Matter and the Universe

Fundamental Particles and Forces

J. Mnich (DESY)

Elementary Particle Physics

The **Big Questions**:

Origin of mass Nature of Dark Matter New forces and particles Matter-antimatter asymmetry Unification of fundamental forces

ĩ

W

SUSY force

particles

Fundamental Particles and Forces

The **Big Questions** require **cutting**edge research in the triangle

- proton-proton physics
 Large Hadron Collider (LHC)
- electron-positron Physics
 Belle (II)
 International Linear Collider (ILC)
- theoretical particle physics

Computing infrastructure Tier-1 GridKa Tier-2 DESY Grid Centre

J. Mnich

Participating Helmholtz centres

Total 138 scientists plus 60 Ph.D. students financed by Helmholtz

Particle Physics Strategy 2015-19

Maximum discovery potential

Highest sensitivity

Guidance and interpretation by theory

- + Computing: Tier 1 & Tier-2
- + Detector & accelerator development (→ *Matter and Technology*)
- + Test beam

Particle Physics Roadmaps

Helmholtz strategy well aligned with national and international partners

Helmholtz shapes national and international roadmaps

German Committee for Particle Physics (KET, Nov. 2012)

LHC

ILC

1. The successful running of the LHC and its experiments continues to be the recommendation with highest priority. This includes in particular the high luminosity upgrades of the LHC and the Phase-2 upgrades of the experiments, which currently constitute the only way to directly explore the multi-TeV energy regime.

2. The proposal of the Japanese community to host the ILC as an international project finds enthusiastic support in the German community. In view of the unique capabilities of such a facility for precision measurements of the newly discovered particle, the foreseen expandability to higher energies and the technical readiness of the project as documented in the Global Design Effort ⁴) we strongly recommend to contribute actively to the realisation of this project.

USA: Snowmass conclusions and recommendations to P5 in line with worldwide strategy statements

J. Mnich

CERN Council Update of the European Strategy for Particle Physics (May 2013)

- LHC, incl. HL-LHC
- accelerator R&D
- strong support for ILC
- importance of theory
 - role of national labs

Japan: Future Projects of High Energy Physics

 Should a new particle such as a Higgs boson with a mass below approximately 1 TeV be confirmed at LHC, Japan should take the leadership role in an early realization of an e⁺e⁻ linear collider. In particular, if the particle is light, experiments at low collision energy should be started at the earliest possible time. In parallel, continuous studies on new physics should be pursued for both LHC and the upgraded LHC version. Should the energy scale of new particles/physics be higher, accelerator R&D should be strengthened in order to realize the necessary collision energy.

The Large Hadron Collider (LHC)

Very successful run in 2012 at 8 TeV

- > 200 publications so far by each experiment (ATLAS & CMS)
 - Higgs discovery + properties
 - search for new physics
 - physics at 10⁻¹⁹ m

2013/14: Consolidation work

- preparation of LHC and experiments for full energy (14 TeV) from 2015 on
- work progressing according to schedule

Helmholtz centres play leading role in LHC collaborations

physics, detector, computing, management

German Participation at the LHC

J. Mnich

PAGE 7

LHC Future

Physics programme until 2035 – LHC just started:

so far approx. half the max. energy reached (8 instead of 14 TeV)

1% of the intended luminosity ≈ 30 fb⁻¹ by end of 2012 ≈ 3000 fb⁻¹ expected by 2035

2015ff: LHC running at 13-14 TeV ≈ 100 fb⁻¹ by 2019

2023-35: High-Luminosity LHC

increase luminosity beyond 10^{34} cm⁻² s⁻¹ by approx. factor 5 to 10

J. Mnich

Must establish the basis now!

- Major detector upgrades required.
- Tracking detectors reach end of their lifetime with O(300 fb⁻¹)
- Higher luminosity requires finer granularity and better trigger capabilities

LHC Detector Upgrades

Proposal for Helmholtz Strategic Large Investments

DESY: 20 M€ for investments into ATLAS & CMS tracker (Phase 2)

KIT: 3.8 M€ for CMS electronics

GSI: 4.2 M€ for ALICE TPC (→ topic 2)

Proposal in preparation

to be considered in this evaluation for submission 2nd half 2014

Coherent approach with national and international partners e.g. plan for CMS tracker endcap

Electron-Positron Physics

Precision physics through collisions of fundamental particles:

BELLE II at SuperKEKB

German contribution: pixel vertex detector in DEPFET technology

– Germany 2nd largest contribution in BELLE II

- one of the largest HEP projects in Germany

Helmholtz: support German Belle II groups by exploiting specific infrastructure and expertise available

- cooling, mechanics, alignment, test beam
- Computing Tier-1 at GridKa
 - Tier-2 at DESY

Install & commission vertex detector in 2016 Accumulate ≈ 10 ab⁻¹ by 2019

International Linear Collider (ILC)

2013: Technical Design Report submitted and evaluated R&D goals reached. Synergy with XFEL construction!

Strong interest by Japanese scientists and politics to host ILC Selection of a site in northern Japan.

R&D for accelerator & detector

Strong synergy with Matter & Technology

Linear Collider Collaboration (LCC) Synergy with CLIC, e.g. detector R&D

J. Mnich

Unique role of DESY! (cf. evaluation in 2009)

Test Date (number of cavities)

Particle Physics Theory

Particle physics theory in Helmholtz: broad spectrum, firmly connected to the experimental programme

Collaboration between different HGF centres: DESY, KIT, Jülich, GSI

Closely integrated with local universities (Hamburg, Berlin, Karlsruhe, theory & experimental groups)

J. Mnich

PAGE 13

Particle Physics Theory

Shapes theoretical particle physics in Germany & beyond

- lectures, schools, conferences, workshops

J. Mnich

- fellowship programme (each year >300 applications from around the globe)
- large fraction of theory staff in Germany have a DESY history

Networks and grants:

Industry cooperations: Wolfram Research, Maplesoft, RISC Software GmbH

Infrastructure

LK II topics: GridKa and DESY Grid Centre

- German Tier-1 centre at KIT (GridKa) for all 4 LHC experiments and more
- DESY operates Tier-2 centres for ATLAS, CMS, LHCb and more NAF as crucial element for LHC analyses in Germany
- Helmholtz provides > 2/3 of the German LHC computing share!

DESY test beam (\rightarrow next slide) Laboratory for large detectors intended as detector development hub for particle physics (LHC) in Germany \rightarrow LHC Detector Upgrade

Alliance "*Physics at the Terascale*" platform for exchange in German HEP Physics, detectors, computing

Analysis Centre at DESY as central hub:

- education and networking
- \approx 15 schools & workshops per year
- attracting many young people
- common events of the 3 Alliances
 (→ MUTLINK)

DESY Test Beam

Increasingly important facility for detector R&D

→ Matter and Technology

Used by many projects approx. 400 users in 2013

Summary & Conclusion

Exciting times for particle physics

Proton-proton physics at the LHC:

spectacular discovery of a Higgs boson just started and 20 years more to come

Electron-positron physics:

BELLE II: complementary physics to LHC (precision) ILC: strong physics case, encouraging developments in Japan

Theory

crucial for the success of the experimental programme: predictions, interpretations, tools development of new methods and concepts

LK II computing facilities

essential for physics analysis

Helmholtz particle physics 2015-19

- addresses the big challenges
- shapes and is aligned with national and international roadmaps

The Guarantors of the Future: Leaders of Young Investigator Groups

2009 Isabell Melzer-Pellmann CMS SUSY

2010 Alexander Westphal Theory / Cosmology

2012 Frank Tackmann Theory / Phenomenology (Emmy Noether)

2012 Ralf Ulrich CMS forward physics for cosmic ray analysis

J. Mnich

2009 Alexei Rasperezza CMS Higgs

2011 Kerstin Tackmann ATLAS Higgs

2012 Yvonne Peters ATLAS top physics

Backup Slides

Helmholtz Recruitment Initiative

Successes in Helmholtz-wide competion Appointment procedures with universities ongoing

Geraldine Servant (Barcelona)

leading theorist at the interface between cosmology and collider physics offer from Hamburg University

Christophe Grojean (Barcelona)

internationally leading LHC phenomenologist common apointment with Humboldt University Berlin envisaged

Elisabetta Gallo (Florenz)

ex-spokesperson ZEUS, now CMS common appointment with Hamburg University

Kerstin Borras (DESY)

W2/W3 Initiative Common appointment with RWTH Aachen 2014/15: CMS Deputy Spokesperson

Young People

Career development of Helmholtz Young Investigator Group Leaders since 2009:

Many are now university professors!

Laura Covi W3 professor, U Göttingen

Erika Garutti W2 professor, U Hamburg

Sven Moch W2 professor, U Hamburg

Ulrich Husemann W3 professor, KIT Karlsruhe

PAGE 21

Helmholtz Alliance "Physics at the Terascale"

Additional funding for the Alliance ended December 2012 Confirmed funding for 2013 and beyond: approx. 1 Mio €/year from DESY approx. 1 Mio €/year from Universities

Money is tied to specific positions!

Extra support from Helmholtz: 500 k€/year for 2013/2014

support for (limited) continuation of structures support for workshop and schools programme (needs significant engagement by DESY to maintain the current level) support for a small number of projects with clear and central contribution to the Alliance goals

With the current funding, only a limited Alliance programme possible after 2014!

- schools and workshops
- hopefully maintaining the structure in Germany
- no support for common projects!

Plans 2015-19

Fulfill DESY's role as a national lab for the LHC: Physics Operation Detector upgrades

Performing physics analyses & preparatory studies for upgrade

physics topics: Higgs, SUSY, top-quark, QCD, electro-weak

Operation and maintenance of detectors

fulfill long-term commitments and prepare for future role as integration centre

Short term & long term detector upgrades

construction of new CMS pixel & contributions to ATLAS IBL

R&D for tracker upgrade \Rightarrow annual research field budget increment

prepare infrastructure for future upgrade

construction of new tracker end-caps for ATLAS and CMS

 \Rightarrow application for a capital investment

Higgs Couplings: Comparison LHC & ILC

[K. Desch '13]

Snapshot 10/2013

ILC Site Selection

International Linear Collider ILC

ILC Detector

DESY leading centre in the LC detector effort

Physics studies (with theory)

Detector concept ILD

Time projection chamber

Hadron calorimeter

Forward calorimeter, vertex detector Strategic asset: test beam

→ Matter and technology

stau discovery reach

DESY in BELLE I

Access to the world largest data sample at the Y(4S)

about 1000 fb⁻¹ collected between 1999 and 2010

Start analysis of $A_{FB} e+e \rightarrow \mu+\mu - (\gamma)$

replicate full Belle I data set at DESY

one of the leading centres for

Belle II MC production

DESY Activities around BELLE II PXD

Support German Belle II groups by exploiting specific expertise available

J. Mnich

Belle II Schedule

DESY

Fundamental Particles and Forces

Participating Helmholtz Centres

Matter and the Universe, Topic Fundamental Particles and Forces

Research personnel (LK I)

Budget large infrastructure (LK II)

DESY Cooperations in Particle Physics

Not for referee handout

DESY Particle Physics

Facts

DESY Fraction in D-HEP

From RECFA Study 2012/13

		Germany	DESY*	DESY Fraction [%]
Professors		129	12	9
	females [%]	6	0**	
permanent scientists		192	92	48
	females [%]	12	15	
YIGs etc.		40	11	28
	females [%]	33	27	
temporary staff	Postdocs	463	110	24
	Ph.D. students	695	95	14
	females [%]	17	22	

* including third-party funding, M&T, LK-2

** 3 appointment procedures ongoing

Ph.D.			
physicists	825	225	27
all physicists	1520	320	21

Projects

Third-Party Funding

DESY, incl. detector development

Young Talents at DESY

Funding – Base Budget Direct expenses for DESY+KIT

Personnel DESY+KIT

Funding Structure DESY+KIT

Gender Distribution at DESY

Age Distribution at DESY in LK-1 and LK-2

Physics at the LHC Highlights 2010-14

Example ATLAS:

Higgs detection in $\gamma\gamma$ coordination of $H \rightarrow \gamma\gamma$ subgroup

Example CMS:

MSSM Higgs search $\Phi \to 3 \text{ b}$ with KIT

In both examples analysis performed by YIGs

PAGE 44

M_A [GeV]

LHC Schedule

F. Bordry, 02.12.2013

