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Standard Model Higgs potential

V(φ) has a minimum at φ = v

Very sensitive to Mh and Mt

A vacuum at φ 6= v incompatible
with observations

v

0

VHΦL

Meta stable at 99% CL Buttazzo et al. (2013);
Spencer-Smith (2014)

Lifetime much longer than 13.8× 109 years

Is this also true for the early Universe (inflation)?

New physics needed to stabilize the vacuum?
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Inflation and the Standard Model

In principle we can assume the SM to be valid
Energy-density is dominated by decoupled physics

Inflation induces fluctuations to the Higgs field ∆φ ∼ H
Important if Λmax . H
State of the art calculations [2]: Λmax ∼ 1011GeV

v L max

0

Vmax

VHΦL

r = PT/PR
Λmax ∼ H

⇒ r ∼ 2 · 10−7

BICEP2:
Λmax ∼ 10−3H

[2] Degrazzi et. al.(2013); Buttazzo et. al. (2013)
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Higgs stability during inflation

Fluctuations induced by inflation may be treated as
stochastic variables [3]

Probability density P(t, φ) from the Fokker-Planck equation

Ṗ(t, φ) =
1

3H
∂

∂φ

[
P(t, φ)Veff(φ)

]
+

H3

8π2
∂2

∂φ2 P(t, φ)

Importantly, Veff(φ) is the renormalization group (RG)
improved effective potential

[3] Starobinsky (1986); Starobinsky & Yokoyama (1994)
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Renormalization group improvement

The perturbative Veff(φ) suffers from large logarithms

Example: V(φ) = (1/2)m2φ2 + (λ/4!)φ4

Veff(φ) =
1
2

m2φ2 +
λ

4!
φ4 +

M(φ)2≡ m2+λ
2 φ

2︷ ︸︸ ︷
M(φ)4

64π2

[
log
(

M(φ)2

µ2

)
− 3

2

]

The physical result must not depend on µ:

d
dµ

Veff(φ) = 0 ⇔
{
µ
∂

∂µ
+ βλ

∂

∂λ
+ γφφ

∂

∂φ

}
Veff(φ) = 0

⇒ can be used to improve the perturbative result Ford et. al.
(1993)

The optimal choice

µ(t) ∼ φ(t)
⇒ No large logarithms!
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Stability results (Minkowski)
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For large H (∼ 103Λmax), the SM is not stable [5]

Does including spacetime curvature in the
quantum calculation change this?

[5] Kobakhidze & Spencer-Smith (2014); Hook et. al. (2014); Fairbairn & Hogan (2014);
Enqvist, Meriniemi & Nurmi (2014)
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Curved space effective action

What is usually meant by "curved space QFT"?
No graviton loops

Z[J, gµν ] =

∫
Dϕe iS[ϕ,gµν ]+i

∫
Jϕ

Loops also generate a term ∝ Rφ2

We must solve Klein-Gordon equation in FRW space[
−�+ m2

]
φ̂ = 0; φ̂ =

∫
d3k

a(t)3/2

[
âkuk + â†ku∗k

]
,

uk =
1√
W

e−i
∫ t Wdt′eik·x

⇒ W2 =
k2

a(t)2 + m2 − R
6

+O(k−2)
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âkuk + â†ku∗k

]
,

uk =
1√
W

e−i
∫ t Wdt′eik·x

⇒ W2 =
k2

a(t)2 + m2 − R
6

+O(k−2)

Markkanen Higgs Vacuum 10 / 20



Curved space effective action

Mass shift ∝ R (scalar curvature)

Works also for spinors and gauge fields Our method
coincides with Jack & Parker (1985)

Rederive Veff(φ) with curved space modes
Also include a non-minimal ξ-term ξEW < 1015, Atkins &
Calmet (2012)

The optimal scale in curved space

µ(t)2 ∼ φ(t)2 + R
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1-loop Effective potential in curved space

Veff(φ,R) = −1
2

m2(t)φ(t)2 +
1
2
ξ(t)Rφ(t)2 +

1
4
λ(t)φ(t)4

+
9∑

i=1

ni

64π2 M4
i (t)

[
log

∣∣M2
i (t)
∣∣

µ2(t)
− ci

]
; M2

i (t) = κiφ(t)2 − κ′i + θiR

Φ i ni κi κ′i θi ci

1 2 g2/4 0 1/12 3/2

W± 2 6 g2/4 0 −1/6 5/6

3 −2 g2/4 0 −1/6 3/2

4 1 (g2 + g′2)/4 0 1/12 3/2

Z0 5 3 (g2 + g′2)/4 0 −1/6 5/6

6 −1 (g2 + g′2)/4 0 −1/6 3/2

t 7 −12 y2
t /2 0 1/12 3/2

φ 8 1 3λ m2 ξ − 1/6 3/2

χi 9 3 λ m2 ξ − 1/6 3/2
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Stability results (curved space) I

First attempt, set ξEW= 0 and H ∼ 1010GeV (∼ 103Λmax )
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Potential negative everywhere
In curved space λ(µ) < 0 since µ2 ∼ φ2 + R
ξ Can become positive or negative depending on ξEW
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Stability results (curved space) II

Now choosing ξEW = 0.1 [8]
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V1/4
max ' H

(6ξ)1/2

|λ|1/4

Vmax(curved)� Vmax(flat) (and at a higher scale)

P ∼ exp
[
− 8π2 (Vmax/3H4)

]
⇒ Stable!

[8] Espinosa, Giudice & Riotto (2008)
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Work for the future
More loops

In flat space Λmax changes by orders of magnitude

Smaller H

Conclusions
SM with ξEW = 0 is unstable during inflation for large H

Curvature changes the quantum calculation significantly
Having ξEW & 6× 10−2 stabilizes the vacuum

Thank You!
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Running of ξ

ξ Can become positive or negative depending on ξEW
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Stability regions

The (in)stability of the potential is determined by ξEW
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Sensitivity to the choice of µ

A loop calculation is never fully scale invariant
How dependent is the result on the choice µ(t)2 =φ(t)2+R ?

µ(t)2 = αφ(t)2 + βR α, β ∈ {0.1 · · · 10}
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