Matter and the Universe

Topic 1: Fundamental Particles and Forces

Three-loop Heavy-Flavour Corrections to Deep-Inelastic Scattering Arnd Behring (DESY)

 $W_{\mu\nu}(q, P, s) = \frac{1}{4\pi} \int d^4\xi \exp(iq\xi) \langle P, s \mid [J^{em}_{\mu}(\xi), J^{em}_{\nu}(0)] \mid P, s \rangle =$

 $\frac{1}{2x} \left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2} \right) F_L(x,Q^2) + \frac{2x}{Q^2} \left(P_{\mu}P_{\nu} + \frac{q_{\mu}P_{\nu} + q_{\nu}P_{\mu}}{2x} - \frac{Q^2}{4x^2}g_{\mu\nu} \right) F_2(x,Q^2)$

Structure functions $F_{2,L}$ contain light and heavy quark contributions

Precision of experimental data requires the NNLO calculation of massive quark contributions to structure functions

obtain α_s		
$\alpha_s(M_Z^2)$ from NNLO DIS(+) analyses [from ABM13]		
	$lpha_s(M_Z^2)$	
BBG	$0.1134 \begin{array}{c} {}^{+0.0019}_{-0.0021}$	valence analysis, NNLO
GRS	0.112	valence analysis, NNLO
ABKM	0.1135 ± 0.0014	HQ: FFNS $N_f = 3$
JR	0.1128 ± 0.0010	dynamical approach
JR	0.1140 ± 0.0006	including NLO-jets
MSTW	0.1171 ± 0.0014	
MSTW	0.1155 - 0.1175	(2013)
$ABM11_J$	$0.1134 - 0.1149 \pm 0.0012$	Tevatron jets (NLO) incl.
ABM13	0.1133 ± 0.0011	
ABM13	0.1132 ± 0.0011	(without jets)
CTEQ	0.11590.1162	
CTEQ	0.1140	(without jets)
NN21	$0.1174 \pm 0.0006 \pm 0.0001$	
Gehrmann et al.	$0.1131 \stackrel{+ 0.0028}{- 0.0022}$	e^+e^- thrust
Abbate et al.	0.1140 ± 0.0015	e^+e^- thrust
BBG	$0.1141 \begin{array}{c} {}^{+0.0020}_{-0.0022}$	valence analysis, $N^{3}LO$

Fit theory prediction to data and

 $\Delta_{\rm Th} \alpha_s = \alpha_s (N^3 LO) - \alpha_s (NNLO) + \Delta_{HQ}$

Calculation

- Analytical methods and heavy use of computer algebra
- Feynman diagrams generated using QGRAF
- Reduction to master integrals using Reduze

Goals

- NNLO variable flavor number scheme will be provided
- Improved values of α_s and m_c
- Better constraints on sea quarks and gluon pdfs

- Master integrals calculated using
 - Differential equations
 - Advanced summation techniques using Sigma

High Complexity

- Thousands of diagrams
- Computation time several cpu years
- Large scale computer algebra needed (O(100 GB) RAM)

First results for m_c

(Yet based on moment approximation)

Operator Matrix Element

Results given in analytic form

 → involved expressions, ready for
 efficient numerical use in
 experiment

 $m_c = 1.24^{+0.04}_{-0.08} \text{ GeV}$

$+\frac{32P_{31}}{243(N-1)N^5(N+1)^5(N+2)^4} + \frac{224(N^2+N+2)^2}{9(N-1)N^2(N+1)^2(N+2)}\zeta_3 + \cdots \bigg\}$
$+C_F C_A T_F \left\{ \frac{2(N^2 + N + 2)^2 S_1(N)^4}{9(N-1)N^2(N+1)^2(N+2)} + \frac{4(N^2 + N + 2)P_6 S_1(N)^3}{27(N-1)^2 N^3(N+1)^3(N+2)^2} \right\}$
$+2^{-N}\left[\frac{16P_2S_3(2,N)}{(N-1)N^3(N+1)^2} - \frac{16P_2S_{1,2}(2,1,N)}{(N-1)N^3(N+1)^2} + \frac{16P_2S_{2,1}(2,1,N)}{(N-1)N^3(N+1)^2} - \frac{16P_2S_{1,1,1}(2,1,1,N)}{(N-1)N^3(N+1)^2}\right]$
$-\frac{32(N^2+N+2)^2 S_{1,1,2}(2,\frac{1}{2},1,N)}{(N-1)N^2(N+1)^2(N+2)} + \frac{32(N^2+N+2)^2 S_{1,1,2}(2,1,\frac{1}{2},N)}{(N-1)N^2(N+1)^2(N+2)}$
$+\frac{32\left(N^2+N+2\right)^2 S_{1,2,1}\left(2,\frac{1}{2},1,N\right)}{(N-1)N^2(N+1)^2(N+2)}-\frac{32\left(N^2+N+2\right)^2 S_{1,2,1}\left(2,1,\frac{1}{2},N\right)}{(N-1)N^2(N+1)^2(N+2)}$
$-\frac{32(N^2+N+2)^2 S_{1,1,1,1}(2,\frac{1}{2},1,1,N)}{(N-1)N^2(N+1)^2(N+2)} - \frac{32(N^2+N+2)^2 S_{1,1,1,1}(2,1,\frac{1}{2},1,N)}{(N-1)N^2(N+1)^2(N+2)} + \cdots \right\} + \cdots$
$S_{3,1}\left(2,\frac{1}{2},N\right) = \sum_{i=1}^{N} \sum_{j=1}^{i} \frac{2^{i}}{i^{3}} \frac{(\frac{1}{2})^{j}}{j^{1}}$

