KEK experiences in SCRF cavity fabrication

TTC meeting WG1

2014/March/25

Kensei Umemori, Yasuo Ajima, Hitoshi Inoue, Takayuki Kubo, Takayuki Saeki, Yuichi Watanabe, Seiya Yamaguchi, Masashi Yamanaka (KEK)

Reference: [[]Study on optimum electron beam welding conditions for superconducting accelerating cavities] Takayuki Kubo et. al, SRF2013

KEK-CFF (Cavity Fabrication Facility)

EBW machine

SST EBOCAM KS110-G150 KM-CNC

Chemical treatment

Recent activities

- Nb sample EBW test
- •9cell STF cavity(Fine grain)
- 1cell large grain cavity

Clean room floor layout of CFF

<u>Contents</u>

(1) EBW optimization for fine grain Nb samples

- EBW parameter: beam current, beam energy, focusing, direction of beam/work, defocusing etc...
- Condition for stable EBW
- Geometry of EBW welding
- (2) EBW study for Large grain Nb samples/cells
 - Comparison between LG/FG
 - Dependence on groove surface thickness

Contents

(1) EBW optimization for fine grain Nb samples

- EBW parameter: beam current, beam energy, focusing, direction of beam/work, defocusing etc...
- Condition for stable EBW
- Geometry of EBW welding
- (2) EBW study for Large grain Nb samples/cells
 - Comparison between LG/FG
 - Dependence on groove surface thickness

EBW parameters

1. Combinations of generator and welding direction, 2. Accelerating voltage, V_a (kV), **3. Beam current**, $I_{\rm b}$ (mA), 4. Welding speed, v (mm/s), 5.<u>a_b-factor</u> Test piece Welding (b) $a_{b}=1$ (a) $a_{h} > 1$ (c) $a_{\rm h} < 1$ direction cathode directio Bean $a_h \equiv$ Underbead magnetic lens Test piece Welding Underbead work piece focused defocused defocused

EBW parameters

1. <u>Combinations of generator and welding direction</u>, 2. Accelerating voltage, V_a (kV), $\rightarrow 60$, 90, 120, 150kV 3. Beam current, I_b (mA), 4. Welding speed, v (mm/s), \rightarrow fixed to 5mm/sec 5. a_b -factor Oscillation was not applied

Good parameter-regions for 60/90/120/150 kV

Good parameter-regions for 60/90/120/150 kV

<u>Contents</u>

(1) EBW optimization for fine grain Nb samples

- EBW parameter: beam current, beam energy, focusing, direction of beam/work, defocusing etc...
- Condition for stable EBW
- Geometry of EBW welding
- (2) EBW study for Large grain Nb samples/cells
 - Comparison between LG/FG
 - Dependence on groove surface thickness

Underbead geometry (case (a): V-H)

Underbead geometry (case (b): H-H)

Underbead geometry (case (c): H-D)

Underbead geometry (case (d): H-U)

Underbead geometry

<u>Contents</u>

(1) EBW optimization for fine grain Nb samples

- EBW parameter: beam current, beam energy, focusing, direction of beam/work, defocusing etc...
- Condition for stable EBW
- Geometry of EBW welding
- (2) EBW study for Large grain Nb samples/cells
 - Comparison between LG/FG
 - Dependence on groove surface thickness

Good parameter regions for FG/LG, 120kV

Comparison between FG / LG EBW bead

Typical underbead for FG. [V-type]structure can be seen.

Typical underbead for LG. Welding surface is smooth.

Grain boundary

Dependence on groove surface thickness

Measured position around equator

Large grain cavity

After pressing and trimming half cells, groove thickness were varied due to grain boundary ↓ Width of underbead becomes unstable.

Control of groove thickness is important.

This is same for FG. If not controlled, sometime make holes or unpenetrated beads.

<u>Summary</u>

(1) EBW optimization for fine grain Nb samples

- Good condition depend on beam power and defocusing, i.e. probably beam power density
- Geometry of EBW welding depend on the direction of beam / work

(2) EBW study for Large grain Nb samples/cells

- Good condition for FG / LG does not change much.
- Control of groove surface thickness is important

Discussion

Which is the best EBW parameter and how do we evaluate?

- At present, we try to find the welding bead which is as "smooth (flat)" and "stable" as possible.
- ➤ The parameter region we showed is the region where we can avoid apparent failure. → minimum requirement
- But, normally, cavity performance are limited by defects, such as pits or contamination.
- Even the case of not smooth welding / not stable welding, cavity field can often reach to theoretical limitation.
- At least, welding geometry, i.e. "smooth (flat)" weld, seems not to be important. → Is this correct??
- ➢ From RF point of views, weld bead should be evaluated from the number / size of defects. → But... how should we do?
- Is there any correlation between EBW conditions and number of defects? Final requirement "bead with no defects"
- Cleanness of weld groove is more important?
- How about iris? Mostly, pits do not affect cavity performances. What is required?

Backup slide

Experiment (cont.)

Examples of test pieces (heads↑ and tails↓). Various combinations of parameters were tried

Underbead geometry

