

1

First Beam Recirculation and Energy Recovery in the Compact ERL at KEK

Shogo Sakanaka (KEK), on behalf of the ERL Development Team in Japan

TTC Meeting, 24-27 March, 2014, at DESY

ERL Development Team in Japan

(3)High Energy Accelerator Research Organization (KEK) S. Adachi, M. Adachi, M. Akemoto, D. Arakawa, S. Asaoka, K. Enami, K. Endo, S. Fukuda, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, H. Honma, T. Honma, K. Hosoyama, K. Hozumi, A. Ishii, E. Kako, Y. Kamiya, H. Katagiri, H. Kawata, Y. Kobayashi, Y. Kojima, Y. Kondou, O. Konstantinova, T. Kume, T. Matsumoto, H. Matsumura, H. Matsushita, S. Michizono, T. Miura, T. Miyajima, H. Miyauchi, S. Nagahashi, H. Nakai, H. Nakajima, N. Nakamura, K. Nakanishi, K. Nakao, K. Nigorikawa, T. Nogami, S. Noguchi, S. Nozawa, T. Obina, T. Ozak i, F. Qiu, H. Sakai, S. Sakanaka, S. Sasaki, H. Sagehashi, K. Satoh, M. Satoh, T. Shidara, M. Shimada, K. Shinoe, T. Shioya, T. Shishido, M. Tadano, T. Takahashi, R. Takai, T. Takenaka, Y. Tanimoto, M. Tobiyama, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, K. Watanabe, M. Yamamoto, Y. Yamamoto, Y. Yano, M. Yoshida (JAEA) Japan Atomic Energy Agency (JAEA) R. Hajima, S. Matsuba, R. Nagai, N. Nishimori, M. Sawamura, T. Shizuma <u>وې</u> The Graduate University of Advanced Studies (Sokendai) E. Cenni Institute for Solid State Physics (ISSP), University of Tokyo H. Takaki usor **UVSOR, Institute for Molecular Science** M. Katoh h **Hiroshima University** M. Kuriki, Y. Seimiya Nagoya University Y. Takeda, Xiuguang Jin, M. Kuwahara, T. Ujihara, M. Okumi National Institute of Advanced Industrial Science and Technology (AIST) D. Yoshitomi, K. Torizuka SPring. 8 **JASRI/SPring-8** Yamaguchi University 2 H. Hanaki H. Kurisu

Outline

- I. Introduction to the ERL Project "PEARL"
- II. Design and Construction of the Compact ERL
- III. Commissioning of Injector (Apr.-June 2013)
- IV. Commissioning of cERL (Dec. 2013 Mar. 2014)
- V. Conclusion
- VI. Acknowledgment

I. Introduction to the ERL Project "PEARL"

http://ccdb5fs.kek.jp/tiff/2012/1224/1224004.pdf

Challenges in 3-GeV ERL

#1 (JAEA)

2-cell cavity for ERL injector

9-cell cavity for ERL main linac Proof of technology at the Compact ERL

II. Design and Construction of the Compact ERL

7

The Compact ERL (cERL) at KEK

Purpose of the Compact ERL

- To demonstrate the generation and recirculation of ultra-low emittance beams
- To demonstrate reliable operations of our R&D products (guns, SC-cavities, ...)
- Initial goal: 1 mm·mrad @7.7pC/bunch (10mA), 35 MeV

Design parameters of cERL		
Parameter	Goal (future goal in ())	
Beam kinetic energy	35 MeV (upgradable to 125 MeV)	
Injector kinetic energy	5 MeV (10 MeV)	
Average current	<mark>10 mA</mark> (100 mA)	
Normalized emittance @bunch charge	0.3 mm⋅mrad @7.7 pC 1 mm⋅mrad @77 pC	
Bunch length (rms)	1 - 3 ps < 150 fs (with B.C.)	
Accelerating gradient (main linac)	15 MV/m	
RF frequency (= bunch repetition frequency)	1.3 GHz	

Construction Site

Commissioned in Dec. 2013.

The Compact ERL

High-Brightness CW Injector of the cERL

Example of GPT simulation

Goals of the cERL injector

	cERL goal
Gun voltage	500 kV
Injector energy (MeV)	5 MeV
Beam current	10 mA
Normalized emittance (mm·mrad)	1 (77 pC/bunch) 0.3 (7.7 pC/bunch)
Bunch length (ps; rms)	1-3

Recirculation Loop

Construction of cERL (2012)

Construction of shielding room (Mar. - Sep. 2012)

Mar. 2012

May 2012

Finished in Sep. 2012 (picture: Mar. 2013)

Construction and Installation of Injector cryomodule (Apr.-June, 2012)

June 2012

June 2012

Construction of cERL (2012-2013)

Construction and installation of main-linac cryomodule (Aug. - Oct., 2012)

Aug. 2012

Sep. 2012

Oct. 2012

Construction of recirculation loop (Jul.-Nov., 2013)

Jul. 2013

Sep. 2013

The cERL was completed (Dec. 2013)

The First 500-kV Photocathode DC gun: developed at JAEA and installed in cERL

N. Nishimori et al.

Segmented insulator

HV terminal

Design

- Segmented insulator for protecting ceramics
- Measures for avoiding big sparks
 - Improved pumping speed
 - Increasing anode-cathode gap: $100 \rightarrow 160 \text{ mm} (E: 6.7 \rightarrow 5.8 \text{ MV/m})$

Goals

Test at JAEA: successful production of 500-keV, 1.8 mA beam

N. Nishimori et al., Appl. Phys. Lett. 102, 234103 (2013).

Transported to KEK

Summary of performance

Laser

- Successful production of 500-keV, 1.8mA beams at JAEA
- Long dark life of GaAs photocathode: > 10,000 hours
- Normalized emittance: 0.07 mm⋅mrad @10fC (at cERL, V=390 kV)
- Long term operation (~ 260 hours) at V=390 kV at cERL 15

Injector Cryomodule: design and performance

E. Kako TTC meeting 2013

8.1MV/m

5.0MV/m

21.21.33

Processing of Cavity -2 : (2013, Feb. 7-8, 13)

• Relatively-large dynamic losses (low-Q₀) due to heating-up of HOM feedthroughs. We plan to improve the feedthroughs and cooling.

Q_o measurement of Cavity -2

Time

Eacc

7.1MV/m

Qo meas.; CW

6.1MV/m

CERI HISC CAVI-FACC PIN

III. Commissioning of cERL Injector (April - June, 2013)

First Acceleration of Beams to 5.6 MeV (22-26 April, 2013)

Beam Emittances of Accelerated Beams (T=5.6 MeV, low bunch charges)

Y. Honda

Result from the Injector Commissioning (Apr. - June, 2013)

Reported in ERL13 workshop

Parameter	Achieved	Comment and Outlook
Kinetic beam energy T	5.6 MeV (typ.), 5.9 MeV (max.)	$T \le 6 \text{ MeV}$ is allowed at present.
Average Beam current I ₀	300 nA (max.)	$I_0 \le 1$ mA is allowed at present. Beam current will be increased step by step.
Gun High Voltage V _{gun}	390 kV (typ.)	Very stable for more than 200 hours. Higher voltage is expected by polishing insulating ceramics.
Accelerating gradient of injector cavities E_{acc}	7 MV/m (typ.)	CW operation. Very stable for more than 200 hours.
Normalized beam emittance (T=390 keV, low charge)	≈ 0.07 μ m·rad (@~10 fC/bunch)	
Normalized beam emittance (T≈5.6 MeV, low charge)	≈ 0.17 μm·rad (@0.02 pC/bunch)	Close to the limitation of present instrumentation. Emittance might be smaller.
Normalized beam emittance (T≈5.6 MeV, high charge)	≈ 0.8 μm·rad (@7.7 pC/bunch)	Further improvement is expected by optimizing machine parameters and by higher gun voltage.
Momentum jitter $(\Delta p/p)_{\rm rms}$	6×10 ⁻⁵	On-crest acceleration. With high rf- feedback gain.
Bunch length and energy spread	See graphs in these slides. (depend on bunch charges)	Parameters have not been optimized yet under space-charge effect.

IV. Commissioning of the Compact ERL (Dec. 2013 - Mar. 2014)

Commissioning of the cERL started on 16 Dec., 2013

Beam was successfully accelerated up to 20 MeV in the main linac, decelerated, and transported to the entrance of dump line (Dec. 16-20, 2013)

Problems and Cures during/after the Initial Commissioning (5 days)

3-dipole merger

1. Magnetic isolation between "merger" and "injection chicane"

Also in the dump line

2. Removal of stray magnetic fields due to (four) CCG's in the merger section.

Maybe some other sources.

3. Increased momentum ratio:

 $p_{\text{recirculation}}/p_{\text{injection}} = 6
ightarrow 7$

Easy to monitor in the injection chicane

Recirculated

beams

CCG (after removed its magnet)

its magn

Magnetic shielding

Injected beams

 $p_{\rm inj}$ ~ 3 MeV/c

Beam was first transported to the dump. (Feb. 6, 2014; the 11th day)

CW beams of up to 6.5 μ A was recirculated

Typical parameters (Mar. 14, 2014)

Beam energy (E)

- Injector: 2.9 MeV
- Recirculation loop: 19.9 MeV

Parameters

- Gun voltage: 390 kV Buncher: V_c = 30.7 kV
- Injector cavities: *E*_{acc} = (3.2, 3.3, 3.1) MV/m
- Main-Linac cavities: Vc = (8.58, 8.59) MV

Beam conditions:

- CW (with burst & gap for beam position measurement)
- Repetition of bunches: 1.3 GHz

Beam current: CW + <u>burst + gap</u>

To measure the beam positions easily

(notice: above two pictures were taken in different day)

Confirmation of Energy Recovery in the Main-Linac Cavities (Mar. 14, 2014)

K. Umemori et al.

ERL operation

Non-ERL operation (reference)

Change in input RF powers of the main-linac cavities when the beam current increased. Cavity voltages were kept constant. Scale: P_{in} (cavity 1): 1.55-1.75 kW, P_{in} (cavity2): 1.88-2.08 kW, Beam current: 0-20 μ A. Change in the input RF powers of the main-linac cavities when the beam current increased. Cavity voltages were kept constant. Scale: $P_{\rm in}$ (cavity 1): 1.55-1.75 kW, $P_{\rm in}$ (cavity2): 1.88-2.08 kW, Beam current: 0-10 μ A.

Both injector and main-linac cavities worked very stably

Beam position monitors in the main-linac (ML) section where two overlapped beams pass

T. Obina

Monitor and Control of Recirculation Time

Measurement and Tuning of Beams

Single-kick response measurement

M. Shimada et al.

Statistics of cERL Operations (Apr. 2013 - Mar. 2014)

* Including conditioning

Month	Machine Operation Time* (hours)	Beam ON Time (hours)	Operation Time of Helium Refrigerator (hours)	
Injector commissioning (Apr June, 2013)				
Apr. 2013	92	24	185	
May 2013	111	70	291	
June 2013	157	106	315	
Subtotal	361	202	792	
cERL commissioning (Dec. 2013 - , Mar. 2014) * conditioning was done in Nov. 2013				
Nov. 2013	59	0	489	
Dec. 2013	113	36	480	
Jan. 2014	49	11	418	
Feb. 2014	211	121	672	
Mar. 2014	113	71	345	
Subtotal	487	240	2404	
Total	848	442	3196 32	

V. Conclusion

- The Compact ERL was completed and commissioned in Dec., 2013.
 - It was within two years after starting the assembly of injector module.
- The commissioning progressed very smoothly. Both injector and main-linac cavities worked very stably.
- We have so far achieved:
 - acceleration of beams up to 20 MeV using a main-linac cryomodule (8.6 MV/cavity \approx 8.3 MV/m)
 - recirculation, deceleration, and transportation of beams to the dump (i.e. ERL operation)
 - recirculation of CW beams up to $6.5 \ \mu A$
 - confirmation of energy recovery (with rough accuracy)
- Measurement and tuning of beams are under way

Prospect

- We will continue accelerator study to achieve the goals for the 3-GeV ERL.
 - beam current will be increased in stages: \rightarrow 100 μ A \rightarrow 1 mA \rightarrow 10 mA
- X-ray production by Laser Compton Scattering (LCS):
 - Laser system and beamline will be installed in 2014 (by JAEA and by the Photon and Quantum Basic Research Coordinated Development Program)
- Terahertz beamline for users is under consideration.

VI. Acknowledgment

We are grateful to the Cornell University, Argonne National Laboratory, Jefferson Lab., TRIUMF, HZDR, HZB, ASTeC, and the other institutes, for useful discussions, advices, or collaboration.

Backup Slides

Tentative Design of 3-GeV ERL

Typical parameters

Parameter	3-GeV ERL	XFEL-O
Beam energy E	3 GeV	6-7 GeV
Injection energy E _{inj}	10 MeV	10 MeV
Average beam current I_0	10 - 100 mA	20 μA
Charge/bunch q _b	7.7 - 77 pC	20 pC
Bunch repetition rate f _{rep}	1.3 GHz	1 MHz
Normalized beam emittance ϵ_n	0.1 - 1 mm∙mrad	0.2 mm mrad
Bunch length (rms) : normal : ultra-short	2 ps < 100 fs	1 ps
RF frequency f _{rf}	1.3 GHz	1.3 GHz
E _{acc} in main linac (tentative); in CW	13.4 MV/m	13.4 MV/m

Layout of cERL (March, 2014)

Construction of cERL (2012-2013)

Installation of 500-kV photocathode DC gun #1 (Oct. 2012 - Mar. 2013)

Oct. 2012

Finished in Mar. 2013

38

Installation of vacuum chambers (Sep.-Oct., 2013)

Sep. 2013

Typical Operation Parameters of cERL during the Commissioning

Parameter	Value
Beam energy of injector E _{inj}	2.9 MeV
Beam energy in recirculation loop E _{recirc}	19.9 MeV
Momentum ratio p_{recirc}/p_{inj}	7 (or 6)
Maximum beam current I _{max}	6.5 μA (CW)
Gun voltage V _{gun}	390 kV
Accelerating gradient of injector cavities $E_{\text{acc,inj}}$ (for recirculation)	3.3 MV/m typ.
(for individual operation of injector)	7.0 MV/m typ.
RF voltage of main-linac cavities $V_{c,ML}$	8.6 MV/cavity typ.
$(V_{\rm c} = 1.038 \times E_{\rm acc})$	
Typical macropulse-beam for beam tuning	pulse width: 1.2 μs,
	15 fC/bunch, 5 Hz
Repetition frequency of bunches	1.3 GHz

* Beam properties (emittance, ...) are in analysis.