

TTC2014, 24th March, 2014 DESY

Limits for peak fields and gradient in low-beta cavities for high intensity projects

Yuan He

Linac Center

Institute of Modern Physics

Chinese Academy of Sciences

Overview of SC Cavities in the High Intensity Projects

INATIP

		SNS	SARAF	Spiral2	FRIB	China ADS	PIP II	IFMIF	ESS	MYRRH A
	HWR		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		
	QWR			\checkmark	\checkmark					
Cavity	СН									\checkmark
	Spoke					\checkmark	\checkmark		\checkmark	\checkmark
	Elliptical	\checkmark				\checkmark	\checkmark		\checkmark	\checkmark
Beta Range		0.61, 0.81	0.09 0.15	0.07, 0.12	0.04, 0.085 0.29,0.53	0.09-0.85	0.1-0.9	0.1 0.15	0.5-0.9	0.06-0.65
	proton	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark	\checkmark
Particle	Deuteron		\checkmark	\checkmark				\checkmark		
	Heavy ion			\checkmark	\checkmark					
Beam Mode	CW		0.04-5m A	5mA (D), 1mA (Heavy Ion)	~1mA	10mA	2 mA	125mA		4mA
	Pulse	60Hz, 0.65ms, peak 30mA					15Hz, 0.6ms, 2mA		14Hz, 2.86ms, peak 62.5mA	

Linuits for peak fields and gradient in low-beta cavities for high intensity projects Yuan He, TTC2014, March. 24th, 2014, DESY

SNS SRF Cavity

Medium beta (β =0.61) cavity

1 NAL

By Sang-Ho Kim

<u>Limits for peak fields and gradient in low-beta cavities for high intensity projects</u> <u>Yuan IIIe, TTC2014, March. 24th, 2014, DESY</u> **VTA Test Statistics**

By Sang-Ho Kim

Linuits for peak fields and gradient in low-beta cavities for high intensity projects Yuan He, TTC2014, March. 24th, 2014, DESY

Eacc

Ilimits for peak fields and gradient in low-beta cavities for high intensity projects Yuan He, ITC2014, March. 24th, 2014, DESY

Limits for peak fields and gradient in low-beta cavities for high intensity projects Yuan He, TTC2014, March. 24th, 2014, DESY

Specifications of PSM

- The cryomodule houses six SC HWR cavities and three SC solenoids
- Separate beam and insulation vacuum
- Operating temperature 4.2°K
- six 2 kW solid state amplifiers
- Designed to accelerate 2 mA protons or deuterons beams

HWR Parameters					
Frequency	176 MHz				
Optimal β (protons)	0.09				
L _{acc} =βλ	0.15 m				
∆V @ E _{peak}	840 kV @ 25 MV/m				
Q ₀ @E _{peak}	>4.7x10 ⁸				
Cryogenic load	< 70 W				
Q _{ext}	~1.3x10 ⁶				
Loaded BW	~130 Hz				

M. Pekeler, LINAC 2006

1 XNAD

21

Limits for peak fields and gradient in low-beta cavities for high intensity projects Yuan He, TTC2014, March. 24th, 2014, DESY

PSM commissioning

Helium processing : 99.9999% purity, 4 10⁻⁵ mbar up to 43 MV/m 10% DC

Reduced field emission from the cavities and allowed stable operation at the nominal fields.

However, simultaneous operation of all cavities at the nominal field was not achieved for long period.

A. Perry, SRF2009

Limits for peak fields and gradient in low-beta cavities for high intensity projects Yuan He, ITC2014, March. 24th, 2014, DESY Layout of Spiral2

By Robin Ferdimand

Linnits for peak fields and gradient in low-beta cavities for high intensity projects Yuan He, ITC2014, March. 24th, 2014, DESY 11

β=0.07 cavity VT status By Robin Ferdimand

$\beta = 0.12$ cavity VT status

<u>Limits for peak fields and gradient in low-beta cavities for high intensity projects</u> Yuan He, ITC2014, March. 24th, 2014, DESY

	Unit	Specs	CMA4	CMA6	CMA7	CMA2	CMA3	CMA5	CMA9	CMA8
Max. acc. Gradient	MV/m	>6.5	8.85	8.34	9	8.6	7.95	9.1	8.44	9
Rx activity @6.5MV/m	μSv/h		560	91	14.3	730	494	1.5	677	32
Total losses @4K, 6.5MV/m	W	<20.5	20.8	11.4	11.8	15.56	17.9	11.3	12.6	10.38
Static losses @4K	W	<8.5W	6.5	3.98	4.1	3.11	4.34	3.6	4.47	3.12
Pressure sensitivity	Hz/mbar	<5	-1.58	-1.32	-1.45	-1.31	-1.08	-1.22	-1.24	-1.66
Cavity alignment	mm	<u></u> 1.3	0.52	0.4	0.48	1.46	0.4			
	Unit	Specs	CMB1		CMB2 CN		1B3 CMB4		IB4	
Max. acc. Gradient	MV/m	> 6.5	>8.0	>8.0	>8.0	>8.0	>8.0	>8.0	>8.0	>8.0
Rx activity @6.5MV/m	μSv/h		22000	0	160	0	0	0	70	0
Total losses @4K, 6.5MV/m	W	< 36.0	2	9	2	9	27		31	5
Static losses @4k	W	<12.5	1	.7	19		19		1	9
Pressure sensitivity	Hz/mbar	< 8.0	-5.3	-4.95	-5.4	-5.8	-5.2	-4.5	-4.9	-5.2
Beam vacuum	mbar	< 5.0e-7	5E-08		3E-08		4E-08		6E-08	
Cavity alignment	mm	<u></u> 1.2	0.16	0.34	0.62	0.42	0.24	0.38	0.14	0.36

In order to avoid damages, the max allowed test cavity field value for the A type cryomodule is 9MV/m, and 8MV/m for the B type cryomodule (respectively Epeak=48MV/m and 38MV/m and Bpeak=78mT and 75mT).

Linuits for peak fields and gradient in low-beta cavities for high intensity projects Yuan He, TTC2014, March. 24th, 2014, DESY

Layout of FRIB

Cavity Certificate Results and Limitation

- All 4 types have been successfully qualified with an enough margin for FRIB specification.
- High Q slope and Field emission also limits the gradient in some cases.
- He vessel dressing has no impact on cavity performance.
- 120⁰C baking helps for high Q and conditioning low level multipacting

QWR0.041 Ep=31 MV/m, Bp=55 mT QWR0.085 Ep=33 MV/m, Bp=70 mT HWR0.29 Ep=33 MV/m, Bp=60 mT HWR0.53 Ep=27 MV/m, Bp=64 mT

By Kanji Saito

SRF Cavities for China ADS Project

325MHz

Parameters	Value
Ions	Р
Energy	0.25~1.5 GeV
Current	10 mA

Injector I (IHEP)

325.0MHz

	Unit	Spoke012	HWR010	HWR015	Spoke021	Spoke040	Ellip063	Ellip082
Freq.	MHz	325	162.5	162.5	325	325	650	650
βg	-	0.12	0.09	0.14	0.21	0.4	0.63	0.82
Aperture	mm	35	40	40	50	50	100	100
Va max	MV	0.82	0.78	1.82	1.64	2.86	10.26	15.63
Epeak	MV/m	32.5	25	32	24/31	25/32	29/38	28/36
Bpeak	mT	46	50	40	50/65	50/65	50/65	50/65
Temp.	K	4.5	4.5	4.5	4.5	2	2	2
Ploss	W	10	10	15.5	16.8	6.5	21	39

Limits for peak fields and gradient in low-beta cavities for high intensity projects Yuan He, ITC2014, March. 24th, 2014, DESY

VT and HT Results of HWR

- 1. Q-slop is observed for all cavities.
- 2. MP happens at very low field during every testing but #02 at IMP.
- 3. Field Emission of HWR #03, #04 is very heavy
- 4. FE is the mainly trouble to achieve higher.

HWR 0.10

Linuits for peak fields and gradient in low-beta cavities for high intensity projects Yuan He, ITC2014, March. 24th, 2014, DESY

Test Results of Spoke012 and 021

INATI

Yuan He, TTC2014, March. 24th, 2014, DESY

Layout of Proton Improvement Plan l

XMAC, February 2014; Slava Yakovlev

Linac Beam Energy	800	MeV
Linac Beam Current	2	mA
Linac Beam Pulse Length	0.6	msec
Linac Pulse Repetition	15	Hz
Rate	13	112
Linac Upgrade Potential	CW	

• Low beam loading;

- Long filling time compared to pulse length;
- Low efficiency at pulse mode.

PIP II SRF Linac Technology Map												
of PXIE XMAC, February 2014; Slava Yakovlev												
	H LEBT	RFQ	MEB	r H	WR	SSR	1 5	SR2	β=0	.6	<mark>β=0.9</mark>	
	,	RT (~:)-2.1	L5m) MeV		2	.1-1	77 Me	CW	17	7-80	0 MeV	
Name	Freq (MHz)	Cavity	Eacc (MV/ m)	Epeak (MV/m)	Bpeak (mT)	ΔE (MeV)	Energy (MeV)	СМ	Cavity / CM	<u>Q0@2K</u> (1010)	Static loss/ CM @2 K, W	Total loss /CM @2 K CW, W
HWR	162.5	HWR	8.2	38	41	1.7	2.1-11	1	8	0.5	14	24
SSR1	325	Single- spoke	10	38	58	2.05	11-38	2	8	0.5	16	27
SSR2	325	Single- spoke	11.2	40	70	5.32	38-177	7	5	1.2	8.8	52
LB650	650	Elliptic 5cell	16.5	37.5	70	11.6	177-480	5	6*	1.5	8.1	153
HB650	650	Elliptic 5cell	17.5	35.2	64	17.7	480-800	4	6	2	6.2	153

 $E_{peak} \le 40$ MV/m, for CW (Field emission);

• In CW regime the total loss is 410 W;

B_{peak} ≤ 75 mT, for CW (medium field Q-slope) • 5% duty factor for cryo, or 20.5 W. Limits for peak fields and gradient in low-beta cavities for high intensity projects

Ywan He, TTC2014, March. 24th, 2014, DESY

325 MHz beta=0.22 SSR1 cavity

- Two previous SSR1 spoke resonators performed very well in bare cavity tests;
- Above are the tests of 9 cavities from U.S. Vendor (Roark) production of 10 cavities;
- Performance at 2 K is above requirements for Project X in both Q_0 and gradient.

XMAC, February 2014; Slava Yakovlev

- 120-150 micron BCP and HPR at ANL/FNAL processing facility then 120 C bake
- Low FE depends on optimized nozzle design for effective HPR of surface

SSR1 Prototypes Exceed PX Performance Specs.

Linuits for peak fields and gradient in low-beta cavities for high intensity projects Yuan He, ITC2014, March. 24th, 2014, DESY

- □ International Fusion Material Irradiation Facility (IFMIF): 2 accelerators in parallel
- □ Each accelerator: 125 mA deuteron beam, 40 MeV, CW
- EVEDA (Engineering Validation and Engineering Design Activities): first phase to validate the key technologies

□ Linear IFMIF Prototype Accelerator (LIPAc) to be tested at Rokkasho – Japan

□ International collaboration between Europe and Japan

By Alban Mosnier

Limits for peak fields and gradient in low-beta cavities for high intensity projects Yuan He, TTC2014, March. 24th, 2014, DESY

IFMIF HWR Design

24

Hpk located on HPR port

Requirements

PARAMETER	VALUE
Beam port diameter [mm]	40
Nominal accelerating gradient [MV/m]	4.5
Operation temperature [K]	4.45
Quality factor at nominal accelerating	>5E8
gradient	
Power dissipation at nominal accelerating gradient (W)	< 7
Nominal beta	0.094
Tuning range [kHz]	50
External Q (Qext)	6.5e4
Loaded cavity bandwidth [kHz]	2.7

Extra design constraints:

- Power coupler port diameter of 98 mm
- Cold frequency tuning performed by means of cavity deformation
- Compliance with Japanese pressure vessels regulation

RF Characteristics

	unit	value
Frequency	MHz	175
Epk/Eacc		4.8
Bpk/Eacc	mT/(MV/m)	11
G	Ω	26.3
R /Q at β_{ont}	Ω	151
R /Q at β = 0.094	Ω	140
Provide the second of the seco		1.3e9
William Hee 1-14 201 4. Minter 201 4. 101 4. 101 4. 101 4.		

Prototype: Vertical Test Results

× X-ray dose rate CV1 top

P02 welded Nb disk 4.2K 12 dec 2012

Acceptance criteria

- □ Prototypes based on the original design with central plunger tuner
- \Box Modified in 2012-2013 to overcome the limitations of the plunger flange/gasket poor RF and thermal behavior
- □ NbTi plunger flange removed and port closed with Nb disk
- □ More details about the qualification of the prototypes in N. Bazin's paper at SRF 2013 P02 welded Nb disk 1.5K 12 dec 2012

By Steve Malloy

Spoke Cavity RF design

INAT

Elliptical cavity design By Steve Malloy

β=0.65

β=0.86

	Medium	High
Geometrical β	0.67	0.86
Frequency (MHz)	704.2	704.2
Number of cells	6	5
Temperature (K)	2	2
Max surface E field (MV/m)	44	44
Peak B field (mT)	80	85
Nominal gradient (Mv/m)	16.7	19.9
Q0 at nominal gradient	>5e9	>5e9
Qext	7.50E+05	7.60E+05

Limit by the main coupler power <1.1 MW

Limits for peak fields and gradient in low-beta cavities for high intensity projects Yuan He, TTC2014, March. 24th, 2014, DESY

Limit of Gradient at SNS

- Field emission induced heating (major limiting factor for both types of cavities)
- At higher duty factor (>30 Hz) collective effect affects achievable gradients. Operation at 60 Hz, a few cavities operating much lower gradient than limiting gradient.
- MP of HOM couplers. MP induced radiation \rightarrow radiation onset is very low especially in high beta cavities. Field emission onset is higher than radiation onset gradient.

By Sang-Ho Kim

Limits for peak fields and gradient in low-beta cavities for high intensity projects <u>Ywan He, TTC2014, March. 24th, 2014, DESY</u>

Effect of High Oder Modes

- SNS removed many feedthroughs from HOM couplers.
- SNS re-evaluated the HOM issues and concluded that the SNS does not need HOM damping in 2007.
- Still achievable gradients are limited by HOM couplers in several cavities. Very careful conditioning is required after thermal cycle.

By Sang-Ho Kim

Duty factor is 0.9%, incoherent losses are 25 mW/CM.

HOMs should not be an issue.

• The study on HOM focuses on elliptical cavity only. How about low beta structure? Is it issue when the beam beam intensity is quite high?

Limits for peak fields and gradient in low-beta cavities for high intensity projects Yuan He, TTC2014, March. 24th, 2014, DESY

Designed Q0 and Tested Q0 at Designed Epk

Limits for peak fields and gradient in low-beta cavities for high intensity projects Yuan He, TTC2014, March. 24th, 2014, DESY

Q0 vs Bpk in Various Projects

Limits for peak fields and gradient in low-beta cavities for high intensity projects Yuan He, ITC2014, March. 24th, 2014, DESY

<u>Limits for peak fields and gradient in low-beta cavities for high intensity projects</u> Yuan He, TTC2014, March. 24th, 2014, DESY

- For limit of Epeak and gradient, elliptical cavity like ESS mainly concerns the limits of power coupler.
- Limit of Epeak for a low beta cavities seems Bpeak or FE, almost all cavities quench finally. Max Bpeak is around 100 mT, far away from critical field. FE onset almost in the range of 20 to 30 MV/m.
- Q slop at middle field is general for a low beta structure, it seems limit of the Q0 but Epeak. High Q0 cavity can not go higher gradient.
- No consideration is obviously related high intensity especially for a low beta cavity.
- ▶ High-Order Modes for 10 mA beam → "to damp, or not to damp?" SNS leans towards a negative conclusion. How about low beta structure like QWR and Spoke?
- Limits related with high intensity, SNS may give us an answer in presentation of Sang-Ho Kim on Tuesday morning WG6.

- Sang-Ho Kim, SNS
- Robin Ferdinand, Spiral2
- Kenji Saito, FRIB
- J.P. Dai, Z.Q. Li, and Y. He, China ADS
- Slava Yakovlev, PIP II/ProjectX/PIXE
- Alban Mosnier, IFMIF
- Steve Malloy, ESS
- Slides for SARAF are from internet
- And others in WG6

Thanks for your attention!

Linnits for peak fields and gradient in low-beta cavities for high intensity projects Yuan He, ITC2014, March. 24th, 2014, DESY