Radiation measurement & comparison between VT and CM tests at cERL

H.Sakai, T.Furuya, M.Sato, K.Shinoe, K.Umemori, K.Enami(KEK),

M. Sawamura (JAEA), E.Cenni (Sokendai)

Less than 8 pages TTC meeting 2014 @DESY. (2014.March.24-March.27) WG8

X-T Rotating mapping system for radiation measurement at VT

Radiation profile were detected from both direction by a ring of 16 PIN diodes and agree well with x-ray angular distribution of rotating mapping.

16 PIN can detect radiation profile during cryomodule test.

Setup of high power test at cERL-ML cryomodule

Results of high power test (Vc vs Q0)

•High power test was done one by one cavity.

• Input coupler was processed up to 25kW before high power test.

• Both cavities reached to Vc = 16MV.

Q0 of #4 cavity decreased during processing.
Field emission on-set was 8-9 MV for both cavities.

Measured error is assumed end point of bremsstrulung effect

Backup

Radiation calculation (EGS5)

Compact ERL(cERL) at KEK

Compact ERL main linac cryomodule configuration

(Compact) ERL target

Frequency : 1.3 GHz Input power : 20kW CW (SW) Gradient: 15MV/m Q0: >1*10^10 Beam current : max 100mA (against HOM-BBU instability)

2-cavity cryomodule was developed for compact ERL main linac to demonstrate the high current ERL operation at cERL. We have done the high power test by using this cryomodule.

Results of vertical test of cERL Main linac two cavities

