Excerrices for lecture 2

Excercise 1: The correlator from an Ansatz

In the lecture we have seen that the correlator must satisfy

$$\Pi_n = \Pi_{-n}$$
 , $\Pi_n = \frac{\hbar}{\mu} \delta_{n,0} + \frac{\gamma}{\mu} (\Pi_{n+1} + \Pi_{n-1})$

Now suppose that Π_n has the form

$$\Pi_n = A B^{|n|}$$

By inspecting Π_0 and Π_1 , find A and B. Then, take the continuum limit

$$n \to \frac{x}{\Delta}$$
 , $\gamma \to \frac{1}{\Delta}$, $\mu \to \frac{2}{\Delta} + m^2 \Delta$, $\Delta \to 0$

to find the result in the continuum limit :

$$\Pi(x) = \frac{\hbar}{2m} \exp(-m|x|) .$$

Solution 1:

Using the Ansatz for Π_1 we find from the SDe

$$\Pi_1 = \frac{\gamma}{\mu}(\Pi_0 + \Pi_2) \quad \Rightarrow \quad AB = \frac{\gamma}{\mu}(A + AB^2)$$

so that A drops out, and we have for B

$$B^2 + \frac{\mu}{\gamma}B + 1 = 0 \quad \Rightarrow \quad B = \frac{\mu}{2\gamma} - \sqrt{\left(\frac{\mu}{2\gamma}\right)^2 - 1}$$

In the continuum limit, we find $B = 1 - m\Delta + \mathcal{O}(\Delta^2)$. The SDe for Π_0 reads

$$\Pi_0 = \frac{\hbar}{\mu} + \frac{2\gamma}{\mu}\Pi_1 \quad \Rightarrow \quad A = \frac{\hbar}{\mu} + \frac{2\gamma}{\mu}AB$$

so that

$$A = \frac{\hbar}{\mu - 2\gamma B}$$

In the continuum limit $A = \hbar/(2m) + \mathcal{O}(\Delta)$. The correlator becomes

$$\Pi(x) = \Pi_{|x|/\Delta} = \frac{\hbar}{2m} \left(1 - m\Delta \right)^{|x|/\Delta} = \frac{\hbar}{2m} e^{-|x|m}$$

where we have used the fact that

$$\lim_{K \to \infty} \left(1 - \frac{z}{K} \right)^K = e^{-z}$$

Excercise 2: To mass or not to mass

Show that in the Feynman rules the variable m must have the dimension of inverse length, and therefore cannot be simply the mass M of the particle, which is given in kilograms. Try to find the relation between m and M (Hint: Arthur Holly C.).

Solution 2:

In order to convert the dimension of quantities we can employ the natural constants c and \hbar . The combination of M, c and \hbar that has the dimension of inverse length is

$$m = \frac{Mc}{\hbar}$$

which is the inverse of the Compton wavelength of the particle.

Excercise 3: Some actual (gasp!) loop calculations

Here are two diagrams occurring in one-dimensional $\varphi^{3/4}$ theory :

- 1. The momentum flow is indicated by arrows. Find the missing momenta.
- 2. Write the diagrams completely, including coupling constants, symmetry factors, etcetera.
- 3. Use the standard integral result

$$\int_{-\infty}^{\infty} dz \, \frac{1}{(z^2 + a^2)((z+q)^2 + b^2)} = \frac{\pi}{ab} \frac{a+b}{q^2 + (a+b)^2}$$

to work out the values of the diagrams.

Now you have done an actual two-loop calculation!

Solution 3:

1. The completed diagrams:

2. The first diagram reads

$$\frac{{{\hbar ^2}{\lambda _3}^2}}{{2({p^2} + {m^2})^2}}\frac{1}{{2\pi }}\int dk\frac{1}{{(k^2 + {m^2})((p + k)^2 + {m^2})}}$$

and the second one

$$\frac{\hbar^3 \lambda_4^2}{6(p^2+m^2)} \frac{1}{(2\pi)^2} \int dk_1 \int dk_2 \frac{1}{(k_1^2+m^2)(k_2^2+m^2)((p+k_1+k_2)^2+m^2)}$$

3. Using the standard integrals gives

$$\frac{{{\hbar ^2}{\lambda _3}^2}}{{2m}}\frac{1}{{({p^2} + {m^2})^2}}\frac{1}{{{p^2} + (2m)^2}}$$

for the first diagram, and

$$\frac{\hbar^3 \lambda_4^2}{8m^2} \frac{1}{(p^2 + m^2)^2} \frac{1}{p^2 + (3m)^2}$$