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Conformal invariance in quantum field theory

• Motivation and introduction

• Some history

• Geometry

• Energy momentum tensor, renormalization, trace anomaly

• Correlation functions

• Conformal bootstrap, c and a-theorem
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Motivation and introduction

• Continous symmetries ⇔ conservation laws, theory more constrained

• ∃ spacetime & internal symmetries

• Fundamental relevance of Poincaré group (translations plus Lorentz)

i.e. isometry trafos of Minkowski space

- elementary particles ⇔ irreps of Poincaré group (mass, spin)

- discrete isometries T, P (time reversal, parity) relevant for physics too,

CPT -theorem

- correlation functions, e.g. of scalar fields, depend on (xi − xj)
2 only

• Conformal group: spacetime trafos which leave angles unchanged,

turns out to be Poincaré + dilatations + special conformal trafos

(with 4 parameters)
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Motivation and introduction

Dilatation invariance requires absence of dimensionful parameters ⇒

- candidate conformal theories should be massless,

- breaking of classical conformal invariance by renormalization effects

• Within the set of renormalizable QFT’s, CFT’s are a special subset

(RG β-functions zero)

- RG flow of not conformal theories can end at CFT’s in the IR or UV,

example: asymptotic freedom of QCD

- treatment of not conformal theories as perturbations around CFT’s

• Adding supersymmetry, one gets even more constrained theories,

e.g. indications of integrability in planar N = 4 super Yang-Mills



4
Motivation and introduction

• Conformal symmetry plays a constitutive part in the

AdS/CFT correspondence.

• Two-dimensional conformal symmetry plays a constitutive part

in string theory. In particular it is responsible for the critical dimensions

26 and 10 respectively.

• In its Euclidean version, conformal symmetry shows up in

statistical systems at criticality (infinite correlation length).

• ∃ several more reasons to be interested in conformal invariance.

Note: In two dimensions the conformal Lie algebra is infinite dimensional

⇒ 2D conformal symmetry is then more constraining as for D ≥ 3.
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Some history

-Conformal mappings since old times in the toolkit of mathematicians

-Relevance for physics since 19th cent., in particular for electrodynamics

-Weyl trafo = position dependent scale trafo in GR, Weyl 1918

-boom in CFT in the 1960’s and 70’s (Wess,Kastrup,Callan,Coleman,Jackiw,

Ferrara,Grillo,Gatto,Mack,Migdal,Polyakov,....)

in particular: conformal bootstrap program

- In same period start of applications to critical statistical systems

- 2D CFT for string theory starting in the 70’s, systematic study up to

the classification issue started with Lüscher,Mack 76 and mainly with

Belavin,Polyakov,Zamolodchikov 84

-AdS/CFT since 1997, Maldacena,....

- Since 2008 renewed interest in conformal bootstrap, scale versus

conformal inv. & analogs in D ≥ 3 of Zamolochikovs c-theorem in 2D
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Geometry

Defining eq. of a conformal mapping in N-dim. Minkowski space R
(1,N−1):

xµ 7→ yµ such that for crossing curves x(1)(t), x(2)(t) at the crossing point

(ẋ(1), ẋ(2))
√

(ẋ(1), ẋ(1)) (ẋ(2), ẋ(2))
=

(ẏ(1), ẏ(2))
√

(ẏ(1), ẏ(1)) (ẏ(2), ẏ(2))

⇐⇒ ηµν
∂yµ

∂xα
∂yν

∂xβ
= ρ(x) ηαβ , Nρ(x) = ηµνη

αβ ∂yµ

∂xα
∂yν

∂xβ

Find all solutions: - study infinitesimal cases yµ = xµ + ǫ kµ(x),

(kµ(x) conformal Killing vectors)

- integrate
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Geometry

Result: For N ≥ 3 group of conformal trafo, continously connected to

identity, is isomorph to SO(2, N), i.e. a Lorentzgroup in a space with

two more dimensions.

Explicit characterization:

translations xµ 7→ xµ + aµ

Lorentztrafos xµ 7→ Λ
µ
νx

ν , Λ ∈ SO(1, N − 1)

dilatations xµ 7→ λxµ

special conformal trafos xµ 7→ xµ+cµx2

1+2cx+c2x2
= S Tc S , with S : xµ 7→ xµ

x2

Special status of N=2: Lie algebra of conformal Killing vectors is

infinite dimensional.

SO(2,N) is also the isometry group of AdSN+1. This fact is crucial for

the AdS/CFT correspondence.
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Energy momentum tensor, renormalization, trace anomaly

The quantities conserved due to Poincaré invariance (energy, momen-

tum, angular momentum) are given as suitable “pieces” of the energy-

momentum tensor, expect the same for additional conformal quantities.

Let us denote by k(a)(x) (a = 1, ....,15) one of the independent solutions

of the conformal Killing equation

∂µkν + ∂νkµ =
2

N
∂αkα ηµν .

Then for j
(a)
µ := k(a)νTµν one gets, using Tµν = Tνµ, ∂µTµν = 0

∂µj
(a)
µ =

1

N
Tµµ ∂

νk
(a)
ν .

See:

Tµµ = 0 =⇒ conformal invariance
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Energy momentum tensor, renormalization, trace anomaly

The opposite direction is also true for unitary theories (with some tech-

nical assumptions). In particular the related question:

scale invariance =⇒ full conformal invariance ?

has a long history and is subject of a lot of recent activities.

CFT’s as a subset of renormalizable QFT’s:

Tµµ(x) =
∑

j

βj(g) Oj(x) + mass terms

e.g. for QCD:

Tµµ(x) =
β(g)

2g2
F aµνF

a,µν + (1+ γm(g)) mψ̄ψ
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Energy momentum tensor, renormalization, trace anomaly

For theories, which are conformal invariant on the classical level, the

term with the RG β-functions is due to the breaking of the symmetry by

renormalization effects: trace anomaly.

Not conformal inv. QFT’s can flow under the change of the RG-scale to

CFT’s in the IR or UV.

Most prominent example in particle physics: asymptotic freedom of QCD.

Further contribution to trace anomaly for QFT’s in curved spacetimes:

- relevant for gravitational physics (e.g. Hawking radiation of black holes)

- but also relevant for flat space physics, Why ?
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Energy momentum tensor, renormalization, trace anomaly

In general the canonical energy momentum tensor needs several “im-

provement” steps (Belinfante, conformal). Final result can be obtained

in equivalent way:

couple in suitable manner to gravity and use

Tµν(x) =
−2√−g

δS

δgµν(x)
|gαβ=ηαβ .

〈0|T (x)T (y)|0〉 ∝ δ

δg(x)

δ

δg(y)

∫

dϕ eiS[ϕ,g]

Since

δR
δgµν

6= 0 in the flat limit,

pure curvature dependent terms in the trace anomaly leave footprints in

flat two and higher point functions of Tµν.
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Energy momentum tensor, renormalization, trace anomaly

Curved space trace anomaly of CFT’s:

Tµµ =
c

24π
R N = 2

Tµµ = c W2 − a E N = 4

(W Weyl tensor, E Euler density, both certain combinations out of the

curvature tensor)

The numbers c and a belong to the set of data characterizing a CFT.

For N = 2, c turns out to be the central charge of the Virasoro algebra,

it has also an immediate physical consequence:

E0 = π c
6 L for a CFT on a strip of width L.
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Correlation functions

Transformation law for quasiprimary operators

U(K) ϕj(x
′) U−1(K) =

(

det
∂x′

∂x

)−d/N
D l
j (R) ϕl(x)

with R a Lorentztrafo, related to the conformal trafo K : x 7→ x′

by R
µ
α :=

(

det∂x
′

∂x

)−1/N
∂x′µ
∂xα , d scaling dim.

Note: det = 1 for all Poincaré trafo,

= λN for dilatations,

= (1+ 2cx+ c2x2)−N for special conformal trafo.

This fixes two and three-point functions up to constants.
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Correlation functions

e.g. for scalars:

〈ϕ1(x1) ϕ2(x2)〉 = c12

(

(x1 − x2)
2
)− d1+d2

2
, c12 = 0 if d1 6= d2

〈ϕ1(x1) ϕ2(x2) ϕ3(x3)〉 = c123 ((x1 − x2)
2) a12((x2 − x3)

2) a23((x1 − x3)
2) a13

with a12 = (d3 − d1 − d2)/2 etc.

For 4 and more points one can form conformal invariants out of the

(xj − xl)
2, the cross ratios:

(xi − xk)
2

(xi − xl)
2

(xj − xl)
2

(xj − xk)
2 .

The dependence on these conformal invariants is not fixed, of course.



18
Correlation functions

Conformal Ward identities:

for all quasiprimaries:
n
∑

j=1

(dj + xj
∂

∂xj
) 〈ϕ1(x1) . . . ϕn(xn)〉 = 0,

for scalars:
n
∑

j=1

(

2(xj)µ(xj
∂

∂xj
+ dj)− x2j

∂

∂x
µ
j

)

〈ϕ1(x1) . . . ϕn(xn)〉 = 0.

Of interest can be also anomalous conformal Ward identities

(taking care of symmetry breaking by a regularization).

e.g. in N = 4 SYM such identities, applied to dimensionally regularized

Wilson loops on null polygons, can be used to derive the so called

BDS structure (after Bern, Dixon, Smirnov).

Via Wilson loop - scattering amplitude correspondence then also for amplitudes.
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Correlation functions

For progress with higher point function use

operator product expansion (OPE).

Naive understanding of OPE as a tool in renormalizable QFT:

Look at example of composite operators formed out of a free field & and

use Wick’s theorem.

In general:

A(x) B(y) = c0(x− y)1 +
p
∑

j=1

cj(x− y) Oj(y) + N (A(y)B(y)) + . . . ,

valid as an asymptotic expansion for x→ y .
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Correlation functions

OPE in CFT’s:

- convergent

- conformal invariance fixes relative weights of contributions of a

quasiprimary and its derivatives (descendents).

Altogether, a CFT can be defined as

a set of quasiprimaries and their descendents, closed under OPE.

The data fixing the CFT are:

- the set of scaling dimensions of the quasiprimaries =

spectrum of dilatation operator,

- the set of representations (scalar, spinor,...),

- the coefficients in the trace anomaly (a, c in case of N = 4),

- the structure constants in the OPE.
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c and a theorem, conformal bootstrap

The c-theorem was proven for 2-dim. CFT by Zamolodchikov in 1986, after

a long history, only in 2011 Komargodski and Schwimmer found an accepted

proof of an analog in 4 dim.

c-theorem in 2D:

For unitary QFT’s exists a function of the couplings c(g1, g2, . . . ), which

is monotonic decreasing along an RG flow (in the IR direction).

At RG fixpoints (β-fct = 0) it is equal to the central charge of the

corresponding CFT.

If the flow connects CFT’s in the UV and IR, one has

cUV > cIR .

This fits to the picture, that c counts in some sense the degrees of

freedom.
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c and a theorem, conformal bootstrap

For 4-dim. unitary QFT’s now it is established, that if RG flow connects

CFT’s in UV and IR

aUV > aIR .

With related techniques at present several papers available

on properties of RG flows and the issue

scale invariance =⇒ full conformal invariance ?
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c and a theorem, conformal bootstrap

Conformal bootstrap:

- program started in beginning of 70’s

- succesfully implemented in 2-dim case (stronger symmetry constraints),

up to partial classification

- renaissance in 4-dim case in recent years

Basic idea:

- Use in n-point correlation functions OPE of two operators to represent

it as an infinite sum of (n-1)-point functions with (in principle) fixed

coefficient functions,

- continue up to ending with 3-point functions,

- require associativity

- hope that associativity (crossing) for 4-point functions is sufficient.
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c and a theorem, conformal bootstrap
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c and a theorem, conformal bootstrap

One of the recent results:

Universal bounds on the scaling dimensions of the first operator appearing

in the OPE of two operators with given dimensions.

e.g. in Rychkov et al 1203.6064: 3-dim Ising model saturates the bound
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There is a huge set of papers related to the subject. At few places there will be references
in the manuscript. A good starting point for diving into the literature are the following
papers and references therein.
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or with one of the many good books or reviews related to string theory.


