
Inflation in String Theory - from Small to Large Fields

Planck Collaboration: The Planck mission
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Fig. 19. The temperature angular power spectrum of the primary CMB from Planck, showing a precise measurement of seven acoustic peaks, that
are well fit by a simple six-parameterΛCDM theoretical model (the model plotted is the one labelled [Planck+WP+highL] in Planck Collaboration
XVI (2013)). The shaded area around the best-fit curve represents cosmic variance, including the sky cut used. The error bars on individual points
also include cosmic variance. The horizontal axis is logarithmic up to ! = 50, and linear beyond. The vertical scale is !(!+ 1)Cl/2π. The measured
spectrum shown here is exactly the same as the one shown in Fig. 1 of Planck Collaboration XVI (2013), but it has been rebinned to show better
the low-! region.
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Fig. 20. The temperature angular power spectrum of the CMB, esti-
mated from the SMICA Planck map. The model plotted is the one la-
belled [Planck+WP+highL] in Planck Collaboration XVI (2013). The
shaded area around the best-fit curve represents cosmic variance, in-
cluding the sky cut used. The error bars on individual points do not in-
clude cosmic variance. The horizontal axis is logarithmic up to ! = 50,
and linear beyond. The vertical scale is !(! + 1)Cl/2π. The binning
scheme is the same as in Fig. 19.

8.1.1. Main catalogue

The Planck Catalogue of Compact Sources (PCCS, Planck
Collaboration XXVIII (2013)) is a list of compact sources de-

tected by Planck over the entire sky, and which therefore con-
tains both Galactic and extragalactic objects. No polarization in-
formation is provided for the sources at this time. The PCCS
differs from the ERCSC in its extraction philosophy: more effort
has been made on the completeness of the catalogue, without re-
ducing notably the reliability of the detected sources, whereas
the ERCSC was built in the spirit of releasing a reliable catalog
suitable for quick follow-up (in particular with the short-lived
Herschel telescope). The greater amount of data, different selec-
tion process and the improvements in the calibration and map-
making processing (references) help the PCCS to improve the
performance (in depth and numbers) with respect to the previ-
ous ERCSC.

The sources were extracted from the 2013 Planck frequency
maps (Sect. 6), which include data acquired over more than two
sky coverages. This implies that the flux densities of most of
the sources are an average of three or more different observa-
tions over a period of 15.5 months. The Mexican Hat Wavelet
algorithm (López-Caniego et al. 2006) has been selected as the
baseline method for the production of the PCCS. However, one
additional methods, MTXF (González-Nuevo et al. 2006) was
implemented in order to support the validation and characteriza-
tion of the PCCS.

The source selection for the PCCS is made on the basis of
Signal-to-Noise Ratio (SNR). However, the properties of the
background in the Planck maps vary substantially depending on
frequency and part of the sky. Up to 217 GHz, the CMB is the

27

BICEP2: E signal

1.7µK

−65

−60

−55

−50

Simulation: E from lensed−ΛCDM+noise

1.7µK

Right ascension [deg.]
D

ec
lin

at
io

n 
[d

eg
.]

BICEP2: B signal

0.3µK

−50050

−65

−60

−55

−50

Simulation: B from lensed−ΛCDM+noise

0.3µK

−50050

−1.8

0

1.8

−0.3

0

0.3

µ
K

µ
K



slow-roll inflation ...

Figure 1: Motion of the scalar field in the theory with V (φ) = m2

2
φ2. Several different regimes

are possible, depending on the value of the field φ. If the potential energy density of the field is
greater than the Planck density M4

p = 1, φ ! m−1, quantum fluctuations of space-time are so
strong that one cannot describe it in usual terms. Such a state is called space-time foam. At a
somewhat smaller energy density (for m " V (φ) " 1, m−1/2 " φ " m−1) quantum fluctuations
of space-time are small, but quantum fluctuations of the scalar field φ may be large. Jumps
of the scalar field due to quantum fluctuations lead to a process of eternal self-reproduction of
inflationary universe which we are going to discuss later. At even smaller values of V (φ) (for
m2 " V (φ) " m, 1 " φ " m−1/2) fluctuations of the field φ are small; it slowly moves down
as a ball in a viscous liquid. Inflation occurs for 1 " φ " m−1. Finally, near the minimum of
V (φ) (for φ " 1) the scalar field rapidly oscillates, creates pairs of elementary particles, and
the universe becomes hot.

6

[Linde ’82]
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[picture from lecture notes: Linde ’07]
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Fig. 19. The temperature angular power spectrum of the primary CMB from Planck, showing a precise measurement of seven acoustic peaks, that
are well fit by a simple six-parameterΛCDM theoretical model (the model plotted is the one labelled [Planck+WP+highL] in Planck Collaboration
XVI (2013)). The shaded area around the best-fit curve represents cosmic variance, including the sky cut used. The error bars on individual points
also include cosmic variance. The horizontal axis is logarithmic up to ! = 50, and linear beyond. The vertical scale is !(!+ 1)Cl/2π. The measured
spectrum shown here is exactly the same as the one shown in Fig. 1 of Planck Collaboration XVI (2013), but it has been rebinned to show better
the low-! region.
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Fig. 20. The temperature angular power spectrum of the CMB, esti-
mated from the SMICA Planck map. The model plotted is the one la-
belled [Planck+WP+highL] in Planck Collaboration XVI (2013). The
shaded area around the best-fit curve represents cosmic variance, in-
cluding the sky cut used. The error bars on individual points do not in-
clude cosmic variance. The horizontal axis is logarithmic up to ! = 50,
and linear beyond. The vertical scale is !(! + 1)Cl/2π. The binning
scheme is the same as in Fig. 19.

8.1.1. Main catalogue

The Planck Catalogue of Compact Sources (PCCS, Planck
Collaboration XXVIII (2013)) is a list of compact sources de-

tected by Planck over the entire sky, and which therefore con-
tains both Galactic and extragalactic objects. No polarization in-
formation is provided for the sources at this time. The PCCS
differs from the ERCSC in its extraction philosophy: more effort
has been made on the completeness of the catalogue, without re-
ducing notably the reliability of the detected sources, whereas
the ERCSC was built in the spirit of releasing a reliable catalog
suitable for quick follow-up (in particular with the short-lived
Herschel telescope). The greater amount of data, different selec-
tion process and the improvements in the calibration and map-
making processing (references) help the PCCS to improve the
performance (in depth and numbers) with respect to the previ-
ous ERCSC.

The sources were extracted from the 2013 Planck frequency
maps (Sect. 6), which include data acquired over more than two
sky coverages. This implies that the flux densities of most of
the sources are an average of three or more different observa-
tions over a period of 15.5 months. The Mexican Hat Wavelet
algorithm (López-Caniego et al. 2006) has been selected as the
baseline method for the production of the PCCS. However, one
additional methods, MTXF (González-Nuevo et al. 2006) was
implemented in order to support the validation and characteriza-
tion of the PCCS.

The source selection for the PCCS is made on the basis of
Signal-to-Noise Ratio (SNR). However, the properties of the
background in the Planck maps vary substantially depending on
frequency and part of the sky. Up to 217 GHz, the CMB is the
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• We need to understand generic dim ≥ 6 operators  
 
 
 
 

• requires UV-completion, e.g. string theory: need to 
know string and α‘-corrections, backreaction effects, ...

• detailed information about moduli stabilization 
necessary!

• string theory manifestation of the supergravity eta 
problem

why strings?

Op≥6 ∼ V (φ)
(

φ

MP

)p−4

⇒ ∆η ∼
(

φ

MP

)p−6

! 1 ∀p ≥ 6 if φ > MP



string compactification produces moduli: 
 
 
- need moduli stabilization - spectrum of massive scalars: 
 
  i)  fluxes & orientifold planes fix the shape moduli 
  ii) perturbative and/or non-perturbative corrections  
      stabilize radii / volume moduli  
      -> in IIB on a warped Calabi-Yau supergravity description  
           possible - e.g. KKLT or LVS models & Renata's talk! 
 
- some radii & brane positions stay light -- inflaton candidates  
 

and light axions:  
 
 
- axions are light  --  inflaton candidates



shades of difficulty ...
• tensor-to-scalar ratio links levels of difficulty:

[Lyth ’97]

• r = O(1/Ne) models: axion monodromy inflation
2-axion inflation
N-flation∆φ ∼

√
NeMP "MP ⇒

• r = O(1/Ne
2) models:

∆φ ∼ O(MP ) ⇒
fibre inflation in LARGE volume 
scenarios (LVS) 

• r << O(1/Ne
2) models:

∆φ! O(MP ) ⇒

warped D-brane inflation & DBI;
varieties of Kähler moduli inflation
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[KKLMMT ’03] 
[Baumann, Dymarsky, Klebanov, McAllister & Steinhardt ’07]

[Cicoli, Burgess & Quevedo ’08]



• Brane-Antibrane Dvali & Tye; Alexander; Dvali, Shafi & Solganik;   
                                 Burgess, Majumdar, Nolte, Quevedo, Rajesh & Zhang. 
• D3-D7  Dasgupta, Herdeiro, Hirano & Kallosh; Hsu, Kallosh & Prokushkin;  
                Hsu & Kallosh; Aspinwall & Kallosh; Haack, Kallosh, Krause, Linde,  
                Lüst & Zagermann; ... 
• warped brane-antibrane Kachru, Kallosh, Linde, Maldacena, McAllister & Trivedi;  
                                              Firouzjahi & Tye; Burgess, Cline, Stoica & Quevedo; Iizuka & Trivedi; 
                                              Krause & Pajer; Baumann, Dymarsky, Klebanov, McAllister & 
                                              Steinhardt; Baumann, Dymarsky, Kachru, Klebanov & McAllister; ... 
• DBI Silverstein & Tong; Alishahiha, Silverstein & Tong; Chen; Chen;  
            Shiu & Underwood; Leblond & Shandera; … 
• Racetrack Blanco-Pillado, Burgess, Cline, Escoda, Gomez-Reino, Kallosh, 
                      Linde & Quevedo; Linde & AW; ... 
• Kähler moduli Conlon & Quevedo; AW; Bond, Kofman, Prokushkin & Vaudrevange; Ben- 
                            Dayan, Jing, AW & Zarate … 




➥

small-field string inflation ...  

large-field string inflation ... 

➥

➥


• Fibre inflation (r < 0.01) Cicoli, Burgess & Quevedo 

• Single-Axion inflation with f > MP Grimm; Blumenhagen & Plauschinn; 
• 2-Axion inflation Kim, Nilles & Peloso; Berg, Pajer & Sjors; Kappl, Krippendorf & Nilles; Long,  
                                  McAllister & McGuirk;Tye & Wong; Ben-Dayan, Pedro & AW; Gao, Li & Shukla ... 
• N-flation Dimopoulos, Kachru, McGreevy, Wacker; Easther & McAllister; Grimm; Cicoli, Dutta &  
                   Maharana; Choi, Kim & Yun; Bachlechner, Dias, Frazer & McAllister 
• axion monodromy Silverstein & AW; McAllister, Silverstein & AW; Flauger, McAllister, Pajer, AW &  
                                      Xu; Dong, Horn, Silverstein & AW; Shlaer; Palti & Weigand; Marchesano, Shiu &  
                                      Uranga; Blumenhagen & Plauschinn; Hebecker, Kraus & Witkowski; Ibanez &  
                                      Valenzuela; Kaloper, Lawrence & Sorbo; McAllister, Silverstein, AW & Wrase; Franco,  
                                      Galloni, Retolaza & Uranga;

➥

no mod. stab.

r = 0

r ~ 0.001

r ~ 0.1



inflaton candidates & field range 
in string theory



• no-scale structure  

'cycle' radii 

overall volume modulus 

• supersymmetry/warping 

D-brane positions bounded by volume

• gauge/shift symmetries  

axions

unbounded

periodically bounded
by non-pert. effects

exclude dilaton S = 1/gs -- pervasive couplings to all sectors

no symmetry
protection

bounded by volume
no symmetry

protection

good symmetry
protection

inflatons should be light ...



• field range is limited to < MP

• many periodic inflaton candidates 
e.g. brane positions or 
angles θa between branes

• Einternal       0  for   L   large,  
all internal sources die at large volume  

stringy large field inflation - why so difficult ?

Lkin ∼ M2
P

Lp
(∂µa)

2 , p > q

a < (2π)2 or a < Lq

[Baumann, McAllister ’06]
[Banks, Dine, Fox & Gorbatov '03; Srvcek & Witten '06]



small fields ...



warped D3-brane inflation ...
W =

∫
G ∧ Ω + A(zi) · e−aT

k(zi, z̄i) ∼
∑

i

|zi|2 ∼ r2 ∑

i

z2
i = ε2

r

conifold

• explicit fine-tuning: 
inflection point 

• dim-6 operator 
computed & tuned
[Baumann, Dymarsky, Klebanov, McAllister & Steinhardt ’07]

N embedded D7-branes (fix moduli) 
if Kuperstein embedding:A(zi) = (z1 − µ)1/N

K = −3 ln[T + T̄ − k(zi, z̄i)]
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[KKLMMT ’03]



flat in t1 at tree-level - add string loops:

modify K, take 3 Kahler moduli:

Fibre inflation
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Figure 2: A Swiss cheese picture of a Calabi-Yau. There is one pair of large 2- and 4-cycles —

increasing the cycle volume increases the overall volume. The other pairs are such that increasing

the cycle volume decreases the overall volume.

For the F11 model, from the expressions for τi in terms of 2-cycles, we may see that it

is consistent to have τ1 large and τ2, τ3 small but not otherwise. The signature of d2V is

manifest in (4.41); each expression contains h1,1−1 minus signs. There is another important

point. In each case, there is a well-defined limit in which the overall volume goes to infinity

and all but one divisors remain small. These limits are given by (τ5 → ∞, τ4 constant )

and (τ1 → ∞, τ2, τ3 constant ) respectively. Furthermore, in each case this limit is unique:

e.g. the alternative limit (τ2 → ∞, τ1, τ3 constant ) is not well-defined.

This motivates a ‘Swiss-cheese’ picture of the Calabi-Yau, illustrated in figure 2. A

Swiss cheese is a 3-manifold with 2-cycles. Of these 2-cycles, one (tb) is ‘large’ and the

others (ts,i) are small. The volume of the cheese can be written

V = t
3/2
b −

∑

i

t
3/2
s,i , (4.42)

and ∂2V
∂ti∂tj

has signature (1, h2 − 1). The small cycles are internal; increasing their volume

decreases the overall volume of the manifold. There is one distinguished cycle that controls

the overall volume; this cycle may be made arbitrarily large while holding all other cycles

small, and controls the overall volume. For all other cycles, an arbitrary increase in their

volume decreases the overall volume and eventually leads to an inconsistency. The small

cycles may be thought of as local effects; if the bulk cycle is large, the overall volume is

largely insensitive to the size of the small cycles.

To capture the above, let us consider a Calabi-Yau with divisors τb, τs,i such that the

volume can be written

V =
(

τb +
∑

aiτs,i

) 3
2 −

(∑

biτs,i

) 3
2 − · · ·−

(∑

kiτs,i

) 3
2
. (4.43)

We assume that a limit τb $ τs,i is well-defined. By working in this limit, the minus signs

can be seen to follow from (4.39). The form given above is valid globally for both P
4
[1,1,1,6,9]

– 27 –

W = W0 + e−2πTL + e−2πTS

TJ = tJ + iτJ

tL tS

‘swiss cheese Calabi-Yau’

K = −2 ln
(

t
3/2
L − t

3/2
S︸ ︷︷ ︸

V

+α′3ξ

)

V =
W 2

0

V3

(
λ
√

lnV − µ lnV + ξν
)

∧ V ∼ eaStS LARGE volume ...

[Cicoli, Burgess & Quevedo ’08]

K = −2 ln
(√

t1t2 − t
3/2
S + α′3ξ

)

V (V,φ) ! C

V10/3

(
3− 4e−φ/

√
3
)

, φ =
√

3
2

ln t1

LV SV1 SV2

C0 5.8 · 10−8 0.012 0.023

C1 292.4 20629.4 39786.9

C2 73.1 5157.35 9946.73

Cup 219.3 1200.8 29840.2

R = C0/C2 8 · 10−10 2.3 · 10−6 2.3 · 10−6

Table 3: Coefficients of the inflationary potential for the various parameter sets

discussed in the text.

2 4 6 8 10 12 !
"

2·10-6

4·10-6

6·10-6

8·10-6

V

Figure 2: V (in arbitrary units) versus ϕ̂, with V and τ3 fixed at their minima. The plot assumes

the parameters used in the text (for which ϕ̂ip ! 0.80, ϕ̂end = 1.0, and R ≡ C0/C2 ∼ 10−6).

3.3 Inflationary slow roll

We next ask whether the scalar potential (3.31) can support a slow roll, working in the

most natural limit identified above, with A,C $ B and B > 0. As we have seen, this case

also implies 0 < C0 $ C1 = 4C2, leaving a potential well approximated by

V ! C2

〈V〉10/3

[

(3 − R) − 4

(

1 +
1

6
R

)

e−κϕ̂/2 +

(

1 +
2

3
R

)

e−2κϕ̂ + R eκϕ̂

]

(3.33)

which uses Cup ! C1 − C0 − C2 and C1/C2 ! 4, and works to linear order in

R :=
C0

C2
= 2g4

s

(
CKK

1 CKK
2

CW
12

)2

$ 1 . (3.34)

The normalization of the potential may instead be traded for the mass of the inflaton field

at its minimum: m2
ϕ = V ′′(0) = 4

(

1 + 7
6 R

)

C2/〈V〉10/3.

In practice the powers of R can be neglected in all but the last term in the potential,

where it multiplies a positive exponential which must eventually become important for

– 22 –

ns ! 0.97
r ! 0.006

also: "Poly-Instanton Inflation"
[Cicoli, Pedro & Tasinato ’11]



large fields ...



L =
1
2
R +

1
2
(∂µφ)2 − µ4−pφp

• effective theory of large-field inflation:

• the last term — the potential — spoils the shift  
symmetry …

• However, if:

• quantum GR only couples to Tµν :

not δV (n) ∼ cn
φn

Mn
P

V0 = µ4−pφp !M4
P

δV (n) ∼ V0

(
V0

M4
P

)n

, V0

(
V ′′

0

M2
P

)n

" V0

shift symmetry



• while field fluctuation interactions:

die out with increasing field displacement …

• if the inflaton potential breaks the shift symmetry  
weakly & smoothly (means: with falling derivatives)  
— 
it does not matter, if the shift symmetry is 
periodically broken, or secularly

µ4−p(φ! + δφ)p ∼ µ4−pφp
!

(
1 +

∑

n

cn
δφn

φn
!

)

• a shift symmetry itself does not guarantee smoothness  
of breaking — need UV theory as input, for all models!

shift symmetry



axion monodromy  



axion inflation in string theory ...  
• shift symmetry dictates use of string theory axions 

for large-field inflation

- periodic, e.g. 

- field range from kinetic terms f < MP  : 

[Banks, Dine, Fox & Gorbatov ’03]

b =

∫

Σ2

B2 , b → b+ (2π)2 since Sstring ⊃ 1

2πα′

∫
B2

S ∼
∫

d10x
√
−g|H3|2 ⊃

∫
d4x

√
−g4

1

L4
(∂µb)

2

B2 = bω2 ⇒ φ = fb , f =
MP

L2
< MP

however, maybe not strict: [Grimm; Blumenhagen & Plauschinn; Kenton & Thomas ’14]



axion inflation in string theory ...  

• large field-range from assistance effects of many fields 


• or monodromy 


- N-flation ...

- generic presence from branes & fluxes ! 

- cos-potential for 2 axions can align/tune for 
large-field direction

[McAllister, Silverstein & AW ’08]
[Dong, Horn, Silverstein & AW ’10]

[Silverstein & AW ’08]

[Berg, Pajer & Sjörs ’09]
[Ben-Dayan, Pedro & AW ‘14]  
[Tye & Wong; Long, McAllister & McGuirk ‘14]
[Gao, Li & Shukla; Higaki & Takahashi '14]

[Kim, Nilles & Peloso ’04; Kappl, Krippendorf & Nilles '14]

[Dimopoulos, Kachru, McGreevy & Wacker ’05]
[Easther & McAllister ’05]
[Grimm ‘07]
[Cicoli, Dutta & Maharana ’14]

… see Hans-Peter's talk



• EM Stueckelberg gauge symmetry:

on moduli fields coming from the internal metric and the dynamical string coupling. In

§3, we will show explicitly how these terms can lead to a variety of power law potentials

V ∝ φp≤p0 , with the final power p shifted down from p0 via adjustments of heavy moduli.

2.1 Axions from the two-form potential B

Perturbative string theory contains a two-form potential field B = BMNdx
M ∧ dxN that

is directly analogous to the usual vector potential A = AMdxM of electromagnetism.3 In

particular, B is sourced by fundamental strings just as the usual vector potential is sourced by

charged particles. There is a gauge invariance in the theory under which B → B+dΛ1, with

Λ1 a one-form, analogous to the gauge invariance under A → A+ dΛ0 in electromagnetism.

Similarly, there are other potential fields denoted Cp+1 sourced by p-dimensional extended

objects (Dp-branes) [23].

In electromagnetism, the action contains the gauge-invariant terms

SEM =

∫
d4x

√
−g

{
FMNF

MN − ρ2(AM + ∂MC)2 + . . .
}
, (2.1)

where under the gauge transformation AM → A + ∂MΛ0, the field C transforms as C →
C −Λ0. The first term is the Maxwell action, written in terms of the field strength F = dA.

The second term, known as a Stueckelberg term, can arise from spontaneous symmetry

breaking, with ρ the vacuum expectation value of a charged field.4

In type II string theory, one finds generalizations of these Maxwell and Stueckelberg

terms, with the gauge transformation B → B + dΛ1 accompanied by appropriate shifts of

the Cp fields. Although we will focus on specific examples in type IIB string theory below,

let us start by considering the relevant terms arising in D = 10 type IIA string theory. There

we have potential fields Cp with odd p, and it is useful to define the following generalized

field strengths that respect all the gauge symmetries of the theory:

H = dB ,

F0 = Q0 ,

F̃2 = dC1 + F0B ,

F̃4 = dC3 + C1 ∧H3 +
1

2
F0B ∧B , (2.2)

where Q0 is an integer. These are gauge-invariant, with the transformation B → B + dΛ1

3An exception is the type I string, in which closed strings are unstable to breaking into open strings, but
this theory contains a two-form potential sourced by D1-branes.

4In ordinary electrodynamics the symmetry is of course unbroken in vacuum, but ρ &= 0 arises in a
superconductor from the condensation of the Cooper pair field.
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charged particles. There is a gauge invariance in the theory under which B → B+dΛ1, with

Λ1 a one-form, analogous to the gauge invariance under A → A+ dΛ0 in electromagnetism.

Similarly, there are other potential fields denoted Cp+1 sourced by p-dimensional extended

objects (Dp-branes) [23].

In electromagnetism, the action contains the gauge-invariant terms

SEM =

∫
d4x

√
−g

{
FMNF

MN − ρ2(AM + ∂MC)2 + . . .
}
, (2.1)

where under the gauge transformation AM → A + ∂MΛ0, the field C transforms as C →
C −Λ0. The first term is the Maxwell action, written in terms of the field strength F = dA.

The second term, known as a Stueckelberg term, can arise from spontaneous symmetry

breaking, with ρ the vacuum expectation value of a charged field.4

In type II string theory, one finds generalizations of these Maxwell and Stueckelberg

terms, with the gauge transformation B → B + dΛ1 accompanied by appropriate shifts of

the Cp fields. Although we will focus on specific examples in type IIB string theory below,

let us start by considering the relevant terms arising in D = 10 type IIA string theory. There

we have potential fields Cp with odd p, and it is useful to define the following generalized

field strengths that respect all the gauge symmetries of the theory:
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F0 = Q0 ,

F̃2 = dC1 + F0B ,

F̃4 = dC3 + C1 ∧H3 +
1

2
F0B ∧ B , (2.2)

where Q0 is an integer. These are gauge-invariant, with the transformation B → B + dΛ1

3An exception is the type I string, in which closed strings are unstable to breaking into open strings, but
this theory contains a two-form potential sourced by D1-branes.

4In ordinary electrodynamics the symmetry is of course unbroken in vacuum, but ρ &= 0 arises in a
superconductor from the condensation of the Cooper pair field.
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extended to a combined transformation

δB = dΛ1 ,

δC1 = −F0Λ1 ,

δC3 = −F0Λ1 ∧B . (2.3)

The effective action starting from a total dimensionality D = 10 contains terms proportional

to5

− 1

α′4

∫
d10x

√
−G

{ 1

g2s
|H|2 +

∑

p

|F̃p|2
}
. (2.4)

Upon dimensional reduction to four dimensions, these terms introduce a direct dependence

of the potential energy on the axion fields

bi ≡
∫

Σi
2

B (2.5)

obtained by integrating the potential field B over nontrivial 2-cycles Σi
2 in the compact-

ification manifold M. Another feature we need to take into account is that the fluxes

Qi
2 =

∫
Σi

2
dC1, Q4 =

∫
Σi

4
dC3, and N3 =

∫
Σa

3
H (with the index i running over topologically

distinct even-dimensional cycles, and a similarly indexing three-cycles) are quantized, as is

Q0 = F0.

Let us focus on the B-dependent terms, and for simplicity work on the branch of the

potential where Q2 = Q4 = 0 (also setting to zero the flux dC3 along the noncompact four

dimensional spacetime, or equivalently the dual 6-form flux Q6 ≡
∫
M #10F4 =

∫
M F6). In the

models in §3, we will incorporate the analogue in type IIB string theory of these additional

fluxes, which will yield interesting behavior in some cases, but for now we will focus on the

leading contributions to the potential at large field range. Given this, we have an action of

the schematic form6

− 1

α′4

∫
d10x

√
−G

{
1

g2s
|H|2 + |Q0B|2 + |Q0B ∧B|2 + γ4g

2
s |Q0B ∧B|4 + . . .

}
. (2.6)

Here in the last term and the ellipses we have allowed for corrections that could be read off

from the tree-level four-point and higher-point functions (γ4 being an order 1 number). We

have also set to zero the contribution from |F̃6|2 = |C3 ∧ H + Q0B ∧ B ∧ B/6|2, having in

mind situations where H flux is present in order to contribute to moduli stabilization, and C3

minimizes the |F̃6|2 term at zero. More generally, there should be interesting configurations

5Similar comments apply in the more generic cases with D > 10 [24].
6See e.g. equation 12.1.25 of [23]. However, we caution the reader that we follow the sign conventions of

[25], not those of [23].
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• fluxes generate a potential for the axions:
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of large-field potentials:
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in which C3 ∧H "= −Q0B ∧B ∧B/6 at the C3 minimum, or configurations in which C3 and

B evolve together, in which cases this term is relevant.

The field strengths of R-R terms come with a factor of gs, so higher-dimension oper-

ators involving higher powers of generalized field strengths F̃p — even those from string

tree diagrams — appear with a relative factor of Q2
0g

2
s , and are thus suppressed at small

string coupling. This is in the standard frame we will use exclusively here, where gauge

transformation and flux quantization conditions are most simply expressed.

In fact, there is generically an additional suppression factor at large radius. We will

shortly consider generalizations that arise upon dimensional reduction or T-duality, where

F0 is replaced by higher-form fluxes Fn. In those cases, the suppression is even stronger,

with each power of |F̃ |2 coming with a factor of g2sQ
2
n/L

2n, where L is the size in string units

of the cycle threaded by the Fn flux.

Below, we will consider specific examples in type IIB string theory with effective |F1B|2+
|F1 ∧ B ∧ B|2 interactions. These follow from T-duality of (2.6) upon reduction of the IIA

theory on a circle as explained in detail in [25]. At first glance, this is not manifest from the

generalized fluxes that appear in the type IIB equations of motion in ten dimensions:

H = dB ,

F1 = dC0 ,

F̃3 = dC2 − C0H ,

F̃5 = dC4 −
1

2
C2 ∧H +

1

2
B ∧ dC2 . (2.7)

In F̃5 we do not find an F1 ∧B ∧B term by working directly in the ten-dimensional theory.

However, T-duality on a circle, including the duality between D7-branes and D8-branes,

requires this coupling to be present upon dimensional reduction. This indeed works out

precisely [25]. Specifically, consider reducing ten-dimensional type IIB theory on a circle

(along the x9 direction, x9 ∼= x9 + 2π), with

C0 = x9Q0 + C0 ,
C2 = x9Q0B + C2 , (2.8)

where Cp are fluctuations of the potential fields about the background. Substituting (2.8)

into (2.7), we find an effective F1 ∧ B ∧ B contribution to F̃5, and an effective F1 ∧ B term

in F̃3. In the four-dimensional effective theory, there are many contributions of this kind,

leading to axion potentials of the schematic form

f(χ, . . . )
(Q(n)an +Q(n−1)an−1 + · · ·+Q(0))2

L2n′ + · · · ∼ f̃(χ, . . . ) ap0 for a % 1 , (2.9)

where we have denoted the axion field by a, n = p0/2 is a positive integer, and “χ, . . . ” refers

to the moduli fields χ, as well as additional scalar fields, whose important effects we will
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for given flux quanta Q(i) potential is non-periodic – a given branch

Q(i) change by brane-flux tunneling – Q(i) shift absorbed by a-shift – many
branches, full theory has periodicity

flux monodromy
[Marchesano, Shiu & Uranga ’14]
[Blumenhagen & Plauschinn ’14]
[Hebecker, Kraus & Witkowski ’14]
[McAllister, Silverstein, AW & Wrase ’14]



flux monodromy

• p-form axions get non-periodic potentials from 
coupling to branes or fluxes/field-strengths 

• produces periodically spaces set of multiple 
branches of large-field potentials:  
 

φ

V (φ) ∼ µ4−pφp + Λ4 cos(φ/f)



flux monodromy - 4D effective picture
[Lawrence, Kaloper & Sorbo ’11]

[Dubovsky, Lawrence & Roberts ’11][Kaloper & Sorbo ’08]
[Kaloper & Lawrence ’14]

2

Another technically natural high-scale model takes as
the inflaton a periodic pseudoscalar (aka an axion) for
which the potential is generated by instantons [13–15]:
the topology of field space protects the shift symmetry
of the inflaton. The usual potential is V ∼ Λ4 cos(φ/f).
However, high-scale slow roll inflation requires axion de-
cay constants f > φ > mpl. Gravitational instan-
tons, such as wormholes [16], and string theoretic in-
stantons [17] typically have actions of order S ∼ (

mpl

f )p;
thus higher-order instantons can spoil slow-roll inflation
[17, 18].

Axion monodromy models control the Planck-
suppressed operators by combining chaotic and natu-
ral inflation. In this scenario, the inflaton is a com-
pact scalar with periodicity f < mpl. The presence
of fluxes or branes “unwraps” the inflaton configuration
space [12, 19–22], leading to a multivalued potential as
in Figure 1. In what follows we will focus on the axion-
4-form models of [12, 21], which we dub “natural chaotic
inflation”, as a benchmark theory from which to discuss
the general phenomenon of axion monodromy. We start
with the Lagrangian density

L =
1

2
m2

plR− 1

2
(∂φ)2 − 1

48
F 2
(4) +

µ

24
φ∗F(4) , (1)

where F(4) = dA(3) is a four-form field strength, with
A(3) a three-form gauge field. The canonical momentum
pA123 = ∗F(4) − µφ is quantized in units of the electric
charge e2; using this, one may write the Hamiltonian as

H =
1

2
(pφ)

2
+

1

2
(∇φ)

2
+

1

2

(
ne2 + µφ

)2
. (2)

If φ → φ + f , we must have µf = e2 for consistency.
The quantum number n can be shifted by the nucleation
of membranes, leading to the multivalued potential for φ
shown in Figure 1. At tree level, if membrane nucleation
is suppressed, one has a model of chaotic inflation with a
quadratic potential. The fundamental periodicity of the
scalar implies that corrections to V = 1

2µ
2φ2 take the

form (V/M4
uv)

n, which can be small [12, 21]. A danger
to the model remains: couplings such as µ can depend on
moduli with Planck-suppressed couplings. If the moduli
masses are of the order or smaller than the Hubble scale
H, they potentially destabilize inflation.

The axion monodromy models of [19, 20] turn these
bugs into features, by providing a UV completion in
which the overall effect of higher-order corrections and
couplings to moduli is to flatten the tree-level poten-
tial [19, 20, 23]. The constructions in those papers give
potentials significantly flatter than quadratic while still
being large-field models, with significant tensor-to-scalar
ratio r. These may be consistent with the BICEP2 re-
sult, given the current statistical significance of the re-
sults. Further, additional UV complete models realizing
the monodromy mechanism starting from steeper poten-
tials with larger r are under development [24]. Here we

will focus on whether a quadratic potential generated by
integrating the 4-form starting with (1) can be realized
with only small corrections, using effective field theory
as a guide. Our motivation for selecting this particular
class of models is the relative simplicity of the dynam-
ics which follows; yet we will find that there is a range
of interesting potential signatures. We will discuss the
relevant dynamical scales arising in various string the-
ory scenarios, to argue that existing models consistent
with grand unification are at the edge of being viable in
this regard. If viable, they can give a finite probability
for nonperturbative transitions to occur in early epochs
of inflation [12], and can give observable corrections to
the tree-level quadratic potential. In particular, we will
show that the natural consequence of a single UV scale
Muv ! MGUT close to the GUT scale yields potentially
observable corrections to the scalar and tensor spectrum.
We present this as motivation for further work on high-
scale string models.

SCALES AND CORRECTIONS

The theory (1) is protected from direct polynomial con-

tributions to the axion potential of the for φn

mn−4
pl

by the

periodicity of the scalar [12, 21]. Corrections of the form

δL =
cn

M4n
uv

F 2(n+1) , (3)

for n ≥ 1 are not forbidden. Upon integrating out the
four-form, these lead to corrections of the form

δV = c′nVtree

(
Vtree

M4
uv

)n

. (4)

If Muv & MGUT these are small. They may become im-
portant if Muv is close to but still larger than MGUT .
Note, that these corrections can be viewed as being gen-
erated by integrating out the gauge field A, whose field
strength is F = dA. In what follows we will focus mainly
on the signatures of these corrections.
The other serious danger to this scenario (and to all

models of high-scale inflation) arises from the coupling of
moduli to the inflaton. In models with geometric com-
pactifications, moduli arise from the metric degrees of
freedom which have kinetic terms weighted bympl. Upon
writing these degrees of freedom in terms of canonical
scalars ψ, they appear in potential terms in the form
ψ/mpl. We expect the moduli mass terms to be gener-
ated by potential energies of the form

W (ψ) = M4w

(
ψ

mpl

)
, (5)

where M is the scale of the physics generating the mod-

uli potential. The masses are of the order M2
mod = M4

m2
pl
.

• 4D effective action: F4 field strength, axion ɸ :
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The theory (1) is protected from direct polynomial con-

tributions to the axion potential of the for φn

mn−4
pl

by the

periodicity of the scalar [12, 21]. Corrections of the form

δL =
cn

M4n
uv

F 2(n+1) , (3)

for n ≥ 1 are not forbidden. Upon integrating out the
four-form, these lead to corrections of the form

δV = c′nVtree

(
Vtree

M4
uv

)n

. (4)

If Muv & MGUT these are small. They may become im-
portant if Muv is close to but still larger than MGUT .
Note, that these corrections can be viewed as being gen-
erated by integrating out the gauge field A, whose field
strength is F = dA. In what follows we will focus mainly
on the signatures of these corrections.
The other serious danger to this scenario (and to all

models of high-scale inflation) arises from the coupling of
moduli to the inflaton. In models with geometric com-
pactifications, moduli arise from the metric degrees of
freedom which have kinetic terms weighted bympl. Upon
writing these degrees of freedom in terms of canonical
scalars ψ, they appear in potential terms in the form
ψ/mpl. We expect the moduli mass terms to be gener-
ated by potential energies of the form

W (ψ) = M4w

(
ψ

mpl

)
, (5)

where M is the scale of the physics generating the mod-

uli potential. The masses are of the order M2
mod = M4

m2
pl
.

⇒ µf = e2 , n→ n + 1

• again:  
- axion unwound into multiple branches  
- n jumps by flux tunneling, e-S-suppressed  
- periodicity by summing 
  over branches
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If the recent measurement of B-mode polarization by BICEP2 is due to primordial gravitational
waves, it implies that inflation was driven by energy densities at the GUT scale MGUT ∼ 2 ×
1016GeV . This favors single-field chaotic inflation models. These models require transplanckian
excursions of the inflaton, forcing one to address the UV completion of the theory. We use a
benchmark 4d effective field theory of axion-4-form inflation to argue that inflation driven by a
quadratic potential (with small corrections) is well motivated in the context of high-scale string
theory models; that it presents an interesting incitement for string model building; and the dynamics
of the UV completion can have observable consequences.
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INTRODUCTION

The detection of B-mode polarization by the BICEP2
experiment [1, 2] gives tantalizing evidence that quantum
gravity may be directly relevant for observational cosmol-
ogy. If the future checks confirm that the BICEP2 B-
modes are generated by primordial gravitational waves,
this will give support to the idea that these waves are in-
duced by quantum fluctuations of the graviton. Further-
more, simple chaotic inflation models such as V = 1

2m
2φ2

[3] are in excellent current agreement with the data. To
generate the observed density fluctuations in the CMB
and large scale structure, chaotic inflation models occur
at energy densities <∼ M4

GUT ∼ (2 × 1016 GeV )4. Any
models generating observable primordial gravitational ra-
diation require transplanckian excursions of the inflaton
in field space of order ∆φ ∼ 10mpl [4, 5] over the course
of inflation.1 Therefore all such models are sensitive to
the UV completion at the Planck scale, requiring a good
understanding of quantum gravity. The purpose of this
paper is to consider constraints on the UV completion
of models dominated by a (possibly distorted) quadratic
potential, and present them as an incitement for string
model builders.

Chaotic inflation is stable against perturbative quan-
tum corrections, as exemplified as early as [9, 10], in re-
sponse to the concerns about irrelevant operator contri-
butions raised in [11]. This in fact follows if one protects
the theory with (approximate) shift symmetries, so that
all couplings to the inflaton are either very weak or via
the derivatives of the inflaton. However, nonperturba-
tive quantum-gravitational effects are expected to break
such global symmetries, inducing O(1) coefficients for all

1 We use the reduced Planck mass mpl = 2.4 × 1018 GeV ; we
take MGUT to be the value suggested by supersymetric coupling
unification [6–8].

n=0

n=1 n=2

n=3

q

V(q	

FIG. 1. Energies as a function of φ, for the potential V =
1
2
(µφ + q)2. The picture repeats itself each time one shifts

φ → φ+ e2/µ ≡ φ+ f .

Planck-suppressed operators. When φ ranges over super-
Planckian distances, these operators may spoil the small
curvature of the inflaton potential required for slow roll
inflation. Another concern is that in a string compact-
ification, the degrees of freedom can shift substantially
as fields move over super-Planckian distances; this can
also manifest itself in dangerous Planck-suppressed op-
erators. A good UV-complete realization must control
these operators.2

2 For a more complete review and discussion of the issues in this
paragraph, see [12].
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• flux-induces potentials for B2- or C2-axions & 
D7-brane position moduli, the T-duals of Wilson lines

flux monodromy with F-term supergravity description

IIA F-term axion monodromy of B2- 
or C2-axions or Wilson lines from 
flux

IIB F-term D7-position 
axion monodromy from 
F-theory G4 flux  

type IIB with dilaton-
axion monodromy from 
type IIB G3 flux  

ɸ2 , ɸ4  potentials ɸ2  potential

ɸ2  potential

[Marchesano, Shiu & Uranga ’14] [Hebecker, Kraus & Witkowski ’14]

[Blumenhagen & Plauschinn ’14]

… see Gary's talk

-beautiful F-term realizations — but  
  open question: moduli stabilization!!  
 
-addressed in supergravity model: 
  > the D7-position proposal  
 
-and  non-supergravity model: 
  > IIB on Riemann surfaces: ɸ4/3 , ɸ2 ,  ɸ3

[McAllister, Silverstein, AW & Wrase ’14]

[Hebecker, Kraus & Witkowski ’14]



summary ...
• moduli stabilization essential for string inflation! 

There is no meaningful way to talk about string 
inflation in presence of massless moduli ...


• first constructions: many small-field models, r = 0


• field-range bounds, overcome by monodromy - many 
primary power-law large-field potentials ɸ2/3  … ɸ4


• flattened powers from moduli stabilization, so again 
crucial!

⇒ if BICEP2 validated with r ~ 0.1   —   need large-field


