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Gravity          Curvature of space-time metric

Classical General Relativity

Diffeomorphisms:

Einstein's „hole argument“:

diffeomorphisms  =  gauge symmetry of GR



  

Quantum gravity: make sense of

or rather:

Quantum General Relativity

non-renormalizable

renormalization: scale-dependent couplings  and effective action

Perturbative ansatz:

[Goroff, Sagnotti '85]



  

● Motivation: Why quantum gravity?

● Spin Foam Models: 
i. GR as constrained BF theory
ii. discretization and quantisation
iii.successes and shortcomings

● Renormalization without length scale:  

i. general setup
ii. diffeomorphism symmetry
iii.easy example

● How to do it in practice: Approximation methods

● Summary



  

GR as topological theory with constraints:

Vierbein formalism: Vierbein      , spin connection

Strategy: quantize BF theory (easy), and impose simplicity constraints on path integral

+ simplicity constraints:

In the following: ● D = 4
● Riemannian signature
● fixed       (no sum over topologies)
● vacuum GR (no matter)

[Plebański '77, Capovilla, Jacobson, 
 Dell, Mason '91]

[Horowicz '89]



  

Quantizing (discretized) BF theory:

Triangulation       of manifold

Variables:

Path integral:

Action:

e.g. [Ponzano, Regge, '69, Baez '99]

-invariant tensors



  

Constraining quantized BF theory:

Sate sum (path integral)
for BF theory:

Classical simplicity constraints:

Restriction of spins / intertwiners in quantum theory:

for some half-integer

Spin Foam model:

[Reisenberger '94, Barrett, Crane '99, Livine, Speziale '07, Engle,  
 Pereira, Rovelli, Livine '07, Freidel, Krasnov '07, Oriti Baratin '11, ...]



  

2-complex dual to triangulation, with spins and intertwiners

Geometrical interpretation of states

Spatial slice: graph

Shape space of quantized tetrahedra with fixed areas given by

(spatial) boundary states: spin networks



  

Properties of the EPRL Spin Foam Model:

Geometrical interpretation of large quantum number limit:

Coherent states: approximate 
spatial geometry (tetrahedra)

Regge action (discrete GR)

[Regge, '61]

[Barrett, Dowdall, Fairbairn, 
 Gomez, Hellmann, '07]

[Livine, Speziale '07]



  

Gap in geometric quantities: e.g. (spatial) area observables have discrete spectrum

Properties of the Spin Foam Model ctd:

3d: Ponzano-Regge model

3d + cosm. const: Turaev-Viro model

Tensor Field Theories: QFTs on Lie groups, spin foam amplitudes as Feynman graphs

In 2d: matrix model for quantum gravity

Symmetry reduced case: cosmological condensate

[DePietri, Freidel, Kransov, Rovelli '00, 
 Oriti '06, Gurau '09, Gurau, Rivasseau '11, ...]

[Ashtekar, Lewandowski, '93,
 Rovelli, Smolin, '95]

[Gielen, Oriti, Sindoni, '13]

[Ponzano, Regge, '69]

[Witten '89, Reshetikhin, Turaev, '91,Turaev, Viro, '92]



  

classical diffeo symmery broken in EPRL spin foam model

Problems with the EPRL model:

continuum limit, perfect discretization?

renormalization without background structure?

[Dittrich '08, BB, Dittrich, '09]

[Oeckl et al '04, BB, Dittrich, 
 Steinhaus, '09, Hellmann, 
 Kamiński '13, Hoehn '13]

[BB '11, BB, Dittrich, Hellmann, 
 Kamiński '12, Dittrich, Seinhaus, '13]
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Generalized spin foam models

Start with manifold       and consider embedded, oriented 2-complexes

variables: group elements for

compact Lie group

configuration space:

integration measure:

observables:

[Pfeiffer '01, Pfeiffer, Oeckl '02,
 Magliaro, Perini, '10, BB, Dittrich, 
 Hellmann, Kamiński '12]



  

lattice gauge theory:

EPRL spin foam model:

Generalized spin foam models

special cases:

hypercubic lattice

dual to 4d triangulation



  

Continuum limit

Natural partial ordering of     's (in semi-analytic category)

projection („coarse graining map“)

Not every two    's can be compared, but: for each two         there is a finer one:



  

Continuum limit

projective limit:

space of (generalized) continuum connections: compact Hausdorff space

Consider all     (or sufficiently many) at the same time:

condition for continuum measure    on     : 

for all observables         „                   „cylindrical consistency“

Radon measure on

[Ashtekar, Isham '92, 
 Ashtekar, Lewandowski '94]



  

Where is the physical intuition?

configuration space: are finite-dim „slices“ through

provides cut-off: only finitely many holonomies

The two-complexes are the scales!

observables: all for all

only finitely many holonomies measurable at a time

expectation values of observables:

for any



  

Where is the physical intuition?

cylindrical consistency:

is precisely the idea of Wilsonian RG flow!

measure („action“) parametrised by parameters which depend on 



  

convergence
in the sense of sequence:

„scale“ without background:

„scale“ with background:

convergence 
in sense of filters:



  

Diffeomorphism group action

Group of (semi-analytic) diffeomorphisms act 
on classical connections

induced action on generalized connections
via action on 2-complexes.

invariance of continuum measure under 
equivalent to

for all      supporting



  

together with cylindrical consistency 
this is a very strong condition:

Diffeomorphism group action

Diffeomorphism-invariance of partial measures



  

Example:

Near trivial example:

„charge-network functions“

coarse graining map:



  

Example:

RG equations:

Obvious solution: (area) metric

2-form

Limit solutions: 2d Yang-Mills



  

Example:

Diffeomorphism-invariance:

Only solutions: (limits exist as measures on       )

Could have been guessed from 



  

Example:

Space of solutions to GR equations:
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Approximations:

RG flow equations: conditions of cylindrical consistency of partial measures

for all and all In most cases impossible to check. 

Possible approximations:

● Don't check for all 2-complexes    , just for subset 
 (e.g. lattices, or hose dual to triangulations)

● Don't check on all observables     , just on few 
 interesting ones

● Search for solutions in subset of all measures, e.g.

 truncation to few parameters     and minimize the error.



  

Example:

Use finite group:

has three irreps: trivial      , sign      , and  

Truncation of measure space (mimics EPRL model):

[BB, Dittrich, Hellmann, Kamiński '12]



  

Example:

3d: hierarchical lattics made from tetrahedra, only consider observables at boundary

RG step:



  

Example:

Numerical flow:

I:       BF theory
II: HTF
III:     BF theory
IV:nontrivial
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Summary:

● Spin foam models are interesting models for background-independent QGR

● EPRL model nice candidate with interesting properties

● Renormalization of spin foam models in principle understood
 (flow along partially ordered set rather than line)

● Diffeomorphism-invariance strong condition!

● Approximation methods are being developed 



  

Open questions:

● How to incorporate Lorentzian signature? (non-compact groups)

● Other interesting diff-invariant models (lower-dimensional, Seiberg-Witten?)

● How good are approximation methods (e.g. compared to Migdal-Kadanoff)?

● Interesting coupling constants for QGR: R-terms, etc.

● Asymptotic safety? Renormalizability? 
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