

CW SRF cryomodule at Cornell

Georg Hoffstaetter Cornell Physics Dept. / CLASSE Cornell's SRF and ERL team

With contributions from

Cornell University

- Ralf Eichhorn
- Matthias Liepe
- Bruce Dunham

Cornell University

CM Results from Cornell

World Record CW beam current & brightness from a photoinjector

4 MeV, 75 mA CW beam accelerated by SRF cavities

World Record Q₀ of an SRF cavity in a cryomodule

 Q_0 =1·10¹¹ at 1.6K, 16 MV/m in a cryomodule

Now a main ERL cryomodule is under construction

Georg Hoffstaetter, Cornell University

6

Cornell University (1) Science, (2) Generic design

Science with an Energy Recovery Linac

Cornell Energy Recovery Linac June 2013

Cornell Energy Recovery Linac:

Project Definition Design Report

June 2013

 Science case gathered in international workshops

- Design report
 - 530 pages between conceptual design and engineering design
 - Access at <u>www.classe.cornell.edu/ERL/</u> <u>PDDR</u>

Also

- Electron beam construction (from RI)
- Cryoplant (from Linde and Air Liquide)

Cornell University 7-cell cavity production

Un-stiffened cavities (#2, #3, #4)

ERL 7-cell surface preparations

- **Bulk BCP** 1
- 2. Degassing in TM furnace (650C*4days)
- 3. Freq. and flatness Tuning
- 4. Final BCP
- 5. 120C bake in TM furnace (120C*48hrs)
- 6. HF rinse
- 7. VT w/ T-map

Every test is done with multi-cell T-mapping.

(140um)

(10um)

Georg Hoffstaetter, Cornell University

TTC workshop, DESY

Cornell University B-shielding, no return current

0

Georg Hoffstaetter, Cornell University

Cavity Design Overview

Goal: Maximize I_{th} > 100 mA (under constraints)

Center cells

- Geometries are (nominally) identical high-BBU-current geometries
- Responsible for general properties of HOM spectrum
- Controls frequencies of HOM passbands and dispersion relations
- Determines cell-to-cell coupling and how sensitive HOM spectrum is to variation in cell shape

End cells

- Asymmetric can be used to prevent trapped modes
- Responsible for coupling HOMs to HOM absorber
- Directly controls quality factors of HOMs

Beam Pipe

• Should be short to improve linac fill factor but long enough to avoid dissipating too much power from the fundamental mode

HOM load

- Absorber material properties determine specific mode losses.
- Also serves as bellows connecting cavities

Cornell University

Note:

14

Changes of the Coupler from TTC-III hast been covered in a separate presentation. 7 couplers are tested to 5kW with overhead to 10kW.

- Full-circumference heat sink to allow
 >500W dissipation @ 80K
- Broadband SiC absorber ring, brazed to tungsten
- Includes bellow sections
- Flanges allow easy cleaning
- Zero-impedance beamline flanges

Cornell University

HOM damping in the HTC

Beamline HOM absorbers strongly damp dipole HOMs to under Q $\sim 10^4$

HTC-2: No HOM Absorbers HTC-3: With HOM Absorbers

- (A.1) Excitation of HOMS by modulation of beam current
- (A.2) See the beam oscillate under these HOMs => f, Q, and R/Q of HOMs => OK !
- (B) Measure HOM heating => beam-pipe HOM absorbers need copper coating !

Georg Hoffstaetter, Cornell University

TTC workshop, DESY

• Use the same cryomodule concept in the injector and the main linac, based on the ILC module.

Reduces risk

- Rely on well established and tested performance of the TTF III technology to reduce risk, cost and minimize development time.
 - Some improvements
 - Cavities supported by large diameter Helium-gas return pipe (HGRP)
 - All cryogenic piping inside of cryomodule
 - Some changes needed
- Further simplify and reduce cost

- Implement beamline HOM loads for strong broadband damping of HOMs generated by the high current and short bunches.
- Use a low average power coax RF input coupler per cavity, with lateral flexibility for cool down and fixed coupling.
- Do not include a 5K shield.
- Increase the diameter of the cavity helium vessel chimney to 10 cm for the high CW heat load.
- Include a JT valve in each cryomodule for the high CW heat load.
- Increase the diameter of the 2-phase 2K He pipe to 10 cm for the high CW gas load.

Design "Innovations"

- Tuner stepper replaceable while string is in cryomodule
- Rail system for cold mass insertion
- Gate valve inside of module with outside drive
- Precision fixed cavity support surfaces between the beamline components and the HGRP -> easy "self" alignment

Transverse offset (x,y) Baseline (1-σ): 0.5 mm Allowable (1-σ): 2 mm Pitch

> Baseline $(1-\sigma)$: 1 mrad (0.8 mm over length of cavity) Allowable $(1-\sigma)$: 1.5 mrad (1.2 mm over length of cavity)

Cornell University Cryogenic manifolds: six lines

1 line for 2K supply	subcooled liquid @1.2 bar	 2K helium bath for cavities via 2K-2 phase line pre-cool gas for cool-down 90% heat load from RF losses in the cavities
2 lines for 4.5-6K	3.0 bar He liquid Single phase flow	 Thermal intercept for HOM absorbers and couplers 2/3 dynamic heat load
3 lines for 40-80K	20 bar He gas	 Thermal intercept for HOM absorbers and couplers 40K thermal shield, low thermal expansion rate over 40-120K range 90% heat load from HOM

Start of discussion