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EGMF – Standard Constraints [Neronov and Semikoz, 2009]

-10 -5 0
-18

-16

-14

-12

-10

-8

-6

-4

logLc�Mpc

lo
gB
�G

I Resistive decay due to magnetic
diffusion removes short correlation
lengths Lc

I Lc cannot be larger than the
Hubble Radius

I EGMF cannot be stronger
than galactic magnetic fields

I Non-observation of
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EGMF – Lower Bound on B? [Neronov and Semikoz, 2009]
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EGMF – Lower Bound on B?

[Neronov et al., 2010]
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Gamma rays emmitted from a blazar develop an electromagnetic
cascade due to interactions with the Extragalactic Backgriound
Light (EBL) via pair production and Inverse Compton (IC)
scattering. The interaction of this cascade with the EGMF results
in several observational features.
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EGMF – Lower Bound on B?

10.10.010.001

Appearance of a point-like source at
θobs = 3 for magnetic fields

B = 10−17 G, 10−16 G, 10−15 G and
10−14 G [Neronov et al., 2010]

I Point-like sources appear
extensive
[Dolag et al., 2009],
[Neronov et al., 2010]

I Time-delayed echos of
primary gamma rays
[Plaga, 1994],
[Murase et al., 2008]

I Suppression of observed
photon flux in the GeV
region
[d’Avezac et al., 2007],
[Neronov and Vovk, 2010],
[Vovk et al., 2012]
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EGMF – Lower Bound on B?
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EGMF - Lower Bound on B?

However, these results have been criticized:

I After refining the statistical analysis method the zero EGMF
hypothesis has been claimed to be true [Arlen et al., 2012]

I The electromagnetic cascade might heat up the intergalactic
medium (IGM) and therefore rapidly lose energy
[Broderick et al., 2012],[Schlickeiser et al., 2012]; this again
results in a suppresion of the spectrum at GeV energies
[Saveliev et al., 2013a]
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EGMF – Origin
The origin of EGMF is still uncertain – mainly two different
concepts:

I Astrophysical scenario: Seed magnetic fields are generated
during structure formation (e.g. by a Biermann Battery
[Biermann, 1950]) and are then amplified by the dynamo
effect [Zeldovich et al., 1980]

I Cosmological scenario: Strong seed magnetic fields are
generated in the Early Universe, e.g. at a phase transition
(QCD, electroweak) [Sigl et al., 1997] or during inflation
[Turner and Widrow, 1988], and some of the initial energy
content is transfered to larger scales.

The latter are the so-called primordial magnetic fields and will be
focused on in the following.

I Basics for the time evolution: Homogeneous and isotropic
magnetohydrodynamics in an expanding Universe.

7 A. Saveliev



EGMF – Origin
The origin of EGMF is still uncertain – mainly two different
concepts:

I Astrophysical scenario: Seed magnetic fields are generated
during structure formation (e.g. by a Biermann Battery
[Biermann, 1950]) and are then amplified by the dynamo
effect [Zeldovich et al., 1980]

I Cosmological scenario: Strong seed magnetic fields are
generated in the Early Universe, e.g. at a phase transition
(QCD, electroweak) [Sigl et al., 1997] or during inflation
[Turner and Widrow, 1988], and some of the initial energy
content is transfered to larger scales.

The latter are the so-called primordial magnetic fields and will be
focused on in the following.

I Basics for the time evolution: Homogeneous and isotropic
magnetohydrodynamics in an expanding Universe.

7 A. Saveliev



EGMF – Origin
The origin of EGMF is still uncertain – mainly two different
concepts:

I Astrophysical scenario: Seed magnetic fields are generated
during structure formation (e.g. by a Biermann Battery
[Biermann, 1950]) and are then amplified by the dynamo
effect [Zeldovich et al., 1980]

I Cosmological scenario: Strong seed magnetic fields are
generated in the Early Universe, e.g. at a phase transition
(QCD, electroweak) [Sigl et al., 1997] or during inflation
[Turner and Widrow, 1988], and some of the initial energy
content is transfered to larger scales.

The latter are the so-called primordial magnetic fields and will be
focused on in the following.

I Basics for the time evolution: Homogeneous and isotropic
magnetohydrodynamics in an expanding Universe.

7 A. Saveliev



EGMF – Origin
The origin of EGMF is still uncertain – mainly two different
concepts:

I Astrophysical scenario: Seed magnetic fields are generated
during structure formation (e.g. by a Biermann Battery
[Biermann, 1950]) and are then amplified by the dynamo
effect [Zeldovich et al., 1980]

I Cosmological scenario: Strong seed magnetic fields are
generated in the Early Universe, e.g. at a phase transition
(QCD, electroweak) [Sigl et al., 1997] or during inflation
[Turner and Widrow, 1988], and some of the initial energy
content is transfered to larger scales.

The latter are the so-called primordial magnetic fields and will be
focused on in the following.

I Basics for the time evolution: Homogeneous and isotropic
magnetohydrodynamics in an expanding Universe.

7 A. Saveliev



EGMF – Origin
The origin of EGMF is still uncertain – mainly two different
concepts:

I Astrophysical scenario: Seed magnetic fields are generated
during structure formation (e.g. by a Biermann Battery
[Biermann, 1950]) and are then amplified by the dynamo
effect [Zeldovich et al., 1980]

I Cosmological scenario: Strong seed magnetic fields are
generated in the Early Universe, e.g. at a phase transition
(QCD, electroweak) [Sigl et al., 1997] or during inflation
[Turner and Widrow, 1988], and some of the initial energy
content is transfered to larger scales.

The latter are the so-called primordial magnetic fields and will be
focused on in the following.

I Basics for the time evolution: Homogeneous and isotropic
magnetohydrodynamics in an expanding Universe.

7 A. Saveliev



Primordial Magnetic fields - Basic MHD

Magnetohydrodynamics (MHD)

I Maxwell’s equations:
∇ · B = 0, ∇× E = −∂tB, ∇× B = 4πj

I Continuity equation for mass density ρ: ∂tρ+∇(ρv) = 0
I Navier-Stokes equations:
ρ (∂tv + (v · ∇) v) = −∇p + µ∆v + (λ+ µ)∇ (∇ · v) + f

For the magnetic field and the turbulent fluid it follows therefore

∂tB =
1

4πσ∆B +∇× (v× B)

∂tv = − (v · ∇) v +
(∇× B)× B

4πρ + fv .

8 A. Saveliev



Primordial Magnetic fields - Basic MHD

Magnetohydrodynamics (MHD)
I Maxwell’s equations:
∇ · B = 0, ∇× E = −∂tB, ∇× B = 4πj

I Continuity equation for mass density ρ: ∂tρ+∇(ρv) = 0
I Navier-Stokes equations:
ρ (∂tv + (v · ∇) v) = −∇p + µ∆v + (λ+ µ)∇ (∇ · v) + f

For the magnetic field and the turbulent fluid it follows therefore

∂tB =
1

4πσ∆B +∇× (v× B)

∂tv = − (v · ∇) v +
(∇× B)× B

4πρ + fv .

8 A. Saveliev



Primordial Magnetic fields - Basic MHD

Magnetohydrodynamics (MHD)
I Maxwell’s equations:
∇ · B = 0, ∇× E = −∂tB, ∇× B = 4πj

I Continuity equation for mass density ρ: ∂tρ+∇(ρv) = 0

I Navier-Stokes equations:
ρ (∂tv + (v · ∇) v) = −∇p + µ∆v + (λ+ µ)∇ (∇ · v) + f

For the magnetic field and the turbulent fluid it follows therefore

∂tB =
1

4πσ∆B +∇× (v× B)

∂tv = − (v · ∇) v +
(∇× B)× B

4πρ + fv .

8 A. Saveliev



Primordial Magnetic fields - Basic MHD

Magnetohydrodynamics (MHD)
I Maxwell’s equations:
∇ · B = 0, ∇× E = −∂tB, ∇× B = 4πj

I Continuity equation for mass density ρ: ∂tρ+∇(ρv) = 0
I Navier-Stokes equations:
ρ (∂tv + (v · ∇) v) = −∇p + µ∆v + (λ+ µ)∇ (∇ · v) + f

For the magnetic field and the turbulent fluid it follows therefore

∂tB =
1

4πσ∆B +∇× (v× B)

∂tv = − (v · ∇) v +
(∇× B)× B

4πρ + fv .

8 A. Saveliev



Primordial Magnetic fields - Basic MHD

Magnetohydrodynamics (MHD)
I Maxwell’s equations:
∇ · B = 0, ∇× E = −∂tB, ∇× B = 4πj

I Continuity equation for mass density ρ: ∂tρ+∇(ρv) = 0
I Navier-Stokes equations:
ρ (∂tv + (v · ∇) v) = −∇p + µ∆v + (λ+ µ)∇ (∇ · v) + f

For the magnetic field and the turbulent fluid it follows therefore

∂tB =
1

4πσ∆B +∇× (v× B)

∂tv = − (v · ∇) v +
(∇× B)× B

4πρ + fv .

8 A. Saveliev



Primordial Magnetic fields - Basic MHD

The aspect of interest is the distribution of energies on different
scales k, i.e. the magnetic spectral energy density M of the
magnetic fields and the kinetic magnetic spectral energy density U

εB =
1

8πV

∫
d3x B2(x) =

∫ d3k
8π |B̂(k)|2 ≡ ρ

∫
dk Mk

εK =
ρ

2V

∫
d3x v2(x) =

ρ

2

∫
d3k |v̂(k)|2 ≡ ρ

∫
dk Uk

In addition, for magnetic helicity one can define the spectral
helicity density H by

hB =
1
V

∫
d3x A(x) · B(x) = i

∫
d3k

( k
k2 × B̂(k)

)
· B̂(k)∗

≡ ρ
∫

dkHk
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Primordial Magnetic fields - Basic MHD

Therefore: Switch to Fourier (k-)space:
B(x)→ B̂(q), v(x)→ v̂(q)

∂tB̂(q) = − 1
4πσq2B̂(q) +

iV 1
2

(2π)
3
2
q×

[∫
d3k

(
v̂(q− k)× B̂(k)

)]

∂t v̂(q) = − iV 1
2

(2π)
3
2

∫
d3k [(v̂(q− k) · k) v̂(k)]

+
iV 1

2

(2π)
3
2

1
4πρ

∫
d3k

[(
k× B̂(k)

)
× B̂(q− k)

]
.
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Primordial Magnetic Fields - Correlation Function

Aim: Computation of the correlation function for B and v

I Homogeneity: The correlation function cannot depend on the
position in space

I Isotropy: The correlation function only depends on the
magnitude of the spatial separation

In Fourier space this means that the most general Ansatz is
[von Kármán and Howarth, 1938, Junklewitz and Enßlin, 2011]

〈B̂l (k)B̂m(k′)〉 ∼ δ(k− k′)[(δlm −
klkm
k2 )M(k)− i

8πεlmjkjH(k)]

〈v̂l (k)v̂m(k′)〉 ∼ δ(k− k′)[(δlm −
klkm
k2 )U(k)− iρ

2k2 εlmjkjHK(k)]
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Master Equations for the Time Evolution of M, U and H

〈
∂t Mq
〉

=

∫ ∞

0

dk
(

∆t
{
−

2
3

q2
〈

Mq
〉
〈Uk〉 −

4
3

q2
〈

Mq
〉
〈Mk〉

+
1
3

1
(4π)2 q2k2

〈
Hq
〉
〈Hk〉 +

∫ π

0

dθ
[

1
2

q4

k4
1

(
q2 + k2 − qk cos θ

)
sin3

θ 〈Mk〉
〈

Uk1

〉]})
〈
∂t Uq
〉

=

∫ ∞

0

dk
(

∆t
{
−

2
3

q2 〈Mk〉
〈

Uq
〉
−

2
3

q2
〈

Uq
〉
〈Uk〉

+

∫ π

0

dθ
[

1
4

q3k
k4

1

(
qk sin2

θ + 2k2
1 cos θ

)
sin θ 〈Mk〉

〈
Mk1

〉
+

1
4

q4k
k4

1
(3k − q cos θ) sin3

θ 〈Uk〉
〈

Uk1

〉
+

1
(16π)2

q3k2

k2
1

(
−2q − q sin2

θ + 2k cos θ
)

sin θ 〈Hk〉
〈
Hk1

〉]})
〈∂tHq〉 =

∫ ∞

0

dk
(

∆t
{

4
3

k2〈Mq〉〈Hk〉 −
4
3

q2〈Mk〉〈Hq〉 −
2
3

q2〈Uk〉〈Hq〉

+

∫ π

0

dθ
[

1
2

q4k2

k4
1

sin3
θ
〈

Uk1

〉
〈Hk〉

]})
Energy/helicity conservation: ∂tεB = ρ

∫
dq (∂tMq + ∂tUq) = 0

and ∂thB = ρ
∫

dq∂tHq = 0
12 A. Saveliev



Results on the Time Evolution of Primordial Magnetic
Fields without Helicity

I Starting either with
an initial power-law ...

I ... or a concentration
of the spectral
energies on a single
scale the qualitative
result is similar: a
tendence to
equipartition and
both Mq ∝ q4

(i.e. B ∝ q 5
2 ) and

Uq ∼ q4 at large
scales.

[Saveliev et al., 2012]
in

itial
k
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n

al
k

I

1 100 104 106 108
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q �Mpc-1 HcomovingL

q
M

q
,q

U
q

I A rough estimate for B ( for the
QCD phase transition) is given by
B(200 pc) . 5× 10−12 G
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Results on the Time Evolution of Primordial Magnetic
Fields with Helicity

I Including magnetic
helicity for the same
initial conditions
results in an inverse
cascade, a fast
transport of big
amounts of magnetic
energy to large scales.
This is due to helicity
conservation.
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I Two regimes are visible: When helicity is small, the
considerations of the non-helical case are valid; once helicity
reaches its maximal value, the behaviour changes dramatically
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Additional EGMF Constraints from Primordial Fields
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I Taking the resulting time
evolution for helical and
non-helical fields...

I ...further constraints are
possible.

I Considering the power-law
slope for the spectral
energies, causality dictates
further limits.
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Conclusions and Outlook

I Little is known about EGMF in voids, even a recently found
lower limit on B is uncertain

I One possible origin is the time evolution of primordial
magnetic fields during which energy, among other things, can
be transported from smaller to larger scales

I Helicity enhances this effect by creating an inverse cascade
which results in much higher magnetic fields today compared
to the non-helical case

I The expicit computation of the back-reaction of the magnetic
field on the medium gives the result of a power-law behavior
with Mq ∼ q4 (i.e. B ∼ q 5

2 ) and Uq ∼ q4 and equipartition at
large scales.

I In the future comparison of the presented results from a
semi-analytical approach with numerical simulations →
Collaboration with Robi’s group
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