Matter and the Universe

Topic 1: Fundamental Particles and Forces

Towards a precision measurement of the muon pair asymmetry in e⁺e⁻ annihilation at $\sqrt{s} = 10.58$ GeV

Torben Ferber (DESY)

Muon pair asymmetry A_{FB} at Belle

Standard Model predicts a forward-backward Ihe asymmetry A_{FR} of muons produced in the electroweak process $e^+e^- \rightarrow \mu^+\mu^-$. This asymmetry is caused by the interference between γ and Z⁰ exchange at Born level.

The weak mixing angle $sin^2(\theta_w)$

The muon pair asymmetry A_{FB} is related to the weak mixing angle sin²(θ_{w}). For \sqrt{s} =10.58 GeV:

$$A_{FB}(s) \approx \frac{3\rho G_F}{4\sqrt{2\pi\alpha}} \frac{sM_Z^2}{s - M_z^2} g_A^e g_a^\mu$$

The weak mixing angle is energy dependent in the SM

Fig. 1: SM prediction and measurements of A_{FR} . Belle and Belle II symbols are shown at the SM value and only indicate the expected statistical uncertainty (x1000).

Event selection

Muon pairs from the process $e^+e^- \rightarrow \mu^+\mu^-$ have a clear signature of two back-to-back tracks in the center of mass system. Background processes are:

[cm]

(see Fig. 2): Extract A_{FR} , $sin^2(\theta_w)$ and ρ from a fit to the differential cross section $d\sigma/dcos(\theta^{CM})$. Deviations from the predicted behavior hint to New Physics.

Fig. 2: SM prediction of the energy dependency and measurements of $sin^2(\theta_{u})$. Belle and Belle II symbols are shown at the SM value and only indicate the expected statistical uncertainty.

- radiative muon pairs
- $e^+e^- \rightarrow e^+e^-\mu^+\mu$
- (radiative) tau pairs
- (radiative) Bhabha
- cosmics

Efficiency

Incl. acceptance and trigger, kinematic cuts and particle identification: $\epsilon \approx 50\%$

Rad. Corrections

 $\Delta A_{FR}(stat.)/A_{FR} \approx 1\%$

Fig. 3: Muon pair (MC) without ISR or FSR photons. The muon tracks are not back-to-back in the lab system.

Unique Belle data set at DESY

Fig.5: Transfer of Belle data from KEK to DESY.

- •~700fb⁻¹ "mDST" Belle data duplicated at DESY (data preservation)
- •MC for A_{FR} and skimmed data for further analysis
 - \rightarrow 300TB on dCache SE

Belle II and SuperKEKB

SuperKEKB is an upgrade project at KEK to increase the instantaneous luminosity to 8×10³⁵ cm⁻²s⁻¹, the final goal is to acquire 50ab⁻¹ by the end of 2023.

The raw asymmetry is modified mainly by $\gamma\gamma$ box-diagrams. QED effects are corrected using Monte Carlo Weak calculations. corrections are absorbed into effective couplings.

Fig. 4: Radiative muon pair (MC) with double final state radiation (FSR) and beam background photons in the Belle detector.

Fig.6: Drawing of the Belle II detector.

