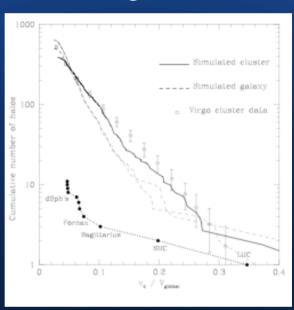
Tight Bonds between Sterile Neutrinos and Dark Matter

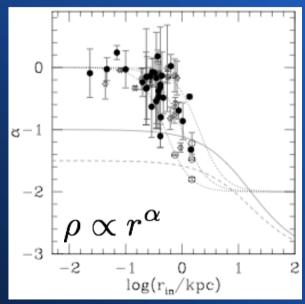
Jasper Hasenkamp (NYU)


@ DESY Theory Workshop 2014

Based on JH, Bringmann & Kersten, 1312.4947 (JCAP), Jan Hamann & JH, 1308.3255 (JCAP) and JH, 1405.6736 (JCAP).

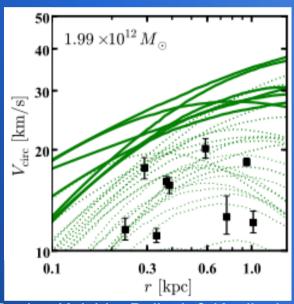
Small-scale Problems

LCDM astonishing success on cosmic scales – not so impressive on galactic scales:


1. Missing satellites?

Moore et al., Ap | '99

many more satellites in simulations than observed

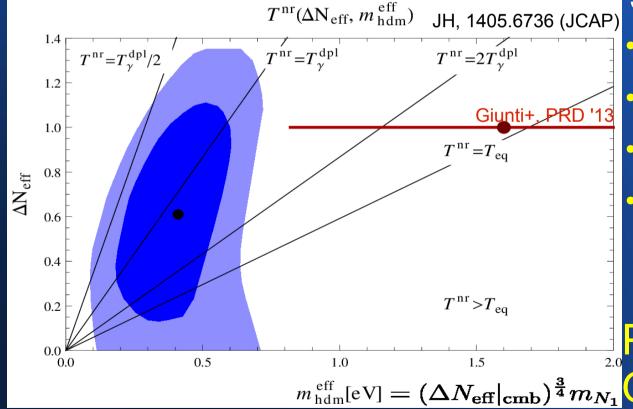

2. Cusps or cores?

Blok et al., ApJ '01

cuspy inner density profiles in simulations not found in (all) observations

3. Too big to fail?

Boylan-Kolchin, Bullock & Kaplinghat, '11


most massive subhalos in simulations too dense to form observed brightest dwarfs

New Life for Sterile Neutrinos?

between cosmic and galactic scales - galaxy clusters... and more! e.g. Sunyaev's talk

1D posteriors: $\Delta N_{
m eff}=0.61\pm0.30~m_{
m eff}^{
m hdm}=(0.41\pm0.13)~{
m eV}$

JH & Hamann, JCAP '13 see also Wayne Hu et al. and Battaye & Moss, both PRL'14

Signal data-dependent:

- galaxy cluster mass
- H0 dark radiation
- WL both
- CMB sensitivity (very) limited: physically(!) not statistically – new era of precision on HDM

Precision era: $m_{\text{hdm}}^{\text{eff}}[\text{eV}] = (\Delta N_{\text{eff}}|_{\text{cmb}})^{\frac{3}{4}} m_{N_1} \text{Qualitatively new HDM}$

What could/should it be? Can we ever tell? → JH, JCAP'14

U(1)x Model

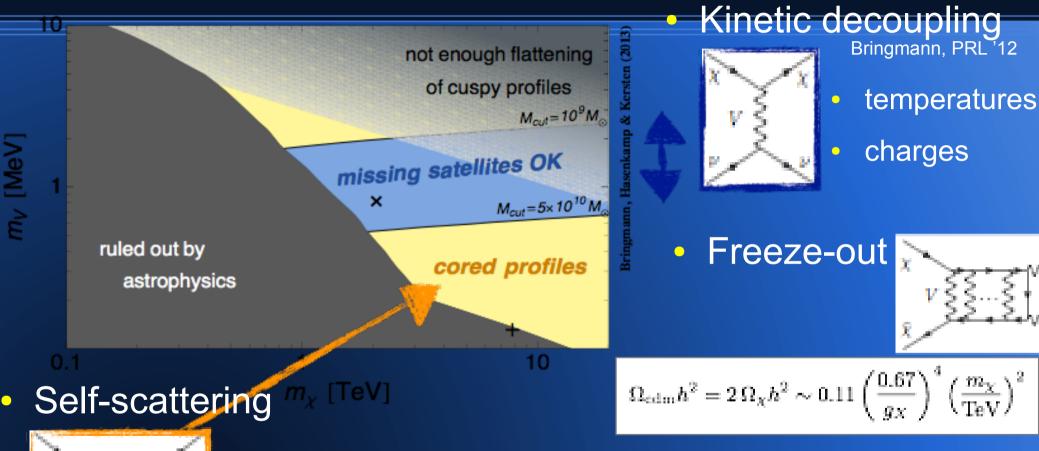
$$G = SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_X$$

- Symmetry broken by VEV $\begin{array}{c|c} \mathrm{particle} & \mathrm{V} & \chi \\ \mathrm{charge} & 0 & 1 \end{array}$

$$246~{
m GeV} \simeq v_{
m ew} \gg v_{
m \Theta} \sim ~{
m MeV} \gg v_{
m \xi}$$

$$\mathcal{L} = \mathcal{L}_{ ext{SM}} + \mathcal{L}_R + \mathcal{L}_x + \mathcal{L}_{ ext{kin. mix.}} + \mathcal{L}_{ ext{Higgs}}$$

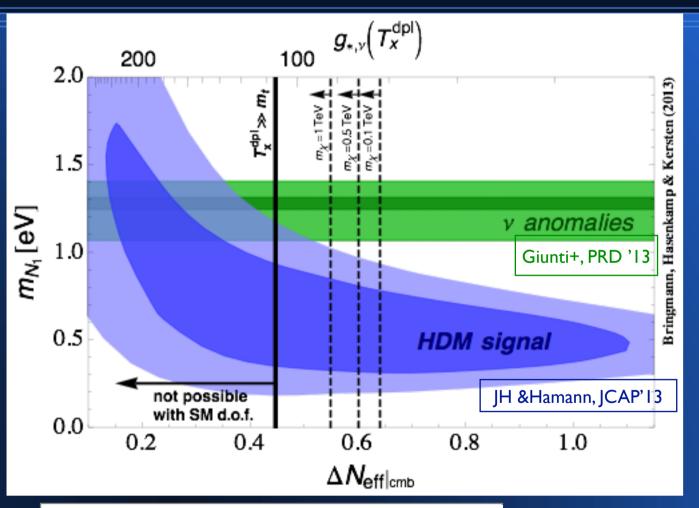
$$\mathcal{L}_{R} \supset -rac{1}{2}\overline{
u_{R_{1}}^{c}}M_{1}
u_{R_{1}} - rac{1}{2}\overline{
u_{R_{2}}^{c}}M_{2}
u_{R_{2}} - \overline{
u_{R_{1}}^{c}}M_{RR}
u_{R_{2}} - \overline{
u_{L}}M_{LR}
u_{R_{1}} + ext{h.c.}$$
 $(
u_{e},
u_{\mu},
u_{ au},
u_{R_{1}}^{c},
u_{R_{2}}^{c}) \Rightarrow (
u_{1},
u_{2},
u_{3},
N_{1},
N_{2})$


$$(\nu_e, \nu_\mu, \nu_\tau, \nu_{R_1}^c, \nu_{R_2}^c) \Rightarrow (\nu_1, \nu_2, \nu_3, N_1, N_2)$$

$$\mathcal{L}_{x} = ar{\chi}(i\partial - m_{\chi})\chi - rac{1}{4}F_{\mu
u}^{x}F^{x\mu
u} - rac{1}{2}m_{V}^{2}V_{\mu}V^{\mu} - g_{X}V_{\mu}\left(X_{
u_{R}}\overline{
u_{R}}_{_{1}}\gamma^{\mu}
u_{R_{1}} - X_{
u_{R}}\overline{
u_{R}}_{_{2}}\gamma^{\mu}
u_{R_{2}} + ar{\chi}\gamma^{\mu}\chi
ight)$$

Thermalisation via Higgs portal

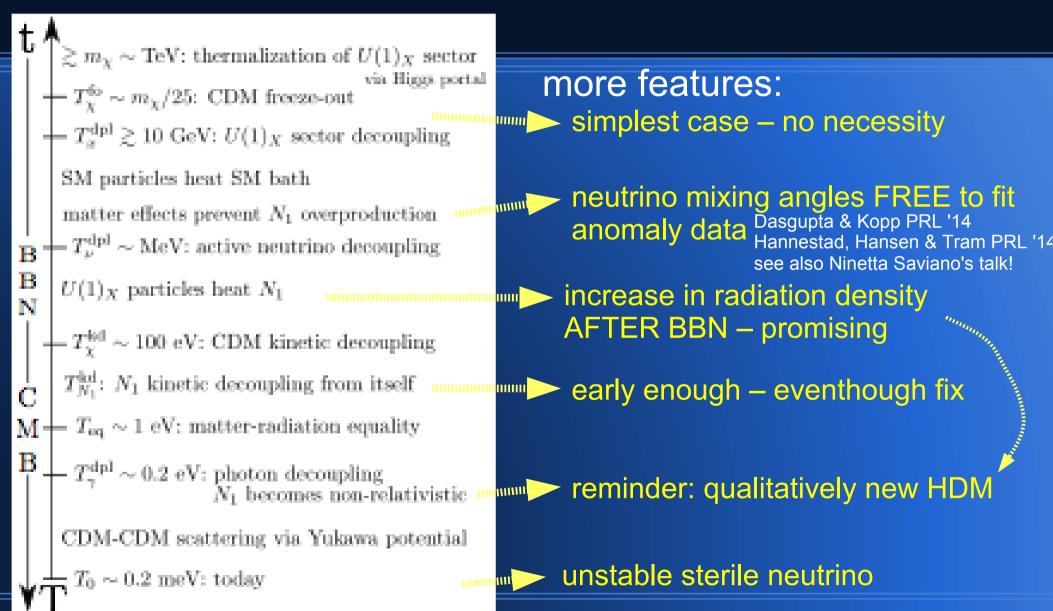
$$\mathcal{L}_{ ext{Higgs}} \supset \kappa |\phi|^2 |\Theta|^2 \supset rac{\kappa}{4} v_\phi \phi \Theta^2 \simeq rac{\kappa}{4} v_\phi h h_x^2$$


Self-Interacting Dark Matters

ALL small-scale problems racting CDM SIMULTANEOUSLY

Yukawa-interacting CDM Loeb & Weiner, PRL '11

Hot Dark Matter <u>Admixture</u>



Sterile neutrinos form deserved HDM naturally AND

may explain the observed neutrino anomalies

$$\Delta N_{
m eff}|_{
m cmb} = \Delta N_{
m eff}|_{
m bbn}^{
m max} \simeq \left[58.4/g_{*,
u}(T_x^{
m dpl})\right]^{rac{4}{3}}$$

Cosmology overview

Conclusion & Outlook

All small-scale and an intermediate-scale structure formation problem solved by solution to neutrino anomalies!

Bottom up approach – cover minimal(!?) phenomenology → UV completion missing!

- $(\nu_e, \nu_\mu, \nu_\tau, \nu_{R_1}^c, \nu_{R_2}^c) \Rightarrow (\nu_1, \nu_2, \nu_3, N_1, N_2) \rightarrow \text{CMB},$ supernovae,...
- better dark sector? → dark sector-SM connections!?
 → different phenomenology
- ... → better ideas wanted ;-)

Conclusion & Outlook

All small-scale and an intermediate-scale structure formation problem solved by solution to neutrino anomalies!

Thank you for your attention!

Questions/Comments are welcome