_{\mu \nu}^{b}\right\} \\
& \text { and } A_{G-G-\mathbb{Z}_{M}^{(R)}}=\sum_{f} \ell\left(\boldsymbol{r}^{(f)}\right) \cdot q_{\psi^{(f)}}+q_{\theta} \ell(\operatorname{adj} G) \\
& \qquad q_{\psi^{(f)}}=\left(q^{(f)}-q_{\theta}\right) \text { with } q^{(f)} R \text { charge of superfield }
\end{aligned}
$$

Anomaly coefficients for Abelian $\mathbb{Z}_{M}^{(R)}$ symmetries

Consider the action of one generator of the discrete group
Fermions acquire a $\mathbb{Z}_{M}^{(R)}$ phase: $\psi^{(f)} \rightarrow \mathrm{e}^{2 \pi \mathrm{i}\left(q^{(f)}-q_{\theta}\right) / M} \psi^{(f)}$
\Rightarrow Non-trivial transformation of the path integral measure

$$
\begin{aligned}
& \prod_{f} \mathcal{D} \psi^{(f)} \mathcal{D} \bar{\psi}^{(f)} \rightarrow J^{-2} \prod_{f} \mathcal{D} \psi^{(f)} \mathcal{D} \bar{\psi}^{(f)} \\
& \text { with } J^{-2}=\exp \left\{\mathrm{i} \frac{2 \pi}{M} A_{G-G-\mathbb{Z}_{M}^{R}} \int \mathrm{~d}^{4} x \frac{1}{32 \pi^{2}} F^{b, \mu \nu} \widetilde{F}_{\mu \nu}^{b}\right\} \\
& \text { and } A_{G-G-\mathbb{Z}_{M}^{(R)}}=\sum_{f} \ell\left(\boldsymbol{r}^{(f)}\right) \cdot q_{\psi^{(f)}}+q_{\theta} \ell(\operatorname{adj} G) \\
& \text { discrete } R \text { charge of superspace coordinate }
\end{aligned}
$$

Anomaly coefficients for Abelian $\mathbb{Z}_{M}^{(R)}$ symmetries

Consider the action of one generator of the discrete group
Fermions acquire a $\mathbb{Z}_{M}^{(R)}$ phase: $\psi^{(f)} \rightarrow \mathrm{e}^{2 \pi \mathrm{i}\left(q^{(f)}-q_{\theta}\right) / M} \psi^{(f)}$
\Leftrightarrow Non-trivial transformation of the path integral measure

$$
\begin{gathered}
\prod_{f} \mathcal{D} \psi^{(f)} \mathcal{D} \bar{\psi}^{(f)} \rightarrow J^{-2} \prod_{f} \mathcal{D} \psi^{(f)} \mathcal{D} \bar{\psi}^{(f)} \\
\text { with } J^{-2}=\exp \left\{\mathrm{i} \frac{2 \pi}{M} A_{G-G-\mathbb{Z}_{M}^{R}} \int \mathrm{~d}^{4} x \frac{1}{32 \pi^{2}} F^{b, \mu \nu} \widetilde{F}_{\mu \nu}^{b}\right\} \\
\text { and } A_{G-G-\mathbb{Z}_{M}^{(R)}}=\sum_{f} \ell\left(\boldsymbol{r}^{(f)}\right) \cdot q_{\psi^{(f)}}+q_{\theta} \ell(\operatorname{adj} G) \\
\text { Dynkin index: } \delta_{a b} \ell(\boldsymbol{r})=\operatorname{tr}\left[\mathrm{t}_{a}(\boldsymbol{r}) \mathrm{t}_{b}(\boldsymbol{r})\right]
\end{gathered}
$$

Discrete Green-Schwarz anomaly cancellation

Qoupling of 'axion' a to field strength of the continuous gauge symmetry

$$
\mathscr{L}_{\text {axion }} \supset-\frac{a}{8} F^{b} \widetilde{F}^{b}
$$

Discrete Green-Schwarz anomaly cancellation

Coupling of 'axion' a to field strength of the continuous gauge symmetry
$\mathscr{L}_{\text {axion }} \supset-\frac{a}{8} F^{b} \widetilde{F}^{b}$
Discrete transformation u induces a shift

$$
a \rightarrow a+\Delta^{(\mathrm{u})}
$$

Discrete Green-Schwarz anomaly cancellation

Coupling of 'axion' a to field strength of the continuous gauge symmetry
$\mathscr{L}_{\text {axion }} \supset-\frac{a}{8} F^{b} \widetilde{F}^{b}$

Discrete transformation u induces a shift

$$
a \rightarrow a+\Delta^{(\mathrm{u})}
$$

Relation between $\Delta^{(\mathrm{u})}$ and $A_{G-G-\mathbb{Z}_{M}}$

$$
\begin{aligned}
A_{G-G-\mathbb{Z}_{M}}= & 2 \pi M_{Y} \Delta^{(\mathrm{u})} \bmod \frac{M_{\mathrm{u}}}{2} \\
& \text { order of } \mathrm{u}: \mathrm{u}^{M_{\mathrm{u}}}=\mathbb{1}
\end{aligned}
$$

Comment on settings with more than one axions

One can have several axions a_{α}

$$
\begin{aligned}
\mathscr{L}_{\text {axion }} \supset-F^{b} \widetilde{F}^{b} \sum_{\alpha} \frac{c_{\alpha}}{8} a_{\alpha} \\
\text { real coefficients }
\end{aligned}
$$

Comment on settings with more than one axions

One can have several axions a_{α}

$$
\mathscr{L}_{\text {axion }} \supset-F^{b} \widetilde{F}^{b} \sum_{\alpha} \frac{c_{\alpha}}{8} a_{\alpha}
$$

However: there is always a unique linear combination of axions a that shifts: $a \propto \sum_{\alpha} c_{\alpha} a_{\alpha}$

Comment on settings with more than one axions

One can have several axions a_{α}

$$
\mathscr{L}_{\text {axion }} \supset-F^{b} \widetilde{F}^{b} \sum_{\alpha} \frac{c_{\alpha}}{8} a_{\alpha}
$$

However: there is always a unique linear combination of axions a that shifts: $a \propto \sum_{\alpha} c_{\alpha} a_{\alpha}$

One can also have more than one gauge factor, i.e. $G=\prod_{i} G^{(i)}$

$$
\mathscr{L}_{\text {axion }} \supset-\frac{a}{8} \cdot \sum_{i} \lambda_{i} F_{b}^{(i)} \widetilde{F}_{b}^{(i)}
$$

Comment on settings with more than one axions

One can have several axions a_{α}

$$
\mathscr{L}_{\text {axion }} \supset-F^{b} \widetilde{F}^{b} \sum_{\alpha} \frac{c_{\alpha}}{8} a_{\alpha}
$$

However: there is always a unique linear combination of axions a that shifts: $a \propto \sum_{\alpha} c_{\alpha} a_{\alpha}$

One can also have more than one gauge factor, i.e. $G=\prod_{i} G^{(i)}$

$$
\mathscr{L}_{\text {axion }} \supset-\frac{a}{8} \cdot \sum_{i} \lambda_{i} F_{b}^{(i)} \widetilde{F}_{b}^{(i)}
$$

This allows one to cancel abritrary discrete anomalies

Anomaly (non-)universality

However, in supersymmetric theories the axions are always accompanied by a superpartner 'saxion’ field

Anomaly (non-)universality

However, in supersymmetric theories the axions are always accompanied by a superpartner ‘saxion’ field

Non-universal λ_{i} coefficients for the SM gauge factors will spoil the picture of MSSM gauge coupling unification

Anomaly (non-)universality

However, in supersymmetric theories the axions are always accompanied by a superpartner 'saxion' field

Non-universal λ_{i} coefficients for the SM gauge factors will spoil the picture of MSSM gauge coupling unification

Can be avoided by demanding anomaly universality

$$
A_{G^{(i)}-G^{(i)}-\mathbb{Z}_{M}^{(R)}}=\rho \bmod \frac{M}{2} \forall G^{(i)}
$$

Non-Abelian discrete R symmetries

Action of u on representation \boldsymbol{d}

$$
U_{\mathrm{u}}(\boldsymbol{d})=\exp \left(2 \pi \mathrm{i} \lambda_{\mathrm{u}}(\boldsymbol{d}) / M_{\mathrm{u}}\right)
$$

Non-Abelian discrete R symmetries

Action of u on representation \boldsymbol{d}

$$
U_{\mathrm{u}}(\boldsymbol{d})=\exp \left(2 \pi \mathrm{i} \lambda_{\mathrm{u}}(\boldsymbol{d}) / M_{\mathrm{u}}\right)
$$

matrix w/ integer eigenvalues

Non-Abelian discrete R symmetries

Action of u on representation \boldsymbol{d}

$$
U_{\mathrm{u}}(\boldsymbol{d})=\exp \left(2 \pi \mathrm{i} \lambda_{\mathrm{u}}(\boldsymbol{d}) / M_{\mathrm{u}}\right)
$$

\Rightarrow Transformation of fermions

$$
\psi^{(f)} \rightarrow U_{\mathrm{u}}\left(\boldsymbol{d}^{(f)}\right) \psi^{(f)}=\exp \left[2 \pi \mathrm{i} \lambda_{\mathrm{u}}\left(\boldsymbol{d}^{(f)}\right) / M_{\mathrm{u}}\right] \psi^{(f)}
$$

Non-Abelian discrete R symmetries

Action of u on representation \boldsymbol{d}

$$
U_{\mathrm{u}}(\boldsymbol{d})=\exp \left(2 \pi \mathrm{i} \lambda_{\mathrm{u}}(\boldsymbol{d}) / M_{\mathrm{u}}\right)
$$

\Leftrightarrow Transformation of fermions

$$
\psi^{(f)} \rightarrow U_{\mathrm{u}}\left(\boldsymbol{d}^{(f)}\right) \psi^{(f)}=\exp \left[2 \pi \mathrm{i} \lambda_{\mathrm{u}}\left(\boldsymbol{d}^{(f)}\right) / M_{\mathrm{u}}\right] \psi^{(f)}
$$

Effective $\mathbb{Z}_{M_{u}}$ charges

$$
\delta_{\mathrm{u}}^{(f)}:=\operatorname{tr}\left[\lambda_{\mathrm{u}}\left(\boldsymbol{d}^{(f)}\right)\right]=\frac{M_{\mathrm{u}}}{2 \pi \mathrm{i}} \ln \operatorname{det} U_{\mathrm{u}}\left(\boldsymbol{d}^{(f)}\right)
$$

Anomaly coefficients for non-Abelian discrete R symmetries

Relation between the transformation behavior of a superfield Φ and the corresponding fermion ψ
$\boldsymbol{d}^{(\Phi)}=\boldsymbol{d}^{(\theta)} \otimes \boldsymbol{d}^{(\psi)}$
1-dimensional representation

Anomaly coefficients for non-Abelian discrete R symmetries

Relation between the transformation behavior of a superfield Φ and the corresponding fermion ψ
$\boldsymbol{d}^{(\Phi)}=\boldsymbol{d}^{(\theta)} \otimes \boldsymbol{d}^{(\psi)}$

Relation between fermion and superfield anomaly contributions

$$
\delta^{(\psi)}=\delta^{(\Phi)}-\operatorname{dim}\left(\boldsymbol{d}^{(\Phi)}\right) \cdot \delta^{(\theta)}
$$

Anomaly coefficients for non-Abelian discrete R symmetries (cont'd)

Anomaly coefficients for transformation u

$$
\begin{gathered}
A_{G-G-\mathbb{Z}_{M_{u}}^{R}}=\sum_{s} \ell\left(\boldsymbol{r}^{(s)}\right) \cdot\left[\delta^{(s)}-\operatorname{dim}\left(\boldsymbol{d}^{(s)}\right) \delta^{(\theta)}\right]+\ell(\operatorname{adj} G) \cdot \delta^{(\theta)} \\
\text { superfield charges }
\end{gathered}
$$

Anomaly coefficients for non-Abelian discrete R symmetries (cont'd)

Anomaly coefficients for transformation u

$$
\begin{aligned}
A_{G-G-\mathbb{Z}_{M_{u}}^{R}} & =\sum_{s} \ell\left(\boldsymbol{r}^{(s)}\right) \cdot\left[\delta^{(s)}-\operatorname{dim}\left(\boldsymbol{d}^{(s)}\right) \delta^{(\theta)}\right]+\ell(\operatorname{adj} G) \cdot \delta^{(\theta)} \\
A_{\mathrm{U}(1)-\mathrm{U}(1)-\mathbb{Z}_{M_{u}}^{R}} & =\sum_{s}\left(\boldsymbol{Q}^{(s)}\right)^{2} \operatorname{dim}\left(\boldsymbol{r}^{(s)}\right) \cdot\left[\delta^{(s)}-\operatorname{dim}\left(\boldsymbol{d}^{(s)}\right) \delta^{(\theta)}\right]
\end{aligned}
$$

Anomaly coefficients for non-Abelian discrete R symmetries (cont'd)

Anomaly coefficients for transformation u

$$
\begin{aligned}
& A_{G-G-\mathbb{Z}_{M_{u}}^{R}}= \sum_{s} \ell\left(\boldsymbol{r}^{(s)}\right) \cdot\left[\delta^{(s)}-\operatorname{dim}\left(\boldsymbol{d}^{(s)}\right) \delta^{(\theta)}\right]+\ell(\operatorname{adj} G) \cdot \delta^{(\theta)} \\
& A_{\mathrm{U}(1)-\mathrm{U}(1)-\mathbb{Z}_{M_{\mathrm{u}}}^{R}=} \sum_{s}\left(Q^{(s)}\right)^{2} \operatorname{dim}\left(\boldsymbol{r}^{(s)}\right) \cdot\left[\delta^{(s)}-\operatorname{dim}\left(\boldsymbol{d}^{(s)}\right) \delta^{(\theta)}\right] \\
& A_{\text {grav-grav- } \mathbb{Z}_{M_{u}}^{R}}=-21 \delta^{(\theta)}+\delta^{(\theta)} \sum_{G} \operatorname{dim}(\operatorname{adj} G) \\
&+\sum_{s} \operatorname{dim}\left(\boldsymbol{r}^{(s)}\right) \cdot\left[\delta^{(s)}-\operatorname{dim}\left(\boldsymbol{d}^{(s)}\right) \delta^{(\theta)}\right]
\end{aligned}
$$

Anomaly relations

Anomaly coefficients for two group elements u of order M_{u} and v of order M_{v}
$A_{u}=\rho \bmod \frac{M_{\mathrm{u}}}{2} \quad$ and $\quad A_{\mathrm{v}}=\sigma \bmod \frac{M_{\mathrm{v}}}{2}$

Anomaly relations

Anomaly coefficients for two group elements u of order M_{u} and v of order M_{v}

$$
A_{u}=\rho \bmod \frac{M_{\mathrm{u}}}{2} \quad \text { and } \quad A_{\mathrm{v}}=\sigma \bmod \frac{M_{\mathrm{v}}}{2}
$$

\Leftrightarrow Anomaly coefficient of group element $\mathrm{w}=\mathrm{u} \cdot \mathrm{v}$ of order M_{w}

$$
\begin{aligned}
A_{\mathrm{w}} & =\sum_{f} \ell\left(\boldsymbol{r}^{(f)}\right) \delta_{\mathrm{w}}^{(f)}+\ell(\operatorname{adj} G) \delta_{\mathrm{w}}^{(\theta)} \\
& =\sum_{f} \ell\left(\boldsymbol{r}^{(f)}\right) \cdot\left[\frac{M_{\mathrm{w}}}{M_{\mathrm{u}}} \delta_{\mathrm{u}}^{(f)}+\frac{M_{\mathrm{w}}}{M_{\mathrm{v}}} \delta_{\mathrm{v}}^{(f)}\right]+\ell(\operatorname{adj} G) \cdot\left[\frac{M_{\mathrm{w}}}{M_{\mathrm{u}}} \delta_{\mathrm{u}}^{(\theta)}+\frac{M_{\mathrm{w}}}{M_{\mathrm{v}}} \delta_{\mathrm{v}}^{(\theta)}\right] \\
& =\frac{M_{\mathrm{w}}}{M_{\mathrm{u}}}\left(\rho \bmod \frac{M_{\mathrm{u}}}{2}\right)+\frac{M_{\mathrm{w}}}{M_{\mathrm{v}}}\left(\sigma \bmod \frac{M_{\mathrm{v}}}{2}\right)
\end{aligned}
$$

Anomaly relations (cont'd)

Three cases:
(1) Neither u nor v generates an anomalous symmetry, i.e. $\rho=\sigma=0$ \curvearrowright symmetry generated by $\{u, v\}$ is anomaly-free

Anomaly relations (cont'd)

Three cases:
(1) Neither u nor \vee generates an anomalous symmetry, i.e. $\rho=\sigma=0$ \curvearrowright symmetry generated by $\{u, v\}$ is anomaly-free
(2) Only one element, say u, generates an anomalous symmetry, i.e. $\rho \neq 0=\sigma$
$\curvearrowright w=u \cdot v$ is anomalous with an anomaly coefficient $A_{\mathrm{w}}=M_{\mathrm{w}}\left(\frac{\rho}{M_{\mathrm{u}}} \bmod \frac{1}{2}\right)$

Anomaly relations (cont'd)

Three cases:
(1) Neither u nor v generates an anomalous symmetry, i.e. $\rho=\sigma=0$ \curvearrowright symmetry generated by $\{u, v\}$ is anomaly-free
(2) Only one element, say u, generates an anomalous symmetry, i.e. $\rho \neq 0=\sigma$
$\curvearrowright w=u \cdot v$ is anomalous with an anomaly coefficient
$A_{\mathrm{w}}=M_{\mathrm{w}}\left(\frac{\rho}{M_{\mathrm{u}}} \bmod \frac{1}{2}\right)$
(3) Both u and v generate anomalous symmetries
\curvearrowright anomaly coefficient for w is $A_{\mathrm{w}}=M_{\mathrm{w}} \cdot\left[\left(\frac{\rho}{M_{\mathrm{u}}}+\frac{\sigma}{M_{\mathrm{v}}}\right) \bmod \frac{1}{2}\right]$

GS mechanism for non-Abelian discrete symmetries

Two operations u and v induce shifts of the axion

$$
\mathrm{u}: a \rightarrow a+\Delta^{(\mathrm{u})} \quad \text { and } \quad \mathrm{v}: a \rightarrow a+\Delta^{(\mathrm{v})}
$$

GS mechanism for non-Abelian discrete symmetries

Two operations u and v induce shifts of the axion
$\mathrm{u}: a \rightarrow a+\Delta^{(\mathrm{u})} \quad$ and $\mathrm{v}: a \rightarrow a+\Delta^{(\mathrm{v})}$

Action of these shifts on the axion is Abelian

GS mechanism for non-Abelian discrete symmetries

Two operations u and v induce shifts of the axion

$$
\mathrm{u}: a \rightarrow a+\Delta^{(\mathrm{u})} \quad \text { and } \quad \mathrm{v}: a \rightarrow a+\Delta^{(\mathrm{v})}
$$

Action of these shifts on the axion is Abelian
Axions do not shift under so-called commutator elements

$$
[u, v]:=u v u^{-1} v^{-1} \quad \curvearrowright \quad U_{[u, v]}=U_{u} U_{v} U_{u}^{-1} U_{v}^{-1}
$$

GS mechanism for non-Abelian discrete symmetries

Two operations u and v induce shifts of the axion
$u: a \rightarrow a+\Delta^{(\mathrm{u})}$ and $\mathrm{v}: a \rightarrow a+\Delta^{(\mathrm{v})}$

Action of these shifts on the axion is Abelian
Axions do not shift under so-called commutator elements

$$
[u, v]:=u v u^{-1} v^{-1} \quad \curvearrowright \quad U_{[u, v]}=U_{u} U_{v} U_{u}^{-1} U_{v}^{-1}
$$

Perfect groups are always anomaly-free
a perfect group equals its commutator subgroup

GS mechanism for non-Abelian discrete symmetries

Two operations u and v induce shifts of the axion
$u: a \rightarrow a+\Delta^{(\mathrm{u})}$ and $\mathrm{v}: a \rightarrow a+\Delta^{(\mathrm{v})}$

Action of these shifts on the axion is Abelian
Axions do not shift under so-called commutator elements
$[u, v]:=u v u^{-1} v^{-1} \curvearrowright U_{[u, v]}=U_{u} U_{v} U_{u}{ }^{-1} U_{\mathrm{v}}{ }^{-1}$
Perfect groups are always anomaly-free

Simple (finite) non-Abelian groups are always perfect

GS cancellation of anomalies

Two generating elements u and v

GS cancellation of anomalies

Two generating elements u and v
Combined operation $w=u \cdot v$ with anomaly coefficient

$$
A_{\mathrm{u} \cdot \mathrm{v}}=\omega \bmod \frac{M_{\mathrm{w}}}{2}
$$

GS cancellation of anomalies

Two generating elements u and v
Combined operation $w=u \cdot v$ with anomaly coefficient

$$
A_{\mathrm{u} \cdot \mathrm{v}}=\omega \bmod \frac{M_{\mathrm{w}}}{2}
$$

Axion shift under $w=u \cdot v: a \rightarrow a+\Delta^{(u \cdot v)}$

$$
\Delta^{(u \cdot v)}=\Delta^{(u)}+\Delta^{(v)}
$$

GS cancellation of anomalies

Two generating elements u and v
Combined operation $w=u \cdot v$ with anomaly coefficient

$$
A_{\mathrm{u} \cdot \mathrm{v}}=\omega \bmod \frac{M_{\mathrm{w}}}{2}
$$

Axion shift under $w=u \cdot v: a \rightarrow a+\Delta^{(u \cdot v)}$

Consistency

$$
\begin{gathered}
A_{\mathrm{u} \cdot \mathrm{v}}=2 \pi M_{\mathrm{w}}\left(\Delta^{(\mathrm{u})}+\Delta^{(\mathrm{v})}\right) \bmod \frac{M_{\mathrm{w}}}{2} \\
\Delta^{(\mathrm{u} \cdot \mathrm{v})}=\Delta^{(\mathrm{u})}+\Delta^{(\mathrm{v})}
\end{gathered}
$$

GS cancellation of anomalies

Two generating elements u and v
Combined operation $w=u \cdot v$ with anomaly coefficient

$$
A_{\mathrm{u} \cdot \mathrm{v}}=\omega \bmod \frac{M_{\mathrm{w}}}{2}
$$

Axion shift under $w=u \cdot v: a \rightarrow a+\Delta^{(u \cdot v)}$

Consistency

$$
\begin{aligned}
A_{\mathrm{u} \cdot \mathrm{v}} & =2 \pi M_{\mathrm{w}}\left(\Delta^{(\mathrm{u})}+\Delta^{(v)}\right) \bmod \frac{M_{\mathrm{w}}}{2} \\
& =M_{\mathrm{w}}\left(\rho \bmod \frac{M_{\mathrm{u}}}{2}\right)+\frac{M_{\mathrm{w}}}{M_{\mathrm{v}}}\left(\sigma \bmod \frac{M_{\mathrm{v}}}{2}\right) \\
A_{\mathrm{u}} & =2 \pi M_{\mathrm{u}} \Delta^{(\mathrm{u})} \bmod \frac{M_{\mathrm{u}}}{2}
\end{aligned}
$$

GS cancellation of anomalies

Two generating elements u and v
Combined operation $w=u \cdot v$ with anomaly coefficient

$$
A_{\mathrm{u} \cdot \mathrm{v}}=\omega \bmod \frac{M_{\mathrm{w}}}{2}
$$

Axion shift under $w=u \cdot v: a \rightarrow a+\Delta^{(u \cdot v)}$

Consistency \checkmark

$$
\begin{aligned}
A_{\mathrm{u} \cdot \mathrm{v}} & =2 \pi M_{\mathrm{w}}\left(\Delta^{(\mathrm{u})}+\Delta^{(\mathrm{v})}\right) \bmod \frac{M_{\mathrm{w}}}{2} \\
& =\frac{M_{\mathrm{w}}}{M_{\mathrm{u}}}\left(\rho \bmod \frac{M_{\mathrm{u}}}{2}\right)+\frac{M_{\mathrm{w}}}{M_{\mathrm{v}}}\left(\sigma \bmod \frac{M_{\mathrm{v}}}{2}\right)
\end{aligned}
$$

Discrete

symmetries

from

orbifolds

Orbifolds

(1) start with some \mathbb{R}^{d}

Orbifolds

(1) start with some \mathbb{R}^{d}
(2) compactify on a torus

- choose basis vectors e_{a}

Orbifolds

(1) start with some \mathbb{R}^{d}
(2) compactify on a torus

- choose basis vectors e_{a}
- define torus lattice $\Lambda=\left\{m_{\alpha} e_{\alpha} ; m_{\alpha} \in \mathbb{Z}\right\}$

Orbifolds

(1) start with some \mathbb{R}^{d}
(2) compactify on a torus

- choose basis vectors e_{a}
- define torus lattice $\Lambda=\left\{m_{\alpha} e_{\alpha} ; m_{\alpha} \in \mathbb{Z}\right\}$
- identify points differing by lattice vectors $\ell \in \Lambda$

Orbifolds

(1) start with some \mathbb{R}^{d}
(2) compactify on a torus
(3) mod out a symmetry of the lattice

- choose discrete rotation ϑ which maps Λ onto itself

Orbifolds

(1) start with some \mathbb{R}^{d}
(2) compactify on a torus
(3) mod out a symmetry of the lattice

- choose discrete rotation ϑ which maps Λ onto itself
- identify points related by ϑ

Orbifolds

(1) start with some \mathbb{R}^{d}
(2) compactify on a torus
(3) mod out a symmetry of the lattice
(4) identify fixed points $\vartheta f=f+\ell, \quad \ell \in \Lambda$

- correspondence $f \leftrightarrow(\vartheta, \ell)$

Orbifolds

(1) start with some \mathbb{R}^{d}
(2) compactify on a torus
(3) mod out a symmetry of the lattice
(4) identify fixed points $\vartheta f=f+\ell, \quad \ell \in \Lambda$

- correspondence $f \leftrightarrow(\vartheta, \ell)$
- ℓ is only determined up to translations $\lambda \in(\mathbb{1}-\vartheta) \Lambda$

Orbifold and space group

(1) can also be defined as the quotient space of \mathbb{C}^{3} by the so-called space group \mathbb{S}

Orbifold and space group

(1) can also be defined as the quotient space of \mathbb{C}^{3} by the so-called space group \mathbb{S}

Elements of \mathbb{S} are of the form $g=\left(v^{k}, n_{\alpha} e_{\alpha}\right)$

$$
n_{\alpha} \in \mathbb{Z}
$$

Orbifold and space group

(1) can also be defined as the quotient space of \mathbb{C}^{3} by the so-called space group \mathbb{S}

Elements of \mathbb{S} are of the form $g=\left(\vartheta^{k}, n_{\alpha} e_{\alpha}\right)$ basis vectors of the torus lattice
$\Lambda=\Lambda_{\mathrm{G}_{2}} \oplus \Lambda_{\mathrm{SU}(3)} \oplus \Lambda_{\mathrm{SO}(4)}$

Orbifold and space group

(1) can also be defined as the quotient space of \mathbb{C}^{3} by the so-called space group \mathbb{S}

Elements of \mathbb{S} are of the form $g=\left(\vartheta^{k}, n_{\alpha} e_{\alpha}\right)$
Action of \mathbb{S} on $\mathbb{C}^{3}: z \mapsto g z=\vartheta^{k} z+n_{\alpha} e_{\alpha}$

Orbifold and space group

(1) can also be defined as the quotient space of \mathbb{C}^{3} by the so-called space group \mathbb{S}

Elements of \mathbb{S} are of the form $g=\left(\vartheta^{k}, n_{\alpha} e_{\alpha}\right)$
Action of \mathbb{S} on $\mathbb{C}^{3}: z \mapsto g z=\vartheta^{k} z+n_{\alpha} e_{\alpha}$
Equivalence relation: $z \sim g z$

Orbifold and space group

(1) can also be defined as the quotient space of \mathbb{C}^{3} by the so-called space group \mathbb{S}

Elements of \mathbb{S} are of the form $g=\left(\vartheta^{k}, n_{\alpha} e_{\alpha}\right)$
Action of \mathbb{S} on $\mathbb{C}^{3}: z \mapsto g z=\vartheta^{k} z+n_{\alpha} e_{\alpha}$
Equivalence relation: $z \sim g z$
Action of $g \in \mathbb{S}$ on the 16 gauge degrees of freedom X^{I} of $\mathrm{E}_{8} \times \mathrm{E}_{8}$
$z \stackrel{g}{\mapsto} \vartheta^{k} z+n_{\alpha} e_{\alpha}$ and $X \stackrel{g}{\mapsto} X+\pi\left(k V+n_{\alpha} W_{\alpha}\right)$

16-dimensional shift vector

Orbifold and space group

(1) can also be defined as the quotient space of \mathbb{C}^{3} by the so-called space group \mathbb{S}

Elements of \mathbb{S} are of the form $g=\left(\vartheta^{k}, n_{\alpha} e_{\alpha}\right)$
Action of \mathbb{S} on $\mathbb{C}^{3}: z \mapsto g z=\vartheta^{k} z+n_{\alpha} e_{\alpha}$
Equivalence relation: $z \sim g z$
Action of $g \in \mathbb{S}$ on the 16 gauge degrees of freedom X^{I} of $\mathrm{E}_{8} \times \mathrm{E}_{8}$
$z \stackrel{g}{\mapsto} \vartheta^{k} z+n_{\alpha} e_{\alpha} \quad$ and $\quad X \stackrel{g}{\mapsto} X+\pi\left(k V+n_{\alpha} W_{\alpha}\right)$

Orbifold and space group

(1) can also be defined as the quotient space of \mathbb{C}^{3} by the so-called space group \mathbb{S}

Elements of \mathbb{S} are of the form $g=\left(\vartheta^{k}, n_{\alpha} e_{\alpha}\right)$
Action of \mathbb{S} on $\mathbb{C}^{3}: z \mapsto g z=\vartheta^{k} z+n_{\alpha} e_{\alpha}$
Equivalence relation: $z \sim g z$
Action of $g \in \mathbb{S}$ on the 16 gauge degrees of freedom X^{I} of $\mathrm{E}_{8} \times \mathrm{E}_{8}$
$z \stackrel{g}{\mapsto} \vartheta^{k} z+n_{\alpha} e_{\alpha}$ and $X \stackrel{g}{\mapsto} X+\pi\left(k V+n_{\alpha} W_{\alpha}\right)$

Groot Nibbelink, Hillenbach, Kobayashi \& Walter (2004)
$g=\left(\vartheta^{k}, n_{\alpha} e_{\alpha}\right) \leftrightarrow \begin{cases}\text { local twist } & : \\ \text { local shift } & : \\ \text { log } & V_{g}=k V+n_{\alpha} W_{\alpha}\end{cases}$

Massless closed (twisted) string

Boundary condition: $\boldsymbol{Z}(\tau, \sigma+\pi)=g \boldsymbol{Z}(\tau, \sigma)$

$$
\boldsymbol{g}=\left(\vartheta^{k}, n_{\alpha} e_{\alpha}\right) \in \mathbb{S}
$$

Massless closed (twisted) string

Boundary condition: $\boldsymbol{Z}(\tau, \sigma+\pi)=g \boldsymbol{Z}(\tau, \sigma)$

Label states by boundary conditions

$$
\left|p_{\mathrm{sh}}, q_{\mathrm{sh}}, \widetilde{N}, \widetilde{N}^{*}, g\right\rangle=\left|q_{\mathrm{sh}}\right\rangle_{\mathrm{R}} \otimes\left(\widetilde{\boldsymbol{\alpha}}_{-\omega_{i}}^{i}\right)^{\widetilde{N}^{i}}\left(\widetilde{\boldsymbol{\alpha}}_{-1+\omega_{i}}\right)^{\widetilde{N}^{i i}}\left|p_{\mathrm{sh}}\right\rangle_{\mathrm{L}} \otimes|g\rangle
$$

shifted left-mover
momentum $p_{\text {sh }}=p+V_{g}$
with $p \in \Lambda_{\mathrm{E}_{8} \times \mathrm{E}_{8}}$

Massless closed (twisted) string

Boundary condition: $\boldsymbol{Z}(\tau, \sigma+\pi)=g \boldsymbol{Z}(\tau, \sigma)$

Label states by boundary conditions

$$
\left|p_{\mathrm{sh}}, q_{\mathrm{sh}}, \tilde{N}, \widetilde{N}^{*}, g\right\rangle=\left|q_{\mathrm{sh}}\right\rangle_{\mathrm{R}} \otimes\left(\widetilde{\alpha}_{-\omega_{i}}^{i}\right)^{\widetilde{N}^{i}}\left(\widetilde{\alpha}_{-1+\omega_{i}}^{\bar{i}}\right)^{\widetilde{N}^{i i}}\left|p_{\mathrm{sh}}\right\rangle_{\mathrm{L}} \otimes|g\rangle
$$

shifted right-mover
momentum $q_{\mathrm{sh}}=q+v_{g}$ with $q \in \Lambda_{\mathrm{SO}(8)}$
$\& q_{\mathrm{sh}}($ boson $)=q_{\mathrm{sh}}($ fermion $)+(1 / 2,-1 / 2,-1 / 2,-1 / 2)$

Massless closed (twisted) string

Boundary condition: $\boldsymbol{Z}(\tau, \sigma+\pi)=g \boldsymbol{Z}(\tau, \sigma)$

Label states by boundary conditions

$$
\begin{gathered}
\left|p_{\mathrm{sh}}, q_{\mathrm{sh}}, \tilde{N}, \widetilde{N}^{*}, g\right\rangle=\left|q_{\mathrm{sh}}\right\rangle_{\mathrm{R}} \otimes\left(\widetilde{\alpha}^{i}{ }^{\omega_{i}}\right)^{\tilde{N}^{i}}\left(\widetilde{\boldsymbol{\alpha}}_{-1+\omega_{i}}^{\bar{i}}\right)^{\widetilde{N}^{* i}}\left|p_{\mathrm{sh}}\right\rangle_{\mathrm{L}} \otimes|g\rangle \\
\text { oscillator operators }
\end{gathered}
$$

Massless closed (twisted) string

Boundary condition: $\boldsymbol{Z}(\tau, \sigma+\pi)=g \boldsymbol{Z}(\tau, \sigma)$

Le Label states by boundary conditions

$$
\begin{gathered}
\left|p_{\mathrm{sh}}, q_{\mathrm{sh}}, \tilde{N}, \widetilde{N}^{*}, g\right\rangle=\left|q_{\mathrm{sh}}\right\rangle_{\mathrm{R}} \otimes\left(\widetilde{\boldsymbol{\alpha}}_{-\omega_{i}}^{i}\right)^{\tilde{N}^{i}}\left(\widetilde{\alpha}_{c}^{\bar{i}}{ }^{1+\omega_{i}}\right)^{\widetilde{N}^{* i}}\left|p_{\mathrm{sh}}\right\rangle_{\mathrm{L}} \otimes|g\rangle \\
\text { oscillator operators }
\end{gathered}
$$

Massless closed (twisted) string

Boundary condition: $\boldsymbol{Z}(\tau, \sigma+\pi)=g \boldsymbol{Z}(\tau, \sigma)$

Label states by boundary conditions

$$
\left|p_{\mathrm{sh}}, q_{\mathrm{sh}}, \tilde{N}, \widetilde{N}^{*}, g\right\rangle=\left|q_{\mathrm{sh}}\right\rangle_{\mathrm{R}} \otimes\left(\widetilde{\boldsymbol{\alpha}}_{-\omega_{i}}^{i}\right)^{\tilde{N}^{i}}\left(\widetilde{\boldsymbol{\alpha}}_{-1+\omega_{i}}^{\bar{l}}\right)^{\widetilde{N}^{* i}}\left|p_{\mathrm{sh}}\right\rangle_{\mathrm{L}} \otimes|g\rangle
$$

State is created by the vertex operator (in -1 ghost picture)

$$
\boldsymbol{V}_{-1}^{(g)}=\mathrm{e}^{-\phi} \mathrm{e}^{2 \mathrm{i} q_{\mathrm{sh}} \cdot \boldsymbol{H}} \mathrm{e}^{2 \mathrm{i} p_{\mathrm{sh}} \cdot \boldsymbol{X}} \prod_{i=1}^{3}\left(\partial \boldsymbol{Z}^{i}\right)^{\widetilde{N}^{i}}\left(\partial \boldsymbol{Z}^{* i}\right)^{\widetilde{N}^{* i}} \sigma_{g}
$$

(bosonized) right-moving coordinates

Massless closed (twisted) string

Boundary condition: $\boldsymbol{Z}(\tau, \sigma+\pi)=g \boldsymbol{Z}(\tau, \sigma)$

Label states by boundary conditions

$$
\left|p_{\mathrm{sh}}, q_{\mathrm{sh}}, \tilde{N}, \widetilde{N}^{*}, g\right\rangle=\left|q_{\mathrm{sh}}\right\rangle_{\mathrm{R}} \otimes\left(\widetilde{\boldsymbol{\alpha}}_{-\omega_{i}}^{i}\right)^{\tilde{N}^{i}}\left(\widetilde{\boldsymbol{\alpha}}_{-1+\omega_{i}}^{\bar{l}}\right)^{\widetilde{N}^{* i}}\left|p_{\mathrm{sh}}\right\rangle_{\mathrm{L}} \otimes|g\rangle
$$

State is created by the vertex operator (in -1 ghost picture)

$$
\boldsymbol{V}_{-1}^{(g)}=\mathrm{e}^{-\phi} \mathrm{e}^{2 \mathrm{i} q_{\mathrm{sh}} \cdot \boldsymbol{H}} \mathrm{e}^{2 \mathrm{i} p_{\mathrm{sh}} \cdot \boldsymbol{X}} \prod_{i=1}^{3}\left(\partial \boldsymbol{Z}^{i}\right)^{\widetilde{N}^{i}}\left(\partial \boldsymbol{Z}^{* i}\right)^{\tilde{N}^{* i}} \sigma_{g}
$$

bosonized superconformal ghost

Massless closed (twisted) string

Boundary condition: $\boldsymbol{Z}(\tau, \sigma+\pi)=g \boldsymbol{Z}(\tau, \sigma)$

Label states by boundary conditions

$$
\left|p_{\mathrm{sh}}, q_{\mathrm{sh}}, \tilde{N}, \tilde{N}^{*}, g\right\rangle=\left|q_{\mathrm{sh}}\right\rangle_{\mathrm{R}} \otimes\left(\widetilde{\boldsymbol{\alpha}}_{-\omega_{i}}^{i}\right)^{\tilde{N}^{i}}\left(\widetilde{\boldsymbol{\alpha}}_{-1+\omega_{i}}^{\bar{i}}\right)^{\widetilde{N}^{* i}}\left|p_{\mathrm{sh}}\right\rangle_{\mathrm{L}} \otimes|g\rangle
$$

State is created by the vertex operator (in -1 ghost picture)

$$
\boldsymbol{V}_{-1}^{(g)}=\mathrm{e}^{-\boldsymbol{\phi}} \mathrm{e}^{2 \mathrm{i} q_{\mathrm{sh}} \cdot \boldsymbol{H}} \mathrm{e}^{2 \mathrm{i} p_{\mathrm{sh}} \cdot \boldsymbol{X}} \prod_{i=1}^{3}\left(\partial \boldsymbol{Z}^{i}\right)^{\widetilde{N}^{i}}\left(\partial \boldsymbol{Z}^{* i}\right)^{\tilde{N}^{* i}} \sigma_{g}
$$

Selection rules

Superpotential from correlators of vertex operators

$$
\mathcal{A}=\left\langle\boldsymbol{V}_{-1 / 2}^{\left(g_{1}\right)} \boldsymbol{V}_{-1 / 2}^{\left(g_{2}\right)} \boldsymbol{V}_{-1}^{\left(g_{3}\right)} \boldsymbol{V}_{0}^{\left(g_{4}\right)} \ldots \boldsymbol{V}_{0}^{\left(g_{L}\right)}\right\rangle
$$

Selection rules

Superpotential from correlators of vertex operators

$$
\mathcal{A}=\left\langle\boldsymbol{V}_{-1 / 2}^{\left(g_{1}\right)} \boldsymbol{V}_{-1 / 2}^{\left(g_{2}\right)} \boldsymbol{V}_{-1}^{\left(g_{3}\right)} \boldsymbol{V}_{0}^{\left(g_{4}\right)} \ldots \boldsymbol{V}_{0}^{\left(g_{L}\right)}\right\rangle
$$

Correlation function factorizes into correlators involving separately the fields $\boldsymbol{\phi}, \boldsymbol{X}^{I}, \sigma_{g}, \boldsymbol{H}$ and \boldsymbol{Z}^{i}

The \mathbb{Z}_{6}-II orbifold

Generator of \mathbb{Z}_{6} is represented by the twist vector $v=\left(0, \frac{1}{6}, \frac{1}{3},-\frac{1}{2}\right)$

The \mathbb{Z}_{6}-II orbifold

Generator of \mathbb{Z}_{6} is represented by the twist vector $v=\left(0, \frac{1}{6}, \frac{1}{3},-\frac{1}{2}\right)$
\Leftrightarrow Complex torus-coordinates z^{i} get mapped according to

$$
z^{i} \stackrel{\vartheta}{\mapsto} \mathrm{e}^{2 \pi i v^{i}} z^{i} \quad \text { for } i=1,2,3
$$

The \mathbb{Z}_{6}-II orbifold

Generator of \mathbb{Z}_{6} is represented by the twist vector $v=\left(0, \frac{1}{6}, \frac{1}{3},-\frac{1}{2}\right)$
\Leftrightarrow Complex torus-coordinates z^{i} get mapped according to
$z^{i} \stackrel{\vartheta}{\mapsto} \mathrm{e}^{2 \pi i v^{i}} z^{i} \quad$ for $i=1,2,3$
Consider the factorized six-torus $\mathbb{T}^{6}=\mathbb{T}_{\mathrm{G}_{2}}^{2} \times \mathbb{T}_{\mathrm{SU}(3)}^{2} \times \mathbb{T}_{\mathrm{SU}(2) \times \operatorname{SU}(2)}^{2}$

The \mathbb{Z}_{6}-ll orbifold

Generator of \mathbb{Z}_{6} is represented by the twist vector $v=\left(0, \frac{1}{6}, \frac{1}{3},-\frac{1}{2}\right)$
\Leftrightarrow Complex torus-coordinates z^{i} get mapped according to

$$
z^{i} \stackrel{\vartheta}{\mapsto} \mathrm{e}^{2 \pi i v^{i}} z^{i} \quad \text { for } i=1,2,3
$$

Consider the factorized six-torus $\mathbb{T}^{6}=\mathbb{T}_{\mathrm{G}_{2}}^{2} \times \mathbb{T}_{\mathrm{SU}(3)}^{2} \times \mathbb{T}_{\mathrm{SU}(2) \times \operatorname{SU}(2)}^{2}$

The \mathbb{Z}_{6}-ll orbifold

Generator of \mathbb{Z}_{6} is represented by the twist vector $v=\left(0, \frac{1}{6}, \frac{1}{3},-\frac{1}{2}\right)$
\Leftrightarrow Complex torus-coordinates z^{i} get mapped according to

$$
z^{i} \stackrel{\vartheta}{\mapsto} \mathrm{e}^{2 \pi i v^{i}} z^{i} \quad \text { for } i=1,2,3
$$

Consider the factorized six-torus $\mathbb{T}^{6}=\mathbb{T}_{\mathrm{G}_{2}}^{2} \times \mathbb{T}_{\mathrm{SU}(3)}^{2} \times \mathbb{T}_{\mathrm{SU}(2) \times \operatorname{SU}(2)}^{2}$

Discrete R symmetries and sublattice rotations

(1) respects symmetries beyond the elements of \mathbb{S}

Discrete R symmetries and sublattice rotations

(1) respects symmetries beyond the elements of \mathbb{S}

Discrete R symmetries \leftrightarrow sublattice rotations $\vartheta^{(i)}$

$$
\begin{gathered}
\boldsymbol{Z}^{j} \stackrel{\vartheta^{(i)}}{\longmapsto} \mathrm{e}^{2 \pi \mathrm{i}\left(r_{i}\right)^{j}} \boldsymbol{Z}^{j} \text { for } i=1,2,3 \\
r_{1}=\left(0, \frac{1}{6}, 0,0\right)
\end{gathered}
$$

Discrete R symmetries and sublattice rotations

(1) respects symmetries beyond the elements of \mathbb{S}

Discrete R symmetries \leftrightarrow sublattice rotations $\vartheta^{(i)}$

$$
\begin{gathered}
\mathbf{Z}^{j} \stackrel{\vartheta^{(i)}}{\longmapsto} \mathrm{e}^{2 \pi \mathrm{i}\left(r_{i}\right)^{j} \boldsymbol{Z}^{j} \text { for } i=1,2,3} \\
r_{2}=\left(0,0, \frac{1}{3}, 0\right)
\end{gathered}
$$

Discrete R symmetries and sublattice rotations

(1) respects symmetries beyond the elements of \mathbb{S}

Discrete R symmetries \leftrightarrow sublattice rotations $\vartheta^{(i)}$

$$
\begin{gathered}
\boldsymbol{Z}^{j} \stackrel{\vartheta^{(i)}}{\longmapsto} \mathrm{e}^{2 \pi \mathrm{i}\left(r_{i}\right)} \boldsymbol{Z}^{j} \text { for } i=1,2,3 \\
r_{3}=\left(0,0,0, \pm \frac{1}{2}\right)
\end{gathered}
$$

Discrete R symmetries and sublattice rotations

(1) respects symmetries beyond the elements of \mathbb{S}

Discrete R symmetries \leftrightarrow sublattice rotations $\vartheta^{(i)}$

$$
\boldsymbol{Z}^{j} \stackrel{\vartheta^{(i)}}{\longmapsto} \mathrm{e}^{2 \pi \mathrm{i}\left(r_{i}\right)^{j}} \boldsymbol{Z}^{j} \quad \text { for } i=1,2,3
$$

More explicitly

$$
\left(\begin{array}{l}
\boldsymbol{Z}^{1} \\
\boldsymbol{Z}^{2} \\
\boldsymbol{Z}^{3}
\end{array}\right) \stackrel{\ominus}{\mapsto}\left(\begin{array}{ccc}
\mathrm{e}^{2 \pi \mathrm{i} / 6} & 0 & 0 \\
0 & \mathrm{e}^{2 \pi \mathrm{i} / 3} & 0 \\
0 & 0 & \mathrm{e}^{-2 \pi \mathrm{i} / 2}
\end{array}\right)\left(\begin{array}{l}
\boldsymbol{Z}^{1} \\
\boldsymbol{Z}^{2} \\
\boldsymbol{Z}^{3}
\end{array}\right)
$$

with

$$
\left(\begin{array}{ccc}
\mathrm{e}^{2 \pi \mathrm{i} / 6} & 0 & 0 \\
0 & \mathrm{e}^{2 \pi \mathrm{i} / 3} & 0 \\
0 & 0 & \mathrm{e}^{-2 \pi \mathrm{i} / 2}
\end{array}\right) \in \mathrm{SU}(3)_{\mathrm{hol}}
$$

Discrete R symmetries and sublattice rotations

(1) respects symmetries beyond the elements of \mathbb{S}

Discrete R symmetries \leftrightarrow sublattice rotations $\vartheta^{(i)}$

$$
\boldsymbol{Z}^{j} \stackrel{\vartheta^{(i)}}{\longmapsto} \mathrm{e}^{2 \pi \mathrm{i}\left(r_{i}\right)^{j}} \boldsymbol{Z}^{j} \quad \text { for } i=1,2,3
$$

More explicitly

$$
\left(\begin{array}{l}
\boldsymbol{Z}^{1} \\
\boldsymbol{Z}^{2} \\
\boldsymbol{Z}^{3}
\end{array}\right) \stackrel{\vartheta^{(1)}}{\longmapsto}\left(\begin{array}{ccc}
\mathrm{e}^{2 \pi \mathrm{i} / 6} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\boldsymbol{Z}^{1} \\
\boldsymbol{Z}^{2} \\
\boldsymbol{Z}^{3}
\end{array}\right)
$$

with

$$
\left(\begin{array}{ccc}
\mathrm{e}^{2 \pi \mathrm{i} / 6} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \notin \mathrm{SU}(3)_{\mathrm{hol}}
$$

Discrete R symmetries and sublattice rotations

(1) respects symmetries beyond the elements of \mathbb{S}

Discrete R symmetries \leftrightarrow sublattice rotations $\vartheta^{(i)}$

$$
\boldsymbol{Z}^{j} \stackrel{\vartheta^{(i)}}{\longmapsto} \mathrm{e}^{2 \pi \mathrm{i}\left(r_{i}\right)^{j}} \boldsymbol{Z}^{j} \quad \text { for } i=1,2,3
$$

More explicitly

$$
\left(\begin{array}{l}
\boldsymbol{Z}^{1} \\
\boldsymbol{Z}^{2} \\
\boldsymbol{Z}^{3}
\end{array}\right) \stackrel{\vartheta^{(2)}}{\longmapsto}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mathrm{e}^{2 \pi i / 3} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\boldsymbol{Z}^{1} \\
\boldsymbol{Z}^{2} \\
\boldsymbol{Z}^{3}
\end{array}\right)
$$

with

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mathrm{e}_{2 \pi \mathrm{i} / 3} & 0 \\
0 & 0 & 1
\end{array}\right) \notin \mathrm{SU}(3)_{\mathrm{hol}}
$$

Discrete R symmetries and sublattice rotations

(1) respects symmetries beyond the elements of \mathbb{S}

Discrete R symmetries \leftrightarrow sublattice rotations $\vartheta^{(i)}$
$\boldsymbol{Z}^{j} \stackrel{q^{(i)}}{\longmapsto} \mathrm{e}^{2 \pi \mathrm{i}\left(r_{i}\right)^{j}} \boldsymbol{Z}^{j} \quad$ for $i=1,2,3$
Transformation of the oscillators

$$
\begin{gathered}
\left(\widetilde{\alpha}_{-\omega_{i}}^{j}\right)^{\widetilde{N}^{j}}\left(\widetilde{\alpha}_{-1+\omega_{j}}^{\bar{j}}\right)^{\widetilde{N}^{* j}} \stackrel{\vartheta^{(i)}}{\longmapsto} \mathrm{e}^{-2 \pi \mathrm{i} \Delta \widetilde{N}^{2} \cdot r_{i}\left(\widetilde{\alpha}_{-\omega_{j}}^{j}\right)^{\widetilde{N}^{j}}\left(\widetilde{\alpha}_{-1+\omega_{j}}^{\bar{j}}\right)^{\widetilde{N}^{* j}}} \\
\Delta \tilde{N}^{j}=\widetilde{N}^{* j}-\widetilde{N}^{j}
\end{gathered}
$$

Discrete R symmetries and sublattice rotations

(1) respects symmetries beyond the elements of \mathbb{S}

Discrete R symmetries \leftrightarrow sublattice rotations $\vartheta^{(i)}$
$\boldsymbol{Z}^{j} \stackrel{q^{(i)}}{\longmapsto} \mathrm{e}^{2 \pi \mathrm{i}\left(r_{i}\right)^{j}} \boldsymbol{Z}^{j} \quad$ for $i=1,2,3$
Transformation of the oscillators and $\left|q_{\text {sh }}\right\rangle_{\mathrm{R}}$

$$
\left(\widetilde{\alpha}_{-\omega_{i}}^{j}\right)^{\widetilde{N}^{j}}\left(\widetilde{\alpha}_{-1+\omega_{j}}^{\bar{J}}\right)^{\widetilde{N}^{j j}} \xrightarrow{\vartheta(i)} \mathrm{e}^{-2 \pi i \Delta \widetilde{N} \cdot r_{i}}\left(\widetilde{\alpha}_{-\omega_{j}}^{j}\right)^{\widetilde{N}^{j}}\left(\widetilde{\alpha}_{-1+\omega_{j}}^{\bar{j}}\right)^{\widetilde{N}^{s j}}
$$

$\left|q_{\mathrm{sh}}\right\rangle_{\mathrm{R}} \mapsto \mathrm{e}^{-2 \pi \mathrm{i} q_{\mathrm{sh}} \cdot r_{i}}\left|q_{\mathrm{sh}}\right\rangle_{\mathrm{R}} \quad$ and equivalently $\quad \boldsymbol{H} \mapsto \boldsymbol{H}-\pi r_{i}$

Discrete R symmetries and sublattice rotations

(1) respects symmetries beyond the elements of \mathbb{S}

Discrete R symmetries \leftrightarrow sublattice rotations $\vartheta^{(i)}$
$\boldsymbol{Z}^{j} \stackrel{q^{(i)}}{\longmapsto} \mathrm{e}^{2 \pi \mathrm{i}\left(r_{i}\right)^{j}} \boldsymbol{Z}^{j} \quad$ for $i=1,2,3$
Transformation of the oscillators and $\left|q_{\text {sh }}\right\rangle_{\mathrm{R}}$

$$
\left(\widetilde{\alpha}_{-\omega_{i}}^{j}\right)^{\widetilde{N}^{j}}\left(\widetilde{\alpha}_{-1+\omega_{j}}^{\bar{J}}\right)^{\widetilde{N}^{j j}} \xrightarrow{\vartheta(i)} \mathrm{e}^{-2 \pi i \Delta \widetilde{N} \cdot r_{i}}\left(\widetilde{\alpha}_{-\omega_{j}}^{j}\right)^{\widetilde{N}^{j}}\left(\widetilde{\alpha}_{-1+\omega_{j}}^{\bar{j}}\right)^{\widetilde{N}^{s j}}
$$

$\left|q_{\mathrm{sh}}\right\rangle_{\mathrm{R}} \mapsto \mathrm{e}^{-2 \pi \mathrm{i} q_{\mathrm{sh}} \cdot r_{i}}\left|q_{\mathrm{sh}}\right\rangle_{\mathrm{R}} \quad$ and equivalently $\quad \boldsymbol{H} \mapsto \boldsymbol{H}-\pi r_{i}$

crucial:

$\vartheta \in \mathrm{SU}(3)_{\text {hol }}$ while $\vartheta^{(i)} \notin \mathrm{SU}(3)_{\text {hol }} \curvearrowright$ superspace coordinate θ transforms non-trivially under $\vartheta^{(i)}$

R charges and γ phases

'Old' R charges

$$
R^{\mathrm{KRz}, j}=q_{\mathrm{sh}}^{j}+\Delta \tilde{N}^{j}
$$

R charges and γ phases

(Old' R charges

$$
R^{\mathrm{KRz}, j}=q_{\mathrm{sh}}^{j}+\Delta \tilde{N}^{j}
$$

However, $|g\rangle$ transforms non-trivially under sublattice rotations

R charges and γ phases

'Old' R charges

$$
R^{\mathrm{KRz}, j}=q_{\mathrm{sh}}^{j}+\Delta \tilde{N}^{j}
$$

However, $|g\rangle$ transforms non-trivially under sublattice rotations
Three diagonal T moduli T_{j} associated with the size of the $j^{\text {th }}$ two-torus
$T_{j} \sim\left|q_{\text {sh }}\right\rangle_{\mathrm{R}} \otimes \widetilde{\alpha}_{-1}^{\bar{J}}|0\rangle_{\mathrm{L}} \otimes|(\mathbb{1}, 0)\rangle$
$q_{\text {sh }}=\left\{\begin{array}{lll}(0,-1,0,0) & \text { for } & \bar{J}=\overline{1} \\ (0,0,-1,0) & \text { for } & \bar{J}=\overline{2} \\ (0,0,0,-1) & \text { for } & \bar{J}=\overline{3}\end{array}\right.$

R charges and γ phases

nor 'Old' R charges

$$
R^{\mathrm{KRz}, j}=q_{\mathrm{sh}}^{j}+\Delta \tilde{N}^{j}
$$

However, |g〉 transforms non-trivially under sublattice rotations
Three diagonal T moduli T_{j} associated with the size of the $j^{\text {th }}$ two-torus
$T_{j} \sim\left|q_{\mathrm{sh}}\right\rangle_{\mathrm{R}} \otimes \widetilde{\alpha}_{-1}^{\bar{j}}|0\rangle_{\mathrm{L}} \otimes|(\mathbb{1}, 0)\rangle$
R^{KRZ} can be motivated as the unique combination of q_{sh} and $\Delta \widetilde{N}$ such that VEVs of the T moduli do not break the corresponding R symmetries

R charges and γ phases

nor 'Old' R charges

$$
R^{\mathrm{KRz}, j}=q_{\mathrm{sh}}^{j}+\Delta \tilde{N}^{j}
$$

However, |g〉 transforms non-trivially under sublattice rotations
Three diagonal T moduli T_{j} associated with the size of the $j^{\text {th }}$ two-torus
$T_{j} \sim\left|q_{\mathrm{sh}}\right\rangle_{\mathrm{R}} \otimes \widetilde{\alpha}_{-1}^{\bar{J}}|0\rangle_{\mathrm{L}} \otimes|(\mathbb{1}, 0)\rangle$
R^{KRZ} can be motivated as the unique combination of q_{sh} and $\Delta \widetilde{N}$ such that VEVs of the T moduli do not break the corresponding R symmetries . . . but there is the freedom to add further contributions

Conjugacy classes

g transforms, in general, non-trivially under the action of $h \in \mathbb{S}$

$$
g \stackrel{h}{\mapsto} h \cdot g \cdot h^{-1}=g^{\prime}
$$

Conjugacy classes

g transforms, in general, non-trivially under the action of $h \in \mathbb{S}$

$$
g \stackrel{h}{\mapsto} h \cdot g \cdot h^{-1}=g^{\prime}
$$

Conjugacy class

$$
[g]=\left\{h \cdot g \cdot h^{-1} \mid h \in \mathbb{S}\right\}
$$

Conjugacy classes

g transforms, in general, non-trivially under the action of $h \in \mathbb{S}$

$$
g \stackrel{h}{\mapsto} h \cdot g \cdot h^{-1}=g^{\prime}
$$

Conjugacy class

$$
[g]=\left\{h \cdot g \cdot h^{-1} \mid h \in \mathbb{S}\right\}
$$

For example, the constructing elements g_{2} and g_{3} belong to the same conjugacy class

The "geometrical eigenstate" |[g]>

(TE "Geometrical eigenstate" |[g]>

$$
|[g]\rangle=\sum_{h} \mathrm{e}^{-2 \pi i \gamma(g, h)}\left|h \cdot g \cdot h^{-1}\right\rangle
$$

The "geometrical eigenstate" |[g]>

"Geometrical eigenstate" |[g]>

$$
|[g]\rangle=\sum_{h} \mathrm{e}^{-2 \pi \mathrm{i} \gamma(g, h)}\left|h \cdot g \cdot h^{-1}\right\rangle
$$

$|[g]\rangle$ is invariant under all space-group transformations up to the phase γ

$$
\begin{aligned}
&|[g]\rangle \stackrel{h}{\mapsto} \mathrm{e}^{2 \pi \mathrm{i} \gamma(\mathrm{~g}, h)}|[g]\rangle \\
& \quad \begin{array}{l}
\gamma(g, h) \equiv 0 \text { if } g \cdot h=h \cdot g \\
\\
\equiv \equiv \text { ' means 'modulo 1' }
\end{array}
\end{aligned}
$$

The "geometrical eigenstate" |[g]>

(.Geometrical eigenstate" |[g]>

$$
|[g]\rangle=\sum_{h} \mathrm{e}^{-2 \pi \mathrm{i} \gamma(g, h)}\left|h \cdot g \cdot h^{-1}\right\rangle
$$

$|[g]\rangle$ is invariant under all space-group transformations up to the phase γ

$$
|[g]\rangle \stackrel{h}{\mapsto} \mathrm{e}^{2 \pi \mathrm{i} \gamma(g, h)}|[g]\rangle
$$

\Rightarrow Redefinition of the twist fields σ_{g}

The "geometrical eigenstate" |[g]>

(Geometrical eigenstate" |[g]>

$$
|[g]\rangle=\sum_{h} \mathrm{e}^{-2 \pi \mathrm{i} \gamma(g, h)}\left|h \cdot g \cdot h^{-1}\right\rangle
$$

$|[g]\rangle$ is invariant under all space-group transformations up to the phase γ

$$
|[g]\rangle \stackrel{h}{\mapsto} \mathrm{e}^{2 \pi \mathrm{i} \gamma(g, h)}|[g]\rangle
$$

\Rightarrow Redefinition of the twist fields σ_{g}
\Rightarrow Full physical state $\left|p_{\mathrm{sh}}, q_{\mathrm{sh}}, \widetilde{N}, \widetilde{N}^{*}, g\right\rangle$ is invariant under the action of every $h \in \mathbb{S}$

The "geometrical eigenstate" |[g]>

(Geometrical eigenstate" |[g]>

$$
|[g]\rangle=\sum_{h} \mathrm{e}^{-2 \pi \mathrm{i} \gamma(g, h)}\left|h \cdot g \cdot h^{-1}\right\rangle
$$

$|[g]\rangle$ is invariant under all space-group transformations up to the phase γ

$$
|[g]\rangle \stackrel{h}{\mapsto} \mathrm{e}^{2 \pi \mathrm{i} \gamma(g, h)}|[g]\rangle
$$

\Rightarrow Redefinition of the twist fields σ_{g}
\Rightarrow Full physical state $\left|p_{\mathrm{sh}}, q_{\mathrm{sh}}, \widetilde{N}, \widetilde{N}^{*}, g\right\rangle$ is invariant under the action of every $h \in \mathbb{S}$

Some properties of the γ phases

For fixed $g \in \mathbb{S}, \gamma(g, h)$ is a homomorphism from the space group \mathbb{S} to \mathbb{Z}_{6}
$\gamma\left(g, h_{1} \cdot h_{2}\right) \equiv \gamma\left(g, h_{1}\right)+\gamma\left(g, h_{2}\right)$

Some properties of the γ phases

For fixed $g \in \mathbb{S}, \gamma(g, h)$ is a homomorphism from the space group \mathbb{S} to \mathbb{Z}_{6}
$\gamma\left(g, h_{1} \cdot h_{2}\right) \equiv \gamma\left(g, h_{1}\right)+\gamma\left(g, h_{2}\right)$
For $h=\left(\vartheta^{\ell}, m_{\alpha} e_{\alpha}\right)$ one has
$\gamma(g, h) \equiv \ell \gamma(g, \vartheta)+m_{\alpha} \gamma\left(g, e_{\alpha}\right)$

$$
\gamma(g, \vartheta):=\gamma(g,(\vartheta, 0))
$$

Some properties of the γ phases

For fixed $g \in \mathbb{S}, \gamma(g, h)$ is a homomorphism from the space group \mathbb{S} to \mathbb{Z}_{6}
$\gamma\left(g, h_{1} \cdot h_{2}\right) \equiv \gamma\left(g, h_{1}\right)+\gamma\left(g, h_{2}\right)$
For $h=\left(\vartheta^{\ell}, m_{\alpha} e_{\alpha}\right)$ one has
$\gamma(g, h) \equiv \ell \gamma(g, \vartheta)+m_{\alpha} \gamma\left(g, e_{\alpha}\right)$

$$
\gamma\left(g, e_{\alpha}\right):=\gamma\left(g,\left(\mathbb{1}, e_{\alpha}\right)\right)
$$

γ charges for sublattice rotations

It turns out that, in its action on $|[g]\rangle, \vartheta^{(j)}$ is equivalent to an appropriate space-group transformation $h \in \mathbb{S}$
(4)

γ charges for sublattice rotations

It turns out that, in its action on $|[g]\rangle, \vartheta^{(j)}$ is equivalent to an appropriate space-group transformation $h \in \mathbb{S}$
(4)

γ charges for sublattice rotations

It turns out that, in its action on $|[g]\rangle, \vartheta^{(j)}$ is equivalent to an appropriate space-group transformation $h \in \mathbb{S}$
(4)
(4)
(4)
$\vartheta^{(2)}$

γ charges for sublattice rotations

It turns out that, in its action on $|[g]\rangle, \vartheta^{(j)}$ is equivalent to an appropriate space-group transformation $h \in \mathbb{S}$

γ charges for sublattice rotations

It turns out that, in its action on $|[g]\rangle, v^{(j)}$ is equivalent to an appropriate space-group transformation $h \in \mathbb{S}$
\Leftrightarrow Geometrical eigenstates $|[g]\rangle$ are eigenstates with respect to a sublattice rotation $\vartheta^{(j)}$
$|[g]\rangle \stackrel{\vartheta(j)}{\longmapsto} \mathrm{e}^{2 \pi \mathrm{i} \gamma\left(g, \vartheta^{(j)}\right)}|[g]\rangle$

γ charges for sublattice rotations

It turns out that, in its action on $|[g]\rangle, \vartheta^{(j)}$ is equivalent to an appropriate space-group transformation $h \in \mathbb{S}$
\Leftrightarrow Geometrical eigenstates $|[g]\rangle$ are eigenstates with respect to a sublattice rotation $\vartheta^{(j)}$
$|[g]\rangle \stackrel{\vartheta(j)}{\longmapsto} \mathrm{e}^{2 \pi \mathrm{i} \gamma\left(g, \vartheta^{(\gamma)}\right)}|[g]\rangle$
\Rightarrow Phase $\gamma\left(\mathrm{g}, \vartheta^{(j)}\right)$ can be expressed in terms of $\gamma(\mathrm{g}, \vartheta)$ and $\gamma\left(\mathrm{g}, e_{\alpha}\right)$

γ charges for sublattice rotations

It turns out that, in its action on $\| g]\rangle, \vartheta^{(j)}$ is equivalent to an appropriate space-group transformation $h \in \mathbb{S}$
\Leftrightarrow Geometrical eigenstates $|[g]\rangle$ are eigenstates with respect to a sublattice rotation $\vartheta^{(j)}$
$|[g]\rangle \stackrel{\vartheta(\gamma)}{\longmapsto} \mathrm{e}^{2 \pi \mathrm{i} \gamma\left(g, \vartheta^{(\gamma)}\right)}|[g]\rangle$
\Rightarrow Phase $\gamma\left(\mathrm{g}, \vartheta^{(j)}\right)$ can be expressed in terms of $\gamma(\mathrm{g}, \vartheta)$ and $\gamma\left(\mathrm{g}, \mathrm{e}_{\alpha}\right)$

bottom-line:

$\vartheta^{(j)}$ are conjugacy-class preserving outer automorphisms of the space group $\mathbb{\$}$

R charges for twisted fields

Proper R charges

$$
\begin{aligned}
R^{j}= & q_{\mathrm{sh}}^{j}+\Delta \tilde{N}^{j}-N^{j} \gamma\left(g, \vartheta^{(j)}\right) \\
& \text { order of the sublattice rotation }
\end{aligned}
$$

R charges for twisted fields

Proper R charges

$$
R^{j}=q_{\mathrm{sh}}^{j}+\Delta \tilde{N}^{j}-N^{j} \gamma\left(g, \vartheta^{(j)}\right)
$$

Invariance of $\left|p_{\text {sh }}, q_{\text {sh }}, \widetilde{N}, \widetilde{N}^{*}, g\right\rangle$ under \mathbb{S} implies

$$
p_{\mathrm{sh}} \cdot V_{h}-\left(q_{\mathrm{sh}}+\Delta \widetilde{N}\right) \cdot v_{h}-\frac{1}{2}\left(V_{g} \cdot V_{h}-v_{g} \cdot v_{h}\right)+\gamma(g, h) \stackrel{!}{\equiv} 0
$$

R charges for twisted fields

Proper R charges

$$
R^{j}=q_{\mathrm{sh}}^{j}+\Delta \tilde{N}^{j}-N^{j} \gamma\left(g, \vartheta^{(j)}\right)
$$

Invariance of $\left|p_{\mathrm{sh}}, q_{\mathrm{sh}}, \widetilde{N}, \widetilde{N}^{*}, g\right\rangle$ under \mathbb{S} implies

$$
p_{\mathrm{sh}} \cdot V_{h}-\left(q_{\mathrm{sh}}+\Delta \widetilde{N}\right) \cdot v_{h}-\frac{1}{2}\left(V_{g} \cdot V_{h}-v_{g} \cdot v_{h}\right)+\gamma(g, h) \stackrel{!}{\equiv} 0
$$

This allows us to compute, for a given $g \in \mathbb{S}$, the γ phases $\gamma(g, h)$ for all $h \in \mathbb{S}$

R charges for twisted fields: example

E.g. second two-torus (ϑ acts as \mathbb{Z}_{3})

$$
\begin{aligned}
& \left|\left[g_{a}\right]\right\rangle=\sum_{m_{3}, m_{4}} \mathrm{e}^{-2 \pi \mathrm{i}\left(m_{3}+m_{4}\right) \gamma\left(g_{a}, e_{3}\right)} \\
& \quad\left|\left(\vartheta^{k},\left(n_{3}+m_{3}+m_{4}\right) e_{3}+\left(n_{4}+2 m_{4}-m_{3}\right) e_{4}\right)\right\rangle
\end{aligned}
$$

R charges for twisted fields: example

E.g. second two-torus (ϑ acts as \mathbb{Z}_{3})

$$
\begin{aligned}
& \left|\left[g_{a}\right]\right\rangle=\sum_{m_{3}, m_{4}} \mathrm{e}^{-2 \pi \mathrm{i}\left(m_{3}+m_{4}\right) \gamma\left(g_{a}, e_{3}\right)} \\
& \quad\left|\left(\vartheta^{k},\left(n_{3}+m_{3}+m_{4}\right) e_{3}+\left(n_{4}+2 m_{4}-m_{3}\right) e_{4}\right)\right\rangle
\end{aligned}
$$

Compare
$\left|\left[g_{a}\right]\right\rangle \stackrel{h=\left(\mathbb{1}, s_{3} e_{3}+s_{4} e_{4}\right)}{\longmapsto} \mathrm{e}^{2 \pi \mathrm{i}\left(s_{3}+s_{4}\right) \gamma\left(g_{a}, e_{3}\right)}\left|\left[g_{a}\right]\right\rangle$
and
$\left|\left[g_{a}\right]\right\rangle \stackrel{\left(\vartheta^{(2)}, 0\right)}{\longmapsto} \mathrm{e}^{-2 \pi \mathrm{i}\left(n_{3}+n_{4}\right) \gamma\left(g_{a}, e_{3}\right)}\left|\left[g_{a}\right]\right\rangle$

R charges for twisted fields: example

E.g. second two-torus (ϑ acts as \mathbb{Z}_{3})

$$
\begin{aligned}
& \left|\left[g_{a}\right]\right\rangle=\sum_{m_{3}, m_{4}} \mathrm{e}^{-2 \pi \mathbf{i}\left(m_{3}+m_{4}\right) \gamma\left(g_{a}, e_{3}\right)} \\
& \quad\left|\left(v^{k},\left(n_{3}+m_{3}+m_{4}\right) e_{3}+\left(n_{4}+2 m_{4}-m_{3}\right) e_{4}\right)\right\rangle
\end{aligned}
$$

Compare
$\left|\left[g_{a}\right]\right\rangle \stackrel{h=\left(\mathbb{1}, s_{3} e_{3}+s_{4} e_{4}\right)}{\longmapsto} \mathrm{e}^{2 \pi \mathrm{i}\left(s_{3}+s_{4}\right) \gamma\left(g_{a}, e_{3}\right)}\left|\left[g_{a}\right]\right\rangle$
and
$\left|\left[g_{a}\right]\right\rangle \stackrel{\left(\vartheta^{(2)}, 0\right)}{\longmapsto} \mathrm{e}^{-2 \pi \mathrm{i}\left(n_{3}+n_{4}\right) \gamma\left(g_{a}, e_{3}\right)}\left|\left[g_{a}\right]\right\rangle$
$\gamma\left(g_{a}, \vartheta^{(2)}\right) \equiv-k\left(n_{3}+n_{4}\right) \gamma\left(g_{a}, e_{3}\right)$

R charges for \mathbb{Z}_{6}-II

Effective R charges

$$
\begin{aligned}
R^{1}=- & -6\left[q_{\mathrm{sh}}^{1}+\Delta \widetilde{N}^{1}-6 \gamma(g, \theta)\right. \\
& \left.-6 k\left(n_{3}+n_{4}\right) \gamma\left(g, e_{3}\right)+6\left(n_{5} \gamma\left(g, e_{5}\right)+n_{6} \gamma\left(g, e_{6}\right)\right)\right] \\
R^{2}=- & -6\left[q_{\mathrm{sh}}^{2}+\Delta \widetilde{N}^{2}+3 k\left(n_{3}+n_{4}\right) \gamma\left(g, e_{3}\right)\right] \\
R^{3}=- & -2\left[q_{\mathrm{sh}}^{3}+\Delta \widetilde{N}^{3}-2\left(n_{5} \gamma\left(g, e_{5}\right)+n_{6} \gamma\left(g, e_{6}\right)\right)\right]
\end{aligned}
$$

Flavor

symmetries

from

orbifolds

- Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

- Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

- Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

2 fixed points: $(\vartheta, 0)$ and $\left(\vartheta, e_{1}\right)$

Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

2 fixed points: $(\vartheta, 0)$ and $\left(\vartheta, e_{1}\right)$
Space group rule

$$
\begin{aligned}
\prod_{j=1}^{n}\left(\vartheta, m^{(j)} e_{j}\right) & \simeq(\mathbb{1}, 0) \\
& \in(\mathbb{1}-\vartheta) \Lambda
\end{aligned}
$$

Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

2 fixed points: $(\vartheta, 0)$ and $\left(\vartheta, e_{1}\right)$
Space group rule

$$
\prod_{j=1}^{n}\left(\vartheta, m^{(j)} e_{j}\right) \simeq(\mathbb{1}, 0)
$$

\Rightarrow Coupling between n localized states $\left(\vartheta^{n^{(j)}}, m^{(j)} e_{j}\right)$ only allowed if
(1) $n \stackrel{!}{=}$ even \curvearrowright 'first' \mathbb{Z}_{2} symmetry
(2) $\sum_{j} m^{(j)} \stackrel{!}{=}$ even \curvearrowright 'second' \mathbb{Z}_{2} symmetry

Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

2 fixed points: $(\vartheta, 0)$ and $\left(\vartheta, e_{1}\right)$
Space group rule

$$
\prod_{j=1}^{n}\left(\vartheta, m^{(j)} e_{j}\right) \simeq(\mathbb{1}, 0)
$$

\Rightarrow Coupling between n localized states $\left(\vartheta^{n^{(j)}}, m^{(j)} e_{j}\right)$ only allowed if
(1) $n \stackrel{!}{=}$ even \curvearrowright 'first' \mathbb{Z}_{2} symmetry
(2) $\sum_{j} m^{(j)} \stackrel{!}{=}$ even \curvearrowright 'second' \mathbb{Z}_{2} symmetry

Combine localized states in doublets

$$
\left|\Psi_{\mathrm{loc}}\right\rangle=\binom{|(\vartheta, 0)\rangle}{\left|\left(\vartheta, e_{1}\right)\right\rangle}
$$

Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

2 fixed points: $(\vartheta, 0)$ and $\left(\vartheta, e_{1}\right)$
Space group rule

$$
\prod_{j=1}^{n}\left(\vartheta, m^{(j)} e_{j}\right) \simeq(\mathbb{1}, 0)
$$

\Rightarrow Coupling between n localized states $\left(\vartheta^{n^{(j)}}, m^{(j)} e_{j}\right)$ only allowed if
(1) $n \stackrel{!}{=}$ even \curvearrowright 'first' \mathbb{Z}_{2} symmetry
(2) $\sum_{j} m^{(j)} \stackrel{!}{=}$ even \curvearrowright 'second' \mathbb{Z}_{2} symmetry

Combine localized states in doublets

$$
\left|\Psi_{\mathrm{loc}}\right\rangle=\binom{|(\vartheta, 0)\rangle}{\left|\left(\vartheta, e_{1}\right)\right\rangle} \xrightarrow[\rightarrow]{\oplus}\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\binom{|(\vartheta, 0)\rangle}{\left|\left(\vartheta, e_{1}\right)\right\rangle}
$$

Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

2 fixed points: $(\vartheta, 0)$ and $\left(\vartheta, e_{1}\right)$
Space group rule

$$
\prod_{j=1}^{n}\left(\vartheta, m^{(j)} e_{j}\right) \simeq(\mathbb{1}, 0)
$$

\Rightarrow Coupling between n localized states $\left(\vartheta^{n^{(j)}}, m^{(j)} e_{j}\right)$ only allowed if
(1) $n \stackrel{!}{=}$ even \curvearrowright 'first' \mathbb{Z}_{2} symmetry
(2) $\sum_{j} m^{(j)} \stackrel{!}{=}$ even \curvearrowright 'second' \mathbb{Z}_{2} symmetry

Combine localized states in doublets

$$
\begin{aligned}
\left|\Psi_{\mathrm{loc}}\right\rangle=\binom{|(\vartheta, 0)\rangle}{\left|\left(\vartheta, e_{1}\right)\right\rangle} & \xrightarrow[\rightarrow]{\oplus}\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\binom{|(\vartheta, 0)\rangle}{\left|\left(\vartheta, e_{1}\right)\right\rangle} \\
& \xrightarrow{\odot}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{|(\vartheta, 0)\rangle}{\left|\left(\vartheta, e_{1}\right)\right\rangle}
\end{aligned}
$$

Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

$$
\text { space group rule } \Leftrightarrow\left\{\begin{array}{l}
\text { couplings invariant } \\
\text { under }\left|\Psi_{\text {loc }}\right\rangle \rightarrow-\mathbb{1}_{2}|\Psi\rangle \\
\text { and }\left|\Psi_{\text {loc }}\right\rangle \rightarrow \sigma_{3}|\Psi\rangle
\end{array}\right.
$$

Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

space group rule $\Leftrightarrow\left\{\begin{array}{l}\text { couplings invariant } \\ \text { under }\left|\Psi_{\text {loc }}\right\rangle \rightarrow-\mathbb{1}_{2}|\Psi\rangle \\ \text { and }\left|\Psi_{\text {loc }}\right\rangle \rightarrow \sigma_{3}|\Psi\rangle\end{array}\right.$
In absence of background fields: fixed points are equivalent (spectra of fields living at the fixed points coincide)

Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

space group rule $\Leftrightarrow\left\{\begin{array}{l}\text { couplings invariant } \\ \text { under }\left|\Psi_{\text {loc }}\right\rangle \rightarrow-\mathbb{1}_{2}|\Psi\rangle \\ \text { and }\left|\Psi_{\text {loc }}\right\rangle \rightarrow \sigma_{3}|\Psi\rangle\end{array}\right.$
In absence of background fields: fixed points are equivalent
\Rightarrow Theory invariant under relabeling $m^{(j)}=0 \leftrightarrow m^{(j)}=1$

Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

space group rule $\Leftrightarrow\left\{\begin{array}{l}\text { couplings invariant } \\ \text { under }\left|\Psi_{\text {loc }}\right\rangle \rightarrow-\mathbb{1}_{2}|\Psi\rangle \\ \text { and }\left|\Psi_{\text {loc }}\right\rangle \rightarrow \sigma_{3}|\Psi\rangle\end{array}\right.$
In absence of background fields: fixed points are equivalent
\Rightarrow Theory invariant under relabeling $m^{(j)}=0 \leftrightarrow m^{(j)}=1$
\Leftrightarrow 'Permutation’ symmetry

$$
\binom{|(\vartheta, 0)\rangle}{\left|\left(\vartheta, e_{1}\right)\right\rangle} \xrightarrow{\pi}\binom{\left|\left(\vartheta, e_{1}\right)\right\rangle}{|(\vartheta, 0)\rangle}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\left|\left(\vartheta, e_{1}\right)\right\rangle}{|(\vartheta, 0)\rangle}
$$

Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

space group rule $\Leftrightarrow\left\{\begin{array}{l}\text { couplings invariant } \\ \text { under }\left|\Psi_{\text {loc }}\right\rangle \rightarrow-\mathbb{1}_{2}|\Psi\rangle \\ \text { and }\left|\Psi_{\text {loc }}\right\rangle \rightarrow \sigma_{3}|\Psi\rangle\end{array}\right.$
In absence of background fields: fixed points are equivalent
\Rightarrow Theory invariant under relabeling $m^{(j)}=0 \leftrightarrow m^{(j)}=1$
\Rightarrow 'Permutation’ symmetry

$$
\binom{|(\vartheta, 0)\rangle}{\left|\left(\vartheta, e_{1}\right)\right\rangle} \xrightarrow{\pi}\binom{\left|\left(\vartheta, e_{1}\right)\right\rangle}{|(\vartheta, 0)\rangle}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\left|\left(\vartheta, e_{1}\right)\right\rangle}{|(\vartheta, 0)\rangle}
$$

bottom-line:

couplings need to be invariant under $\left|\Psi_{\mathrm{loc}}\right\rangle \rightarrow T\left|\Psi_{\text {loc }}\right\rangle$ where $T \in\left\{-\mathbb{1}, \sigma_{3}, \sigma_{1}\right\}$

Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

Flavor symmetry arising from the space group rule is the multiplicative closure of an S_{2} permutation symmetry with $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$

$$
G_{\text {flavor }}=S_{2} \cup\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)=S_{2} \ltimes\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)=D_{4}
$$

$$
D_{4}=\left\{ \pm \mathbb{1}, \pm \sigma_{1}, \pm \mathrm{i} \sigma_{2}, \pm \sigma_{3}\right\}
$$

Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

Flavor symmetry arising from the space group rule is the multiplicative closure of an S_{2} permutation symmetry with $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$

$$
G_{\text {flavor }}=S_{2} \cup\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)=S_{2} \ltimes\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)=D_{4}
$$

$$
D_{4}=\left\{ \pm \mathbb{1}, \pm \sigma_{1}, \pm \mathrm{i} \sigma_{2}, \pm \sigma_{3}\right\}
$$

Lesson 1:

whenever there are equivalent fixed points, there is a non-Abelian discrete flavor symmetry

Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

Flavor symmetry arising from the space group rule is the multiplicative closure of an S_{2} permutation symmetry with $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$

$$
G_{\text {flavor }}=S_{2} \cup\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)=S_{2} \ltimes\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)=D_{4}
$$

$$
D_{4}=\left\{ \pm \mathbb{1}, \pm \sigma_{1}, \pm \mathrm{i} \sigma_{2}, \pm \sigma_{3}\right\}
$$

Lesson 1:

whenever there are equivalent fixed points, there is a non-Abelian discrete flavor symmetry

Lesson 2:

the non-Abelian flavor symmetry is larger than the symmetry of compact space

Example: $\mathbb{S}^{1} / \mathbb{Z}_{2}$

Flavor symmetry arising from the space group rule is the multiplicative closure of an S_{2} permutation symmetry with $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$

$$
G_{\text {flavor }}=S_{2} \cup\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)=S_{2} \ltimes\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)=D_{4}
$$

$$
D_{4}=\left\{ \pm \mathbb{1}, \pm \sigma_{1}, \pm \mathrm{i} \sigma_{2}, \pm \sigma_{3}\right\}
$$

Lesson 1:

whenever there are equivalent fixed points, there is a non-Abelian discrete flavor symmetry

Lesson 2:

the non-Abelian flavor symmetry is larger than the symmetry of compact space

Other orbifolds: same conclusions

Character table for D_{4}

representation	$\mathbb{1}$	$-\mathbb{1}$	$\pm \sigma_{1}$	$\pm \sigma_{3}$	$\mp \mathrm{i} \sigma_{2}$
doublet D	2	-2	0	0	0
$\operatorname{singlet} A_{1}$	1	1	1	1	1
$\operatorname{singlet} B_{1}$	1	1	1	-1	-1
$\operatorname{singlet} B_{2}$	1	1	-1	1	-1
$\operatorname{singlet} A_{2}$	1	1	-1	-1	1

$$
\begin{array}{ll}
D_{1} \bar{D}_{1}+D_{2} \bar{D}_{2} \sim A_{1} & D_{1} \bar{D}_{2}+D_{2} \bar{D}_{1} \sim B_{1} \\
D_{1} \bar{D}_{1}-D_{2} \bar{D}_{2} \sim B_{2} & D_{1} \bar{D}_{2}-D_{2} \bar{D}_{1} \sim A_{2}
\end{array}
$$

Symmetry enhancement (I)

Consider \mathbb{Z}_{2} plane $\mathbb{T}^{2} / \mathbb{Z}_{2}$ with special symmetries: e_{1} and e_{2} have the same length and enclose an angle of 120°

Symmetry enhancement (I)

(1) Consider \mathbb{Z}_{2} plane $\mathbb{T}^{2} / \mathbb{Z}_{2}$ with special symmetries:
e_{1} and e_{2} have the same length and enclose an angle of 120°

\Rightarrow Distances between all orbifold fixed points coincide

Symmetry enhancement (I)

Consider \mathbb{Z}_{2} plane $\mathbb{T}^{2} / \mathbb{Z}_{2}$ with special symmetries:
e_{1} and e_{2} have the same length and enclose an angle of 120°

\Rightarrow Distances between all orbifold fixed points coincide
\Rightarrow Symmetry enhancement

Symmetry enhancement (I)

Consider \mathbb{Z}_{2} plane $\mathbb{T}^{2} / \mathbb{Z}_{2}$ with special symmetries:
e_{1} and e_{2} have the same length and enclose an angle of 120°

\Rightarrow Distances between all orbifold fixed points coincide
\Rightarrow Symmetry enhancement
Orbifold is a regular tetrahedron
-Symmetry enhancement

Tetrahedron

Tetrahedron

The tetrahedron is invariant under 120° rotations around an axis that goes through one of its vertices and hits the center of the opposite face, corresponding to

$$
T=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

acting on

Tetrahedron

The tetrahedron is invariant under 180° rotations around an axis that hits to opposite edges in their middle, corresponding to

$$
S=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

acting on
$\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)$

Symmetry enhancement (II)

Tetrahedron is invariant under a discrete rotation by 120°

$$
T=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) \text { acting on }\left(\begin{array}{l}
\mathbf{1} \\
\mathbf{2} \\
\mathbf{3} \\
\mathbf{4}
\end{array}\right)
$$

Symmetry enhancement (II)

Tetrahedron is invariant under a discrete rotation by 120°

$$
T=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) \text { acting on }\left(\begin{array}{l}
\mathbf{1} \\
\mathbf{2} \\
\mathbf{3} \\
\mathbf{4}
\end{array}\right)
$$

Invariance under the 180° rotations to the further symmetry transformations
$S=\left(\begin{array}{cc}\sigma_{1} & 0 \\ 0 & \sigma_{1}\end{array}\right) \quad$ and $\quad S^{\prime}=\left(\begin{array}{cc}0 & \mathbb{1}_{2} \\ \mathbb{1}_{2} & 0\end{array}\right)$

Symmetry enhancement (II)

Tetrahedron is invariant under a discrete rotation by 120°

$$
T=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) \text { acting on }\left(\begin{array}{l}
\mathbf{1} \\
\mathbf{2} \\
\mathbf{3} \\
\mathbf{4}
\end{array}\right)
$$

Invariance under the 180° rotations to the further symmetry transformations
$S=\left(\begin{array}{cc}\sigma_{1} & 0 \\ 0 & \sigma_{1}\end{array}\right) \quad$ and $\quad S^{\prime}=\left(\begin{array}{cc}0 & \mathbb{1}_{2} \\ \mathbb{1}_{2} & 0\end{array}\right)$
Symmetry of the tetrahedron is A_{4}

Symmetry enhancement (II)

Tetrahedron is invariant under a discrete rotation by 120°

$$
T=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) \text { acting on }\left(\begin{array}{l}
\mathbf{1} \\
\mathbf{2} \\
\mathbf{3} \\
\mathbf{4}
\end{array}\right)
$$

Invariance under the 180° rotations to the further symmetry transformations
$S=\left(\begin{array}{cc}\sigma_{1} & 0 \\ 0 & \sigma_{1}\end{array}\right) \quad$ and $\quad S^{\prime}=\left(\begin{array}{cc}0 & \mathbb{1}_{2} \\ \mathbb{1}_{2} & 0\end{array}\right)$
Symmetry of the tetrahedron is A_{4}
A_{4} arises as multiplicative closure of the \mathbb{Z}_{2} and \mathbb{Z}_{3} groups with elements $\{\mathbb{1}, S\}$ and $\left\{\mathbb{1}, T, T^{2}\right\}$

Symmetry enhancement (III)

A_{4} is not the full relabeling symmetry because the geometric relations between the fixed points do not change upon reflections

Symmetry enhancement (III)

A_{4} is not the full relabeling symmetry because the geometric relations between the fixed points do not change upon reflections

Full relabeling symmetry is S_{4} and full flavor symmetry is $\mathrm{SG}(192$, 1493)

Symmetry enhancement (III)

A_{4} is not the full relabeling symmetry because the geometric relations between the fixed points do not change upon reflections

Full relabeling symmetry is S_{4} and full flavor symmetry is $\mathrm{SG}(192$, 1493)

Symmetry breakdown when the angle between e_{1} and e_{2} and/or their length ratio changes

Symmetry enhancement (III)

A_{4} is not the full relabeling symmetry because the geometric relations between the fixed points do not change upon reflections

Full relabeling symmetry is S_{4} and full flavor symmetry is $\mathrm{SG}(192$, 1493)

Symmetry breakdown when the angle between e_{1} and e_{2} and/or their length ratio changes

Angle and ratio are parametrized by a field Z

Symmetry enhancement (III)

A_{4} is not the full relabeling symmetry because the geometric relations between the fixed points do not change upon reflections

Full relabeling symmetry is S_{4} and full flavor symmetry is $\mathrm{SG}(192$, 1493)

Symmetry breakdown when the angle between e_{1} and e_{2} and/or their length ratio changes

Angle and ratio are parametrized by a field Z

Coupling strengths respect an enhanced symmetry if Z takes special values

Symmetry enhancement (III)

A_{4} is not the full relabeling symmetry because the geometric relations between the fixed points do not change upon reflections

Full relabeling symmetry is S_{4} and full flavor symmetry is $\mathrm{SG}(192$, 1493)

Symmetry breakdown when the angle between e_{1} and e_{2} and/or their length ratio changes

Angle and ratio are parametrized by a field Z

Coupling strengths respect an enhanced symmetry if Z takes special values

In other words, the fluctuations of Z around the critical value furnish a non-trivial representation under the symmetry

Full flavor symmetry SG(192, 1493)

Character table

$\mathbf{1}$	1	1	1	1	1	1	1	1	1	1	1	1	1
$\mathbf{1}$	1	-1	1	-1	1	-1	-1	1	1	-1	1	1	1
$\mathbf{2}$	2	0	2	0	-1	0	0	2	2	0	-1	2	2
$\mathbf{3}$	3	-1	-1	1	0	1	-1	3	-1	-1	0	-1	3
$\overline{\mathbf{3}}$	3	-1	3	-1	0	1	1	-1	-1	-1	0	-1	3
$\mathbf{3}^{\prime}$	3	1	-1	-1	0	-1	1	3	-1	1	0	-1	3
$\overline{\mathbf{3}}^{\prime}$	3	1	3	1	0	-1	-1	-1	-1	1	0	-1	3
$\mathbf{3}^{\prime \prime}$	3	-1	-1	1	0	-1	1	-1	3	-1	0	-1	3
$\overline{\mathbf{3}}^{\prime \prime}$	3	1	-1	-1	0	1	-1	-1	3	1	0	-1	3
$\mathbf{4}$	4	2	0	0	1	0	0	0	0	-2	-1	0	-4
$\overline{\mathbf{4}}$	4	-2	0	0	1	0	0	0	0	2	-1	0	-4
$\mathbf{6}$	6	0	-2	0	0	0	0	-2	-2	0	0	2	6
$\mathbf{8}$	8	0	0	0	-1	0	0	0	0	0	1	0	-8

Symmetry enhancement (IV)

Symmetry generated by S is discrete rotational symmetry of order 6

Symmetry enhancement (IV)

Symmetry generated by S is discrete rotational symmetry of order 6
\Leftrightarrow Also bulk fields transform non-trivially

Symmetry enhancement (IV)

Symmetry generated by S is discrete rotational symmetry of order 6
\Rightarrow Also bulk fields transform non-trivially
R charges of bosons and fermions differ by $1 / 2$

Symmetry enhancement (IV)

Symmetry generated by S is discrete rotational symmetry of order 6
\Leftrightarrow Also bulk fields transform non-trivially
R charges of bosons and fermions differ by $1 / 2$
\Rightarrow Hence it is a discrete R symmetry of order 12

Symmetry enhancement (IV)

Symmetry generated by S is discrete rotational symmetry of order 6
\Leftrightarrow Also bulk fields transform non-trivially
R charges of bosons and fermions differ by $1 / 2$
\Rightarrow Hence it is a discrete R symmetry of order 12
\mathbb{Z}_{12} can always be written as $\mathbb{Z}_{4} \times \mathbb{Z}_{3}$, e.g.

\mathbb{Z}_{12}	0	1	2	3	4	5	6	7	8	9	10	11
\mathbb{Z}_{4}	0	3	2	1	0	3	2	1	0	3	2	1
\mathbb{Z}_{3}	0	1	2	0	1	2	0	1	2	0	1	2

Symmetry enhancement (IV)

Symmetry generated by S is discrete rotational symmetry of order 6
\Rightarrow Also bulk fields transform non-trivially
R charges of bosons and fermions differ by $1 / 2$
\Rightarrow Hence it is a discrete R symmetry of order 12
\mathbb{Z}_{12} can always be written as $\mathbb{Z}_{4} \times \mathbb{Z}_{3}$
$\Leftrightarrow \theta$ has \mathbb{Z}_{4} charge 3 and \mathbb{Z}_{3} charge 1

Symmetry enhancement (IV)

Symmetry generated by S is discrete rotational symmetry of order 6
\Leftrightarrow Also bulk fields transform non-trivially
R charges of bosons and fermions differ by $1 / 2$
\Rightarrow Hence it is a discrete R symmetry of order 12
\mathbb{Z}_{12} can always be written as $\mathbb{Z}_{4} \times \mathbb{Z}_{3}$
$\Leftrightarrow \theta$ has \mathbb{Z}_{4} charge 3 and \mathbb{Z}_{3} charge 1
\Leftrightarrow Symmetry can be witten as $\mathbb{Z}_{4}^{R} \times \mathbb{Z}_{3}^{R}$ for bulk fields

Symmetry enhancement (IV)

Symmetry generated by S is discrete rotational symmetry of order 6
\Rightarrow Also bulk fields transform non-trivially
R charges of bosons and fermions differ by $1 / 2$
\Rightarrow Hence it is a discrete R symmetry of order 12
\mathbb{Z}_{12} can always be written as $\mathbb{Z}_{4} \times \mathbb{Z}_{3}$
$\Leftrightarrow \theta$ has \mathbb{Z}_{4} charge 3 and \mathbb{Z}_{3} charge 1
\Leftrightarrow Symmetry can be witten as $\mathbb{Z}_{4}^{R} \times \mathbb{Z}_{3}^{R}$ for bulk fields

bottom-line:

non-Abelian discrete R symmetries can arise from Abelian orbifolds

Symmetry enhancement (V)

Consider a torus where e_{1} and e_{2} have the same length and enclose 90°

Symmetry enhancement (V)

Consider a torus where e_{1} and e_{2} have the same length and enclose 90°

Switch on two identical Wilson lines

Symmetry enhancement (V)

Consider a torus where e_{1} and e_{2} have the same length and enclose 90°

Switch on two identical Wilson lines
\Rightarrow Two pairs of equivalent fixed points:
(
$\binom{$ (1) }{ (3) }
and $\binom{$ (2 }{4}

Symmetry enhancement (V)

Consider a torus where e_{1} and e_{2} have the same length and enclose 90°

Switch on two identical Wilson lines
\Rightarrow Two pairs of equivalent fixed points:
$\binom{\mathbf{1}}{\mathbf{8}}$ and
$\binom{$ (2) }{4}
\Leftrightarrow Setting can give rise to models with $2+1$ generations

Summary

Summary

R symmetries can be non-Abelian even in $\mathcal{N}=1$ SUSY

- superspace coordinate transforms in non-trivial 1-dimensional representation

Summary

R symmetries can be non-Abelian even in $\mathcal{N}=1$ SUSY

Green-Schwarz anomaly cancellation also available for non-Abelian symmetries

- GS axion transforms in non-trivial 1-dimensional representation
- Perfect groups are always anomaly-free

Summary

R symmetries can be non-Abelian even in $\mathcal{N}=1$ SUSY

Green-Schwarz anomaly cancellation also available for non-Abelian symmetries

Non-Abelian discrete R symmetries can emerge from Abelian orbifolds

Summary

R symmetries can be non-Abelian even in $\mathcal{N}=1$ SUSY

Green-Schwarz anomaly cancellation also available for non-Abelian symmetries

Non-Abelian discrete R symmetries can emerge from Abelian orbifolds

Applications to model building appear to be quite rich One single symmetry to

- explain flavor structure
- solve μ \& proton decay problems
- flavon VEV alignment

Summary

Summary

> supersymmetry
> breaking
non-Abelian
discrete R
symmetries

Summary

Summary

Summary

Summary

Aspen Summer 2014: August 3- 31, 2014 Model Building in the LHC Era

Organizers:

Mu-Chun Chen, Stuart Raby, Michael Ratz, Carlos Wagner

- Anticipating 14 TeV: Insights into Matter from the LHC and Beyond (June 29 - July 24, 2015) Csaba Csaki, Lisa Randall, Michael Ratz, Andreas Weiler

Vielen Dank!

Complete classification of symmetric toroidal orbifolds

\# of generators	\# of SUSY	Abelian	non-Abelian
1	$\mathcal{N}=4$	1	0
	$\mathcal{N}=2$	4	0
	$\mathcal{N}=1$	9	0
		14	0
2	$\mathcal{N}=4$	0	0
	$\mathcal{N}=2$	0	3
	$\mathcal{N}=1$	8	32
	8	35	
3	$\mathcal{N}=4$	0	0
	$\mathcal{N}=2$	0	0
	$\mathcal{N}=1$	0	3
		0	3
total:	$\mathcal{N}=4$	1	0
	$\mathcal{N}=2$	4	3
	$\mathcal{N}=1$	17	35
	22	38	

Abelian orbifolds with $\mathcal{N}=1$ SUSY

label of \mathbb{Q}-class	twist vector(s)	\# of \mathbb{Z}-classes	\# of affine classes
\mathbb{Z}_{3}	$\frac{1}{3}(1,1,-2)$	1	1
\mathbb{Z}_{4}	$\frac{1}{4}(1,1,-2)$	3	3
\mathbb{Z}_{6}-I	$\frac{1}{6}(1,1,-2)$	2	2
\mathbb{Z}_{6}-II	$\frac{1}{6}(1,2,-3)$	4	4
\mathbb{Z}_{7}	$\frac{1}{7}(1,2,-3)$	1	1
\mathbb{Z}_{8}-I	$\frac{1}{8}(1,2,-3)$	3	3
\mathbb{Z}_{8}-II	$\frac{1}{8}(1,3,-4)$	2	2
\mathbb{Z}_{12}-I	$\frac{1}{12}(1,4,-5)$	2	2
\mathbb{Z}_{12}-II	$\frac{1}{12}(1,5,-6)$	1	1
$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$\frac{1}{2}(0,1,-1), \frac{1}{2}(1,0,-1)$	12	35
$\mathbb{Z}_{2} \times \mathbb{Z}_{4}$	$\frac{1}{2}(0,1,-1), \frac{1}{4}(1,0,-1)$	10	41
$\mathbb{Z}_{2} \times \mathbb{Z}_{6}$-I	$\frac{1}{2}(0,1,-1), \frac{1}{6}(1,0,-1)$	2	4
$\mathbb{Z}_{2} \times \mathbb{Z}_{6}-$ II	$\frac{1}{2}(0,1,-1), \frac{1}{6}(1,1,-2)$	4	4
$\mathbb{Z}_{3} \times \mathbb{Z}_{3}$	$\frac{1}{3}(0,1,-1), \frac{1}{3}(1,0,-1)$	5	15
$\mathbb{Z}_{3} \times \mathbb{Z}_{6}$	$\frac{1}{3}(0,1,-1), \frac{1}{6}(1,0,-1)$	2	4
$\mathbb{Z}_{4} \times \mathbb{Z}_{4}$	$\frac{1}{4}(0,1,-1), \frac{1}{4}(1,0,-1)$	5	15
$\mathbb{Z}_{6} \times \mathbb{Z}_{6}$	$\frac{1}{6}(0,1,-1), \frac{1}{6}(1,0,-1)$	1	1
$\#$ of Abelian $\mathcal{N}=1$		60	138

$\mathbb{T}^{2} / \mathbb{Z}_{3}$ orbifold

$\mathbb{T}^{2} / \mathbb{Z}_{3}$ orbifold

$\mathbb{T}^{2} / \mathbb{Z}_{3}$ orbifold

Coupling between n localized states $\left|\left(\vartheta, m^{(j)} e_{1}\right)\right\rangle$ only allowed if

$$
n=3 \times(\text { integer }) \wedge \sum_{j=1}^{n} m_{1}^{(j)}=0 \bmod 3
$$

$\mathbb{T}^{2} / \mathbb{Z}_{3}$ orbifold

$$
\left(\begin{array}{c}
|(\vartheta, 0)\rangle \\
\left|\left(\vartheta, e_{1}\right)\right\rangle \\
\left|\left(\vartheta, 2 e_{1}\right)\right\rangle
\end{array}\right) \rightarrow\left(\begin{array}{c}
|(\vartheta, 0)\rangle \\
\left|\left(\vartheta, e_{1}\right)\right\rangle \\
\left|\left(\vartheta, 2 e_{1}\right)\right\rangle
\end{array}\right)
$$

Coupling between n localized states $\left|\left(\vartheta, m^{(j)} e_{1}\right)\right\rangle$ only allowed if

$$
n=3 \times \text { (integer) } \quad \wedge \quad \sum_{j=1}^{n} m_{1}^{(j)}=0 \bmod 3
$$

$\mathbb{T}^{2} / \mathbb{Z}_{3}$ orbifold

$$
\begin{array}{r}
\left(\begin{array}{c}
|(\vartheta, 0)\rangle \\
\left|\left(\vartheta, e_{1}\right)\right\rangle \\
\left|\left(\vartheta, 2 e_{1}\right)\right\rangle
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
\omega & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega
\end{array}\right)\left(\begin{array}{c}
|(\vartheta, 0)\rangle \\
\left|\left(\vartheta, e_{1}\right)\right\rangle \\
\left|\left(\vartheta, 2 e_{1}\right)\right\rangle
\end{array}\right) \\
\omega=\mathrm{e}^{2 \pi \mathrm{i} / 3}
\end{array}
$$

Coupling between n localized states $\left|\left(\vartheta, m^{(j)} e_{1}\right)\right\rangle$ only allowed if

$$
n=3 \times \text { (integer }) \wedge \sum_{j=1}^{n} m_{1}^{(j)}=0 \bmod 3
$$

$\mathbb{T}^{2} / \mathbb{Z}_{3}$ orbifold

$$
\left(\begin{array}{c}
|(\vartheta, 0)\rangle \\
\left|\left(\vartheta, e_{1}\right)\right\rangle \\
\left|\left(\vartheta, 2 e_{1}\right)\right\rangle
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right)\left(\begin{array}{c}
|(\vartheta, 0)\rangle \\
\left|\left(\vartheta, e_{1}\right)\right\rangle \\
\left|\left(\vartheta, 2 e_{1}\right)\right\rangle
\end{array}\right)
$$

Coupling between n localized states $\left|\left(\vartheta, m^{(j)} e_{1}\right)\right\rangle$ only allowed if

$$
n=3 \times \text { (integer) } \wedge \sum_{j=1}^{n} m_{1}^{(j)}=0 \bmod 3
$$

$\mathbb{T}^{2} / \mathbb{Z}_{3}$ orbifold

Coupling between n localized states $\left|\left(\vartheta, m^{(j)} e_{1}\right)\right\rangle$ only allowed if

$$
n=3 \times(\text { integer }) \wedge \sum_{j=1}^{n} m_{1}^{(j)}=0 \bmod 3
$$

\Leftrightarrow Flavor symmetry
$S_{3} \cup\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)=S_{3} \ltimes\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)=\Delta(54)$
Note: $\Delta(54)$ is a 'type l' group

Character table of $\Delta(54)$

irrep	1a (1)	$6 a$ $\begin{gathered} \text { ba } \\ \text { (9) } \end{gathered}$	6b	$\begin{gathered} \hline 3 a \\ (6) \end{gathered}$	3b (6)	3c (6)	2a (9)	3 C (6)	3 e (1)	3f (1)
$\mathbf{1}_{1}$	1	1	1	1	1	1	1	1	1	1
$\mathbf{1}_{2}$	1	-1	-1	1	1	1	-1	1	1	1
2	2	0	0	2	-1	-1	0	-1	2	2
2	2	0	0	-1	-1	-1	0	2	2	2
2	2	0	0	-1	-1	2	0	-1	2	2
2	2	0	0	-1	2	-1	0	-1	2	2
3^{\prime}	3	$-\bar{\omega}$	$-\omega$	0	0	0	-1	0	$3 \bar{\omega}$	3ω
$\overline{3}$	3	$-\omega$	$-\bar{\omega}$	0	0	0	-1	0	3ω	$3 \bar{\omega}$
$\overline{3}$	3	ω	$\bar{\omega}$	0	0	0	1	0	3ω	$3 \bar{\omega}$
3	3	ω	ω	0	0	0	1	0	$3 \bar{\omega}$	3ω

Survey of flavor symmetries

orbifold	flavor symmetry	sector	string fundamental states
S^{1} / \mathbb{Z}_{2}	D_{4}	U	$\mathbf{1}$
		T_{1}	$\mathbf{2}$
$\mathbb{T}^{2} / \mathbb{Z}_{2}$	$\left(D_{4} \times D_{4}\right) / \mathbb{Z}_{2}$	U	$\mathbf{1}$
		T_{1}	$\mathbf{4}$
$\mathbb{T}^{2} / \mathbb{Z}_{3}$	$\Delta(54)$	U	$\mathbf{1}$
		T_{1}	$\mathbf{3}$
		T_{2}	$\overline{\mathbf{3}}$
	U	$\mathbf{1}$	
$\mathbb{T}^{2} / \mathbb{Z}_{4}$		$\left.D_{4} \times \mathbb{Z}_{4}\right) / \mathbb{Z}_{2}$	T_{1}
		T_{2}	$\mathbf{1}_{A_{1}}+\mathbf{1}_{B_{1}}+\mathbf{1}_{B_{2}}+\mathbf{1}_{A_{2}}$
$\mathbb{T}^{2} / \mathbb{Z}_{6}$	trivial		

Survey of flavor symmetries (cont'd)

orbifold	flavor symmetry	sector	string fundamental states
$\mathbb{T}^{4} / \mathbb{Z}_{8}$		U	$\mathbf{1}$
		T_{1}	$\mathbf{2}$
	$\left(D_{4} \times \mathbb{Z}_{8}\right) / \mathbb{Z}_{2}$	T_{2}	$\mathbf{1}_{A_{1}}+\mathbf{1}_{B_{1}}+\mathbf{1}_{B_{2}}+\mathbf{1}_{A_{2}}$
		T_{3}	$\mathbf{2}$
		T_{4}	$4 \times\left(\mathbf{1}_{A_{1}}+\mathbf{1}_{B_{1}}+\mathbf{1}_{B_{2}}+\mathbf{1}_{A_{2}}\right)$
$\mathbb{T}^{4} / \mathbb{Z}_{12}$	trivial		
$\mathbb{T}^{6} / \mathbb{Z}_{7}$	$S_{7} \ltimes\left(\mathbb{Z}_{7}\right)^{6}$	U	$\mathbf{1}$
		T_{k}	$\mathbf{7}$
		T_{7-k}	$\overline{\mathbf{7}}$

References I

Takeshi Araki. Anomalies of discrete symmetries \& gauge coupling unification. Prog. Theor. Phys., 117:1119-1138, 2007.
Takeshi Araki, Tatsuo Kobayashi, Jisuke Kubo, Saúl Ramos-Sánchez, Michael Ratz, et al. (Non-)Abelian discrete anomalies. Nucl.Phys., B805:124-147, 2008. doi: 10.1016/j.nuclphysb.2008.07.005.
Tom Banks \& Michael Dine. Note on discrete gauge anomalies.
Phys.Rev., D45:1424-1427, 1992. doi: 10.1103/PhysRevD.45.1424.

Nana G. Cabo Bizet, Tatsuo Kobayashi, Damian K. Mayorga Pena, Susha L. Parameswaran, Matthias Schmitz, et al. R-charge Conservation \& More in Factorizable \& Non-Factorizable Orbifolds. JHEP, 1305:076, 2013. doi: 10.1007/JHEP05(2013)076.
Mu-Chun Chen, Michael Ratz \& Andreas Trautner. Non-Abelian discrete R symmetries. JHEP, 1309:096, 2013. doi: 10.1007/JHEP09(2013)096.

References II

Mu-Chun Chen, Maximilian Fallbacher, K.T. Mahanthappa, Michael Ratz \& Andreas Trautner. CP Violation from Finite Groups. Nucl.Phys., B883:267, 2014.
Lance J. Dixon, Daniel Friedan, Emil J. Martinec \& Stephen H. Shenker. The Conformal Field Theory of Orbifolds. Nucl. Phys., B282:13-73, 1987.

Maximilian Fischer, Michael Ratz, Jesus Torrado \& Patrick K.S. Vaudrevange. Classification of symmetric toroidal orbifolds. JHEP, 1301:084, 2013. doi: 10.1007/JHEP01(2013)084.
A. Font, Luis E. Ibáñez, Hans Peter Nilles \& F. Quevedo. Yukawa couplings in degenerate orbifolds: Towards a realistic SU(3) \times SU(2) $\times U(1)$ superstring. Phys. Lett., B210:101, 1988a. Erratum ibid. B213.
A. Font, Luis E. Ibáñez, Hans Peter Nilles \& F. Quevedo. Degenerate orbifolds. Nucl. Phys., B307:109, 1988b. Erratum ibid. B310.

References III

A. Font, Luis E. Ibáñez, F. Quevedo \& A. Sierra. The construction of 'realistic' four-dimensional strings through orbifolds. Nucl. Phys., B331:421-474, 1990.
Kazuo Fujikawa. Path integral measure for gauge invariant fermion theories. Phys. Rev. Lett., 42:1195, 1979.
Stefan Groot Nibbelink, Mark Hillenbach, Tatsuo Kobayashi \& Martin G. A. Walter. Localization of heterotic anomalies on various hyper surfaces of $T(6) / Z(4)$. Phys. Rev., D69:046001, 2004.
Shahram Hamidi \& Cumrun Vafa. Interactions on Orbifolds. Nucl. Phys., B279:465, 1987.
Luis E. Ibáñez \& Graham G. Ross. Discrete gauge symmetry anomalies. Phys. Lett., B260:291-295, 1991.
Luis E. Ibáñez \& Graham G. Ross. Discrete gauge symmetries \& the origin of baryon \& lepton number conservation in supersymmetric versions of the standard model. Nucl.Phys., B368:3-37, 1992. doi: 10.1016/0550-3213(92)90195-H.

References IV

Tatsuo Kobayashi, Stuart Raby \& Ren-Jie Zhang. Searching for realistic 4d string models with a Pati-Salam symmetry: Orbifold grand unified theories from heterotic string compactification on a $Z(6)$ orbifold. Nucl. Phys., B704:3-55, 2005.
Tatsuo Kobayashi, Hans Peter Nilles, Felix Plöger, Stuart Raby \& Michael Ratz. Stringy origin of non-Abelian discrete flavor symmetries. Nucl. Phys., B768:135-156, 2007.
Lawrence M. Krauss \& Frank Wilczek. Discrete gauge symmetry in continuum theories. Phys. Rev. Lett., 62:1221, 1989.
Christoph Lüdeling, Fabian Ruehle \& Clemens Wieck. Non-Universal Anomalies in Heterotic String Constructions. Phys.Rev., D85: 106010, 2012. doi: 10.1103/PhysRevD.85.106010.
Hans Peter Nilles, Saúl Ramos-Sánchez, Michael Ratz \& Patrick K.S. Vaudrevange. A note on discrete R symmetries in \mathbb{Z}_{6}-II orbifolds with Wilson lines. Phys.Lett., B726:876-881, 2013. doi: 10.1016/j.physletb.2013.09.041.

