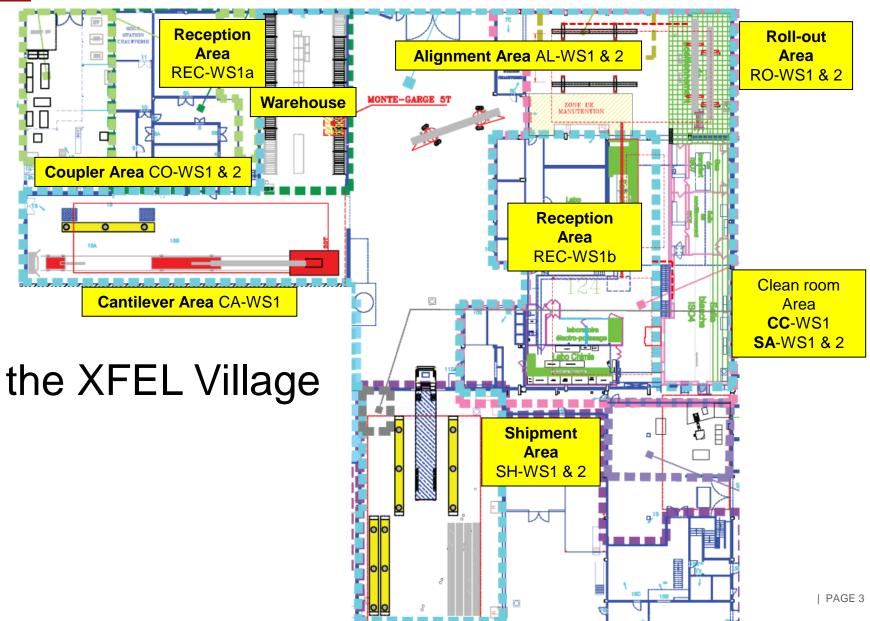
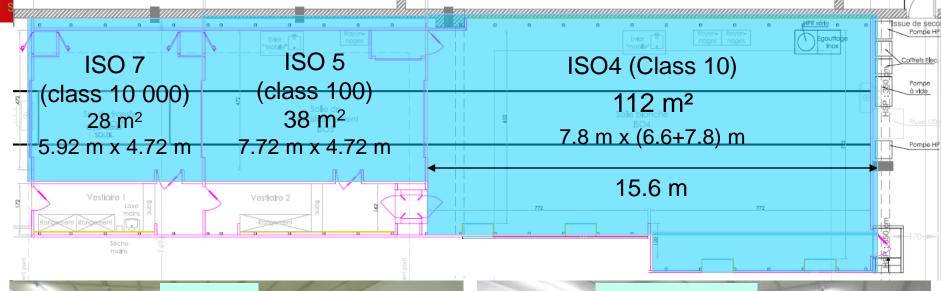


XFEL Cryomodule Assembly: Industrial Execution

Assembly Infrastructure: pre-built by CEA for company exploitation



Pre-Built Workstations in assembly halls



Pre-Defined Clean Room Layout

Organisation of Work Stations→ breakdown model of assembly operations

- 1. Clean Room Cold Coupler Area (IS04-CC-WS1)
 - Cold coupler assembly
- 2. Clean Room String Assembly Area (ISO4-SA-WS1, ISO4-SA-WS2)
 - String connections (1 gate valve + 8 cavities + 1 Qpole unit)
- 3. Roll-out Area (RO-WS1, RO-WS2)
 - HOM tuning, magnetic shielding, tuners,...
 - 2Ph-tube welding, cold-mass connection
- 4. Alignment Area (AL-WS1, AL-WS2)
 - Cavity and quadrupole fine alignment
 - Coupler shields and braids, tuner electric tests
- 5. Cantilever Area (CA-WS1)
 - Welding of 4K and 70 K shields, super insulation
 - Quad current lead
 - Insertion into vacuum vessel and string alignment
- 6. Coupler Area (CO-WS1, CO-WS2)
 - Warm couplers + coupler pumping line
 - Control operations (electrical, RF)
- 7. Shipment Area (SH-WS1, SH-WS2)
 - CEA-Alsyom "acceptance test"
 - End-caps closing, N2-insulation, loading.

In full production, this chain of workstations will be fully occupied with 7 cryomodules $(XM_{n-6} \otimes WS1,..., XM_n \otimes WS7)$ stationed for one week.

A Cryomodule Factory!

Tooling vs. Indial Contract

Ideally the tooling definition should be included in the industrial contract.

This was impossible with our project timeline and readiness: e.g. the clean room was delivered in Nov. 2009.

The contract specifies that the Industrial Operator is only responsible of the standard tools, while CEA is responsible for the specific tools and their maintenance.

The contract is essentially 'Man and Engineering Power'

As a consequence, the industrial operator will criticize the infrastructure layout and the tooling made available to him:

- e.g. cavity reception area,
- e.g. cavity support and pre-alignment tools in the clean room,
- e.g. layout of shipment vs. VV strorage area

Some of the criticisms come too early, missing the global scheme.

Some of the criticisms will lead to a better optimized production.

Input Data Readiness for the Industry Transfer

 \bigcap fT

Kick-off

Sorios

	\underline{w}	CH	KICK-OIT	Series
 Infrastructure and Tooling 		80%	90%	100%
(in the broad sense, e.g. cavity supports)				
 Cryomodule Configuration 		70%	85%	100%
 Cryomodule Documentation 				
– PBS (or MBOM)		30%	70%	100%
 Availability of Drawings 		30%	70%	100%
 Assembly Documentation (WBS) 				
 Availability of Assembly Procedures 				
 In English 		50%	75%	100%
 In French 		0%	0%	50%
 Availability of Control Procedures 		50%	75%	100%
 Availability of Regulation (PED, Safety))	20%	50%	100%
 Overall Quality of the Process (RF accepta 	nce)	60%	60%	100%
		(qualitative %)		

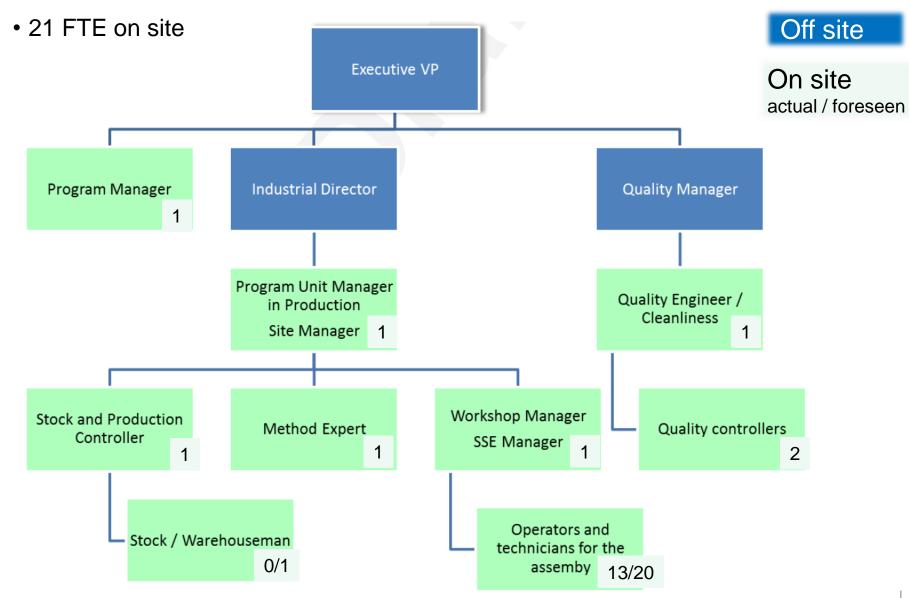
Ideally, all ratios should be 100 % (cf. cavity production, or AMTF).

Industry could start production w/o 100% of Input Data in their Resource Planning software (ERP)

Selection of Industrial Contractor

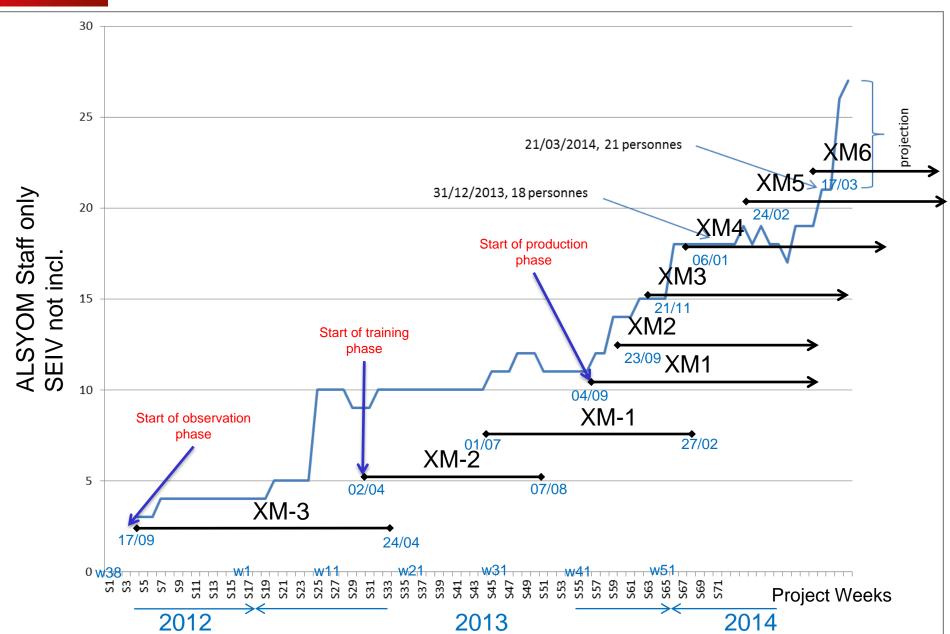
- Tender process: ALSYOM, lowest bidder / best technical offer, has been selected by CEA.
- Up to 29 people will be on Saclay site during ~2 ½ years
- Fields of expertise requested:
 - Management (resource planning, stock, quality)
 - Engineering (method, drawings, tooling)
 - Clean room and cleaning
 - Vacuum
 - RF
 - Welding
 - Survey
 - Mechanical operations

roll-out Area

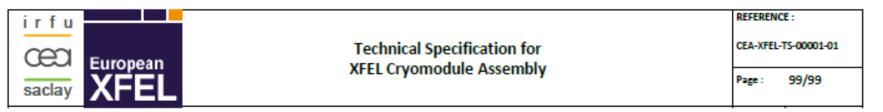


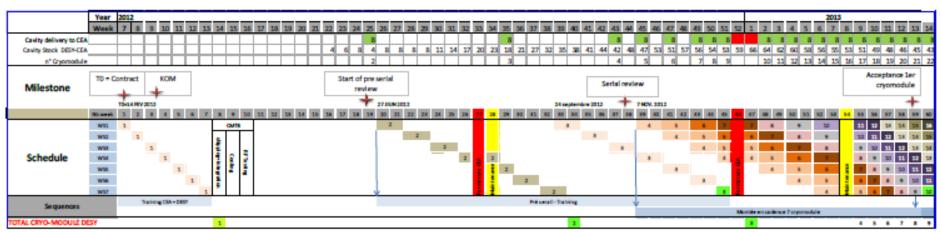
XM-1 and XM1 on Roll-Out Area during welding investigations

ALSYOM ORGANISATION



ALSYOM Staff EVOLUTION & Planning





Planning from Technical Specifications

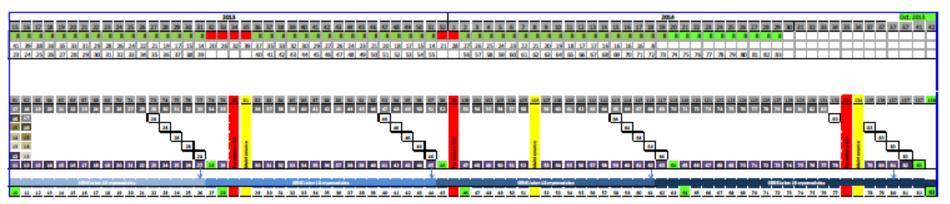
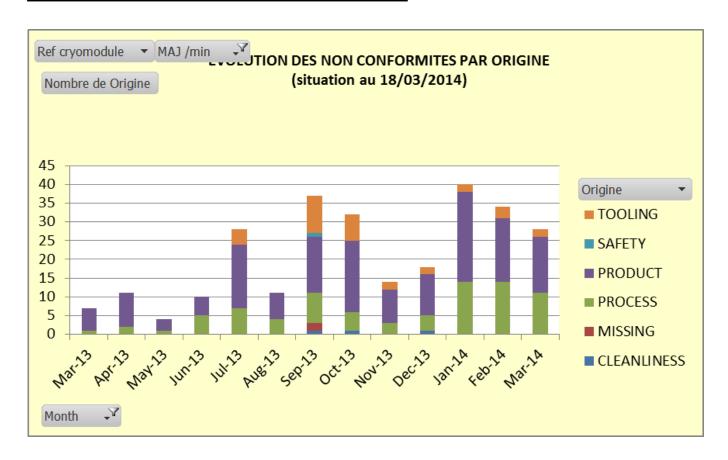
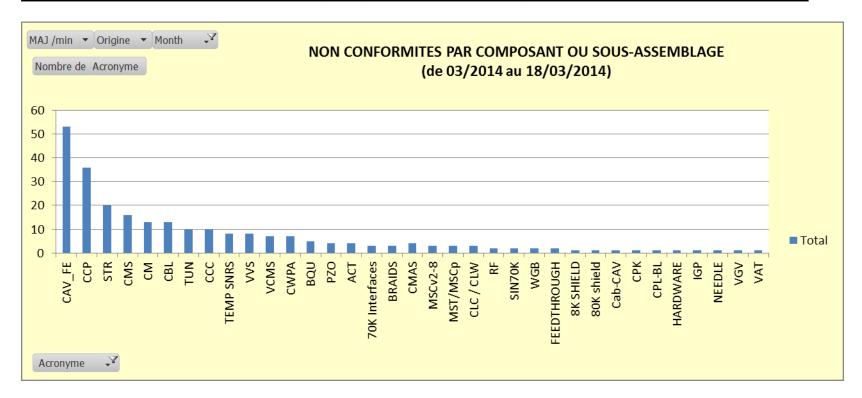



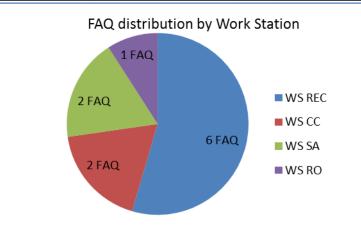
Figure 12-1: schedule of the assembly according with the availability of cavity.

ETAT DES NON-CONFORMITES - XFEL CRYOMODULE


EVOLUTION DU NOMBRE DE NON CONFORMITES

ETAT DES NON-CONFORMITES - XFEL CRYOMODULE

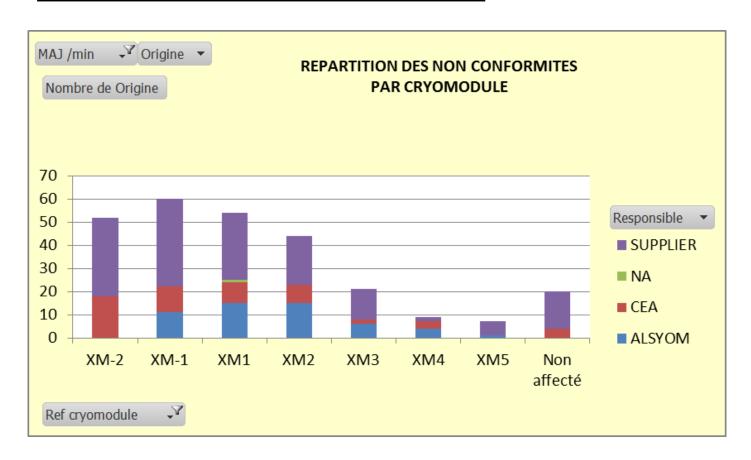
REPARTITION DES NON CONFORMITES (FAQ) PAR COMPOSANTS (CUMUL DE 03/2013 au 18/03/2014)



Non-conformities on cavities on XM-2

FAQ	Serial Number	ws	Origin	Object	NCR Number	Disposition
FAQ-2013-0002	CAV00512	REC	PRODUCT	Threaded rods too long on cavity beamtube adapter flange - short side	CEA-XFEL-RNC-13-077	Use as is
FAQ-2013-0003	CAV00510	REC	PRODUCT	High Q Antenna flange misoriented	CEA-XFEL-RNC-13-081	Use as is
FAQ-2013-0004	CAV00510	REC	PRODUCT	Cavity elbow valve mispositionned	CEA-XFEL-RNC-13-082	Use as is
FAQ-2013-0005	CAV00509 & CAV00512	SUP	PROCESS	Water entered inside 2Ph He pipe and tank during washing operation in the Belimed	CEA-XFEL-RNC-13-083	Reworked
FAQ-2013-0010	CAV00510 & CAV00514	CC	PROCESS	Water inside cavity elbow valve	CEA-XFEL-RNC-13-090	Reworked
FAQ-2013-0015	CAV00509, CAV00510, CAV00513, CAV00514, CAV00526.	REC	PRODUCT	Five cavities are out RF-measurement acceptance regarding the HOM RF rejection criteria	CEA-XFEL-RNC-13-094	Use as is
FAQ-2013-0017	CAV00509	SA	PRODUCT	Presence of visible particules inside beam tube	CEA-XFEL-RNC-13-096	Return
FAQ-2013-0018	CAV00523	REC	PRODUCT	High Q Antenna flange and Cavity flange (Long side) misoriented	CEA-XFEL-RNC-13-097	Use as is
FAQ-2013-0019	CAV00513	REC	PRODUCT	Flange of elbow valve is dirty	CEA-XFEL-RNC-13-098	Reworked
FAQ-2013-0020	4 CAVITIES	SA	PROCESS	Quick Cavity venting up to 6 mbar	CEA-XFEL-RNC-13-099	Use as is
FAQ-2013-0025	CAV_FE00513	RO	PROCESS	Presence of water in 8mm He tube	NA	Reworked

REC = Reception area


CC = Cold Coupler assembly area

SA = String Assembly area

RO = Roll-Out area

ETAT DES NON-CONFORMITES - XFEL CRYOMODULE

REPARTITION DES NON CONFORMITES PAR CRYOMODULE

