Excecrices for lecture 2

Excercise 1: The correlator from an Ansatz

In the lecture we have seen that the correlator must satisfy

$$
\Pi_{n}=\Pi_{-n} \quad, \quad \Pi_{n}=\frac{\hbar}{\mu} \delta_{n, 0}+\frac{\gamma}{\mu}\left(\Pi_{n+1}+\Pi_{n-1}\right)
$$

Now suppose that Π_{n} has the form

$$
\Pi_{n}=A B^{|n|}
$$

By inspecting Π_{0} and Π_{1}, find A and B. Then, take the continuum limit

$$
n \rightarrow \frac{x}{\Delta} \quad, \quad \gamma \rightarrow \frac{1}{\Delta} \quad, \quad \mu \rightarrow \frac{2}{\Delta}+m^{2} \Delta \quad, \quad \Delta \rightarrow 0
$$

to find the result in the continuum limit :

$$
\Pi(x)=\frac{\hbar}{2 m} \exp (-m|x|) .
$$

Solution 1 :

Using the Ansatz for Π_{1} we find from the SDe

$$
\Pi_{1}=\frac{\gamma}{\mu}\left(\Pi_{0}+\Pi_{2}\right) \quad \Rightarrow \quad A B=\frac{\gamma}{\mu}\left(A+A B^{2}\right)
$$

so that A drops out, and we have for B

$$
B^{2}+\frac{\mu}{\gamma} B+1=0 \Rightarrow B=\frac{\mu}{2 \gamma}-\sqrt{\left(\frac{\mu}{2 \gamma}\right)^{2}-1}
$$

In the continuum limit, we find $B=1-m \Delta+\mathcal{O}\left(\Delta^{2}\right)$. The SDe for Π_{0} reads

$$
\Pi_{0}=\frac{\hbar}{\mu}+\frac{2 \gamma}{\mu} \Pi_{1} \quad \Rightarrow \quad A=\frac{\hbar}{\mu}+\frac{2 \gamma}{\mu} A B
$$

so that

$$
A=\frac{\hbar}{\mu-2 \gamma B}
$$

In the continuum limit $A=\hbar /(2 m)+\mathcal{O}(\Delta)$. The correlator becomes

$$
\Pi(x)=\Pi_{|x| / \Delta}=\frac{\hbar}{2 m}(1-m \Delta)^{|x| / \Delta}=\frac{\hbar}{2 m} e^{-|x| m}
$$

where we have used the fact that

$$
\lim _{K \rightarrow \infty}\left(1-\frac{z}{K}\right)^{K}=e^{-z}
$$

Excercise 2 : To mass or not to mass

Show that in the Feynman rules the variable m must have the dimension of inverse length, and therefore cannot be simply the mass M of the particle, which is given in kilograms. Try to find the relation between m and M (Hint: Arthur Holly C.).

Solution 2 :

In order to convert the dimension of quantities we can employ the natural constants c and \hbar. The combination of M, c and \hbar that has the dimension of inverse length is

$$
m=\frac{M c}{\hbar}
$$

which is the inverse of the Compton wavelength of the particle.

Excercise 3: Some actual (gasp!) loop calculations

Here are two diagrams occurring in one-dimensional $\varphi^{3 / 4}$ theory :

1. The momentum flow is indicated by arrows. Find the missing momenta.
2. Write the diagrams completely, including coupling constants, symmetry factors, etcetera.
3. Use the standard integral result

$$
\int_{-\infty}^{\infty} d z \frac{1}{\left(z^{2}+a^{2}\right)\left((z+q)^{2}+b^{2}\right)}=\frac{\pi}{a b} \frac{a+b}{q^{2}+(a+b)^{2}}
$$

to work out the values of the diagrams.
Now you have done an actual two-loop calculation !

Solution 3 :

1. The completed diagrams:

2. The first diagram reads

$$
\frac{\hbar^{2} \lambda_{3}{ }^{2}}{2\left(p^{2}+m^{2}\right)^{2}} \frac{1}{2 \pi} \int d k \frac{1}{\left(k^{2}+m^{2}\right)\left((p+k)^{2}+m^{2}\right)}
$$

and the second one

$$
\frac{\hbar^{3} \lambda_{4}{ }^{2}}{6\left(p^{2}+m^{2}\right)} \frac{1}{(2 \pi)^{2}} \int d k_{1} \int d k_{2} \frac{1}{\left(k_{1}{ }^{2}+m^{2}\right)\left(k_{2}{ }^{2}+m^{2}\right)\left(\left(p+k_{1}+k_{2}\right)^{2}+m^{2}\right)}
$$

3. Using the standard integrals gives

$$
\frac{\hbar^{2} \lambda_{3}^{2}}{2 m} \frac{1}{\left(p^{2}+m^{2}\right)^{2}} \frac{1}{p^{2}+(2 m)^{2}}
$$

for the first diagram, and

$$
\frac{\hbar^{3} \lambda_{4}{ }^{2}}{8 m^{2}} \frac{1}{\left(p^{2}+m^{2}\right)^{2}} \frac{1}{p^{2}+(3 m)^{2}}
$$

