Partial Supergravity Breaking and the Effective Action of Consistent Truncations

Andreas Kapfer

arXiv:1409.0867 (T. Grimm, AK, S. Lüst) arXiv:1402.3529 (T. Grimm, AK)

Max-Planck-Institut für Physik

DESY Theory Workshop 2014

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Andreas Kapfer (MPP Munich)

Effective Action of Consistent Truncations

Introduction

Do consistent truncations yield proper effective actions?

Consistent truncation:

- X keep only a finite set of Kaluza-Klein(KK)-modes
- $oldsymbol{X}$ solutions of lower-dimensional theory lift to higher-dimensional theory
- \boldsymbol{X} used for phenomenology

Introduction

Do consistent truncations yield proper effective actions?

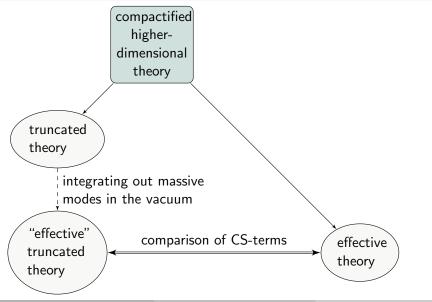
Consistent truncation:

- X keep only a finite set of Kaluza-Klein(KK)-modes
- $oldsymbol{X}$ solutions of lower-dimensional theory lift to higher-dimensional theory
- \boldsymbol{X} used for phenomenology

consistent truncation: finite set of KK-modes proper effective theory: infinite set of KK-modes

Do the quantum corrections from massive modes coincide on both sides?

Test setups with known effective action!


Investigated consistent truncations (to five dimensions):

- M-theory on *SU*(2)-structure manifolds: Calabi-Yau vacua
- \bullet type IIB supergravity on squashed Sasaki-Einstein manifolds: $\mathcal{N}=2~\text{AdS}_5$ vacua

Investigated quantum corrections:

- gauge one-loop Chern-Simons terms
- gravitational one-loop Chern-Simons terms

General Considerations

Consider vacua, which preserve half of the supersymmetry:

truncated theory

5D $\mathcal{N}=4$ gauged supergravity

spontaneous supersymmetry breaking

vacuum $5D \mathcal{N} = 2$ supergravity

Developed tool to calculate the spectrum and the classical Chern-Simons terms in the theory around the vacuum, given:

- $\bullet\,$ embedding tensors of the $\mathcal{N}=4$ gauged supergravity
- scalar VEVs

Integrate out massive modes in the vacuum:

- gauge one-loop Chern-Simons terms $\int k_{IJK} A^I \wedge F^J \wedge F^K$
- gravitational one-loop Chern-Simons terms $\int k_I A^I \wedge \operatorname{tr}(R \wedge R)$

One-loop Chern-Simons coefficients k_{IJK}, k_I from massive

- spin-1/2 fermions
- spin-3/2 fermions
- self-dual tensors (first-order kinetic term)

running in the loop.

[Bonetti, Grimm, Hohenegger] Intriligator, Morrison, Seiberg]

Integrate out massive modes in the vacuum:

- gauge one-loop Chern-Simons terms $\int k_{IJK} A^I \wedge F^J \wedge F^K$
- gravitational one-loop Chern-Simons terms $\int k_I A^I \wedge \operatorname{tr}(R \wedge R)$

One-loop Chern-Simons coefficients k_{IJK} , k_I from massive


- spin-1/2 fermions
- spin-3/2 fermions
- self-dual tensors (first-order kinetic term)

running in the loop.

[Bonetti, Grimm, Hohenegger] Intriligator, Morrison, Seiberg]

One-loop correction independent of mass scale!

Integrate out:

spin-1/2 fermion

 $k_{IJK} = \frac{1}{2} q_I q_J q_K \operatorname{sign}(m)$

tensor

 $k_{IJK} = -2q_I q_J q_K \operatorname{sign}(m)$

spin-3/2 fermion

$$k_{IJK} = -\frac{5}{2}q_Iq_Jq_K\operatorname{sign}(m)$$

m: mass of the modeq₁: charge under the Abelian gauge field A¹

Necessary condition for a proper effective action from the truncations:

The one-loop Chern-Simons terms of the truncated theory and the genuine effective action have to match!

Necessary condition for a proper effective action from the truncations:

The one-loop Chern-Simons terms of the truncated theory and the genuine effective action have to match!

Special case: genuine effective action has **no** one-loop Chern-Simons terms

 \Rightarrow Necessary condition for the consistent truncation:

The massive modes

- are uncharged.
- arrange in long multiplets, if the R-symmetry is not gauged.
- come in real (non-chiral) representations.
- cancel non-trivially between different multiplets.

Necessary condition for a proper effective action from the truncations:

The one-loop Chern-Simons terms of the truncated theory and the genuine effective action have to match!

Special case: genuine effective action has **no** one-loop Chern-Simons terms

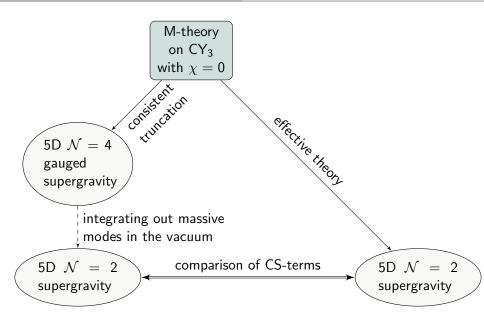
 \Rightarrow Necessary condition for the consistent truncation:

The massive modes

- are uncharged.
- arrange in long multiplets, if the R-symmetry is not gauged.
- come in real (non-chiral) representations. \checkmark
- ${\, \circ \,}$ cancel non-trivially between different multiplets. \checkmark

Consistent truncation of M-theory on SU(2)-structure Manifolds

- lift of type IIA on SU(2)-structure manifolds
 [Danckaert, Kashani-Poor, Louis, Martínez-Pedrera, Minasian,
 Spanjaard, Triendl]
- 5D $\mathcal{N} =$ 4 gauged supergravity
- $\mathcal{N}=2$ Calabi-Yau vacua \equiv Calabi-Yau manifolds with $\chi=0$
- effective action of M-theory on Calabi-Yau manifolds known (no one-loop Chern-Simons terms)


Consistent truncation of M-theory on SU(2)-structure Manifolds

- lift of type IIA on SU(2)-structure manifolds
 [Danckaert, Kashani-Poor, Louis, Martínez-Pedrera, Minasian, Spanjaard, Triendl]
- 5D $\mathcal{N}=$ 4 gauged supergravity
- $\mathcal{N}=2$ Calabi-Yau vacua \equiv Calabi-Yau manifolds with $\chi=0$
- effective action of M-theory on Calabi-Yau manifolds known (no one-loop Chern-Simons terms)

\Rightarrow Test the "effective" action of the consistent truncation:

- calculate spectrum and classical Chern-Simons terms of the Calabi-Yau vacua
- evaluate one-loop Chern-Simons terms
- compare "effective" action of consistent truncation with genuine effective action

Andreas Kapfer (MPP Munich)

Results for the Enriques Calabi-Yau ($\chi = 0$):

- 1 missing vector multiplet and 1 missing hypermultiplet in the consistent truncation (at the massless level)
- classical Chern-Simons terms can be matched (taking the missing vector into account)
- no massive charged modes in the consistent truncation
 - \Rightarrow no one-loop Chern-Simons terms
 - \Rightarrow consistent with the genuine effective action

Results for the Enriques Calabi-Yau ($\chi = 0$):

- 1 missing vector multiplet and 1 missing hypermultiplet in the consistent truncation (at the massless level)
- classical Chern-Simons terms can be matched (taking the missing vector into account)
- no massive charged modes in the consistent truncation
 - \Rightarrow no one-loop Chern-Simons terms
 - \Rightarrow consistent with the genuine effective action

Reason for absence of massive charged modes:

- no isometries for full SU(3)-holonomy
- no massless Kaluza-Klein vectors
- no massive modes charged under massless vectors

Investigate setups with isometries!

Type IIB Supergravity on squashed Sasaki-Einstein manifolds

Truncation found by

[Cassani, Dall'Agata, Faedo, Liu, Szepietowski, Zhao, Gauntlett, Varela]

- 5D $\mathcal{N}=4$ gauged supergravity
- $\mathcal{N}=2~\text{AdS}_5$ vacua (e.g. $S^5)$
- meaning of effective action in AdS space???

\Rightarrow **Procedure**:

- $\bullet\,$ calculate spectrum and classical Chern-Simons terms of the $\mathcal{N}=2$ $\,AdS_5$ vacua
- evaluate one-loop Chern-Simons terms

General results for $\mathcal{N} = 2 \text{ AdS}_5$ vacua:

- gauged U(1) R-symmetry
- massive charged modes
- gauge one-loop Chern-Simons term cancels:
 - × massive charged real multiplets
 - non-trivial cancellations between different massive charged multiplets (gauged R-symmetry!!!)
- gravitational Chern-Simons term non-zero

Interpretation???

Conclusions

- investigation of "effective" action from consistent truncations
- used partial supergravity breaking in 5D
- evaluation of one-loop Chern-Simons terms
- comparison with the genuine effective action
- first example: M-theory on *SU*(2)-structure manifolds with Calabi-Yau vacuum

 \Rightarrow no massive charged modes, effective action of truncation consistent

second example: type IIB supergravity on squashed Sasaki-Einstein manifolds

 \Rightarrow gauge one-loop Chern-Simons cancels non-trivially, gravitational Chern-Simons term non-zero, effective action?

Conclusions

- investigation of "effective" action from consistent truncations
- used partial supergravity breaking in 5D
- evaluation of one-loop Chern-Simons terms
- comparison with the genuine effective action
- first example: M-theory on *SU*(2)-structure manifolds with Calabi-Yau vacuum

 \Rightarrow no massive charged modes, effective action of truncation consistent

second example: type IIB supergravity on squashed Sasaki-Einstein manifolds

 \Rightarrow gauge one-loop Chern-Simons cancels non-trivially, gravitational Chern-Simons term non-zero, effective action?

Future Directions:

- find further examples with isometries
- in 3D: M-theory on *Spin*(7)-manifolds/Calabi-Yau fourfolds with vanishing Euler number

Andreas Kapfer (MPP Munich)

Thank You!