TTC High Q₀ Working Group

C. Reece

TTC High Q Working Group

- Informal discussions in 2012-13 noted new opportunities in improved cavity Q₀ over common expectations.
- How to obtain efficient rapid development through common efforts?
- G. Hoffstaetter requested a TTC-based topical working group.
- TTC CB accepted proposal at SRF2013 meeting
- C. Reece asked to host/facilitate the Working Group

- An activity crunch to compose LCLS-II CDR preoccupied a number of us Oct – Dec.
- First web-based virtual meeting was held January 9
 - Indico site: <u>http://www.jlab.org/indico/event/TTC High Q WG</u>
- Second virtual meeting was held February 12
 - Indico site: <u>http://www.jlab.org/indico/event/TTC_High_Q_WG_2</u>
- Although most of the presentations were from US participants, there was broad and growing participation from all regions and good stimulating discussion.
- In several cases this has contributed to good progress reported at this meeting.

TTC High Q working group From 1st meeting

- Informal working group from TTC-member institutions pursuing routes to minimized rf surface resistance in SRF applications.
 - Response to request from Cornell University to TTC Collaboration Board
 - Proposal by Reece to facilitate the WG accepted by CB
- **Periodic web-based meetings (**4-6 weeks) {Suggest 13 Feb for next mtg.}
 - Information exchange
 - Solicitation of technical feedback
 - Learning from each other
 - Not project-specific
- Prepared short presentations
 - Posted on closed Indico site: http://www.jlab.org/indico/event/TTC_High_Q_WG
 - For informational and learning purposes
 - Not for technical reference
 - All material considered "preliminary"

- An activity crunch to compose LCLS-II CDR preoccupied a number of us Oct – Dec.
- First web-based virtual meeting (ReadyTalk) was held January 9
 - Indico site: <u>http://www.jlab.org/indico/event/TTC High Q WG</u>
- Second virtual meeting was held February 12
 - Indico site: <u>http://www.jlab.org/indico/event/TTC High Q WG 2</u>
- Although most of the presentations were from US participants, there
 was broad and growing participation from all regions and good
 stimulating discussion.
- In several cases this has contributed to good progress reported at this meeting.
- Next meeting anticipated for week of May 12.
 - Participation is encouraged contact C. Reece to get on the mailing list

- A variety of topics are being discussed
 - Q variability with cooldown conditions
 - Pressure to better quantify external magnetic fields and amount of flux trapped
 - Pressure to scrutinize temperature profile and change rate through T_c
 - Analysis of Q dependence with rf Bpk as a function of various treatments
 - 120C bake
 - EP
 - BCP
 - HF-rinse
 - HT-N = 800C + N doping
 - Mini-EP
 - 1400C clean bake without subsequent chemistry

Common denominator of all measurements (HZB, Cornell, Fermilab, JLAB, CERN, ...)

- **Cooling dynamics** influences obtained Q₀.
 - Cycling can lead to **increase** or **decrease** of Q_0 .
- Effect is **reversible** by transition through T_c and choice of adequate cool-down conditions.
- Effect comes with a change in **trapped flux**.

‡ Fermilab

- Work on further development of nitrogen doping
- In particular, we have focused on developing a robust recipe for meeting the LCLS-II requirement of Q > 2.7e10 at 2K
- Change duration of nitrogen bake for modifying thickness of doping layer
- Make the processing insensitive to tolerances in EP post gas bake
- Gradient wall has been overcome in several cavities – reached above 30 MV/m
- Successfully implemented on nine cell Q >2.7e10@2K

🛟 Fermilab

Example of doped cavities

Pursuit of High Q_0 via HT-N

Jefferson Lab

Toward Higher Q's

New data present fresh challenges for the parameterization and interpretation of the field dependence of the SRF surface resistance, R_s . ($Q_0 = G/R_{s avg}$)

We are now learning more about all of these and must untangle them in the real world to minimize overall losses.

