Spacetime curvature and the Higgs stability during inflation

arXiv:1407.3141

Tommi Markkanen¹² Matti Herranen³ Sami Nurmi¹² Arttu Rajantie⁴

¹University of Helsinki ²Helsinki Institute of Physics ³Niels Bohr International Academy, Copenhagen ⁴Blackett Laboratory, Imperial College, London

Particle Cosmology after Planck, DESY Theory Workshop 2014

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< ∃⇒

2 Higgs stability during inflation (QFT in Minkowski)

Higgs stability during inflation (QFT in curved space)

프 🖌 🛪 프 🕨

- ∢ 🗇 🕨

Phiggs stability during inflation (QFT in Minkowski)

Biggs stability during inflation (QFT in curved space)

4 Conclusions

イロト イポト イヨト イヨト

Standard Model Higgs potential

- $V(\phi)$ has a minimum at $\phi = v$
- Very sensitive to M_h and M_t
- A vacuum at φ ≠ v incompatible with observations

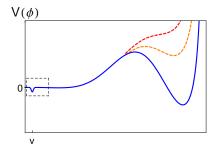
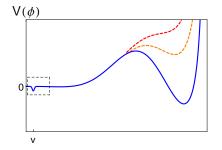



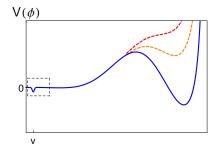
Image: A matrix

≣⊳

Standard Model Higgs potential

- $V(\phi)$ has a minimum at $\phi = v$
- Very sensitive to *M_h* and *M_t*
- A vacuum at φ ≠ v incompatible with observations

• Meta stable at 99% CL [1]

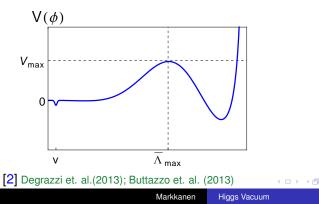

1 Buttazzo et al. (2013); Spencer-Smith (2014)

- Lifetime much longer than 13.8×10^9 years
- Is this also true for the early Universe (inflation)?

Markkanen

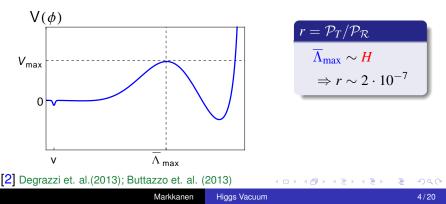
Standard Model Higgs potential

- $V(\phi)$ has a minimum at $\phi = v$
- Very sensitive to *M_h* and *M_t*
- A vacuum at φ ≠ v incompatible with observations

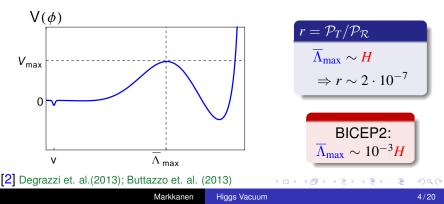

- Meta stable at 99% CL [1]
 - Lifetime much longer than 13.8×10^9 years
- Is this also true for the early Universe (inflation)?

New physics needed to stabilize the vacuum?

[1] Buttazzo et al. (2013); Spencer-Smith (2014) (ロト (アン・モン・モン・モン・モン・モン・モン・マークへの


Inflation and the Standard Model

- In principle we can assume the SM to be valid
 - Energy-density is dominated by decoupled physics
- Inflation induces fluctuations to the Higgs field $\Delta \phi \sim H$
 - Important if $\overline{\Lambda}_{\max} \lesssim H$
 - State of the art calculations [2]: $\overline{\Lambda}_{max} \sim 10^{11} GeV$


Inflation and the Standard Model

- In principle we can assume the SM to be valid
 - Energy-density is dominated by decoupled physics
- Inflation induces fluctuations to the Higgs field $\Delta \phi \sim H$
 - Important if $\overline{\Lambda}_{\max} \lesssim H$
 - State of the art calculations [2]: $\overline{\Lambda}_{max} \sim 10^{11} GeV$

Inflation and the Standard Model

- In principle we can assume the SM to be valid
 - Energy-density is dominated by decoupled physics
- Inflation induces fluctuations to the Higgs field $\Delta \phi \sim H$
 - Important if $\overline{\Lambda}_{\max} \lesssim H$
 - State of the art calculations [2]: $\overline{\Lambda}_{max} \sim 10^{11} GeV$

2 Higgs stability during inflation (QFT in Minkowski)

Biggs stability during inflation (QFT in curved space)

4 Conclusions

イロト イポト イヨト イヨト

• Fluctuations induced by inflation may be treated as stochastic variables [3]

[3] Starobinsky (1986); Starobinsky & Yokoyama (1994) - < ロト イラト イヨト イヨト イヨト ショー つへ

- Fluctuations induced by inflation may be treated as stochastic variables [3]
- Probability density $P(t, \phi)$ from the Fokker-Planck equation

$$\dot{P}(t,\phi) = \frac{1}{3H} \frac{\partial}{\partial \phi} \left[P(t,\phi) V_{\text{eff}}(\phi) \right] + \frac{H^3}{8\pi^2} \frac{\partial^2}{\partial \phi^2} P(t,\phi)$$

- Fluctuations induced by inflation may be treated as stochastic variables [3]
- Probability density $P(t, \phi)$ from the Fokker-Planck equation

$$\dot{P}(t,\phi) = \frac{1}{3H} \frac{\partial}{\partial \phi} \left[P(t,\phi) V_{\text{eff}}(\phi) \right] + \frac{H^3}{8\pi^2} \frac{\partial^2}{\partial \phi^2} P(t,\phi)$$

Importantly, V_{eff}(φ) is the renormalization group (RG) improved *effective potential*

Renormalization group improvement

• The perturbative $V_{\rm eff}(\phi)$ suffers from large logarithms

Example:
$$V(\phi) = (1/2)m^2\phi^2 + (\lambda/4!)\phi^4$$

 $M(\phi)^2 \equiv m^2 + \frac{\lambda}{2}\phi^2$
 $V_{\text{eff}}(\phi) = \frac{1}{2}m^2\phi^2 + \frac{\lambda}{4!}\phi^4 + \underbrace{M(\phi)^4}{64\pi^2} \left[\log\left(\frac{M(\phi)^2}{\mu^2}\right) - \frac{3}{2}\right]$

< 🗇 🕨

Renormalization group improvement

• The perturbative $V_{\rm eff}(\phi)$ suffers from large logarithms

Example:
$$V(\phi) = (1/2)m^2\phi^2 + (\lambda/4!)\phi^4$$

 $M(\phi)^2 \equiv m^2 + \frac{\lambda}{2}\phi^2$
 $V_{\text{eff}}(\phi) = \frac{1}{2}m^2\phi^2 + \frac{\lambda}{4!}\phi^4 + \frac{M(\phi)^4}{64\pi^2} \left[\log\left(\frac{M(\phi)^2}{\mu^2}\right) - \frac{3}{2}\right]$

The physical result must not depend on μ:

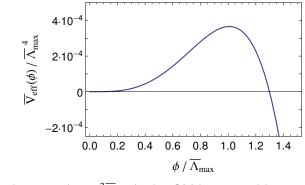
$$\frac{d}{d\mu}V_{\rm eff}(\phi) = 0 \quad \Leftrightarrow \quad \left\{\mu\frac{\partial}{\partial\mu} + \beta_\lambda\frac{\partial}{\partial\lambda} + \gamma_\phi\phi\frac{\partial}{\partial\phi}\right\}V_{\rm eff}(\phi) = 0$$

Renormalization group improvement

• The perturbative $V_{\rm eff}(\phi)$ suffers from large logarithms

Example:
$$V(\phi) = (1/2)m^2\phi^2 + (\lambda/4!)\phi^4$$

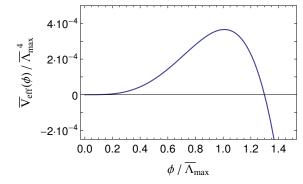
 $M(\phi)^2 \equiv m^2 + \frac{\lambda}{2}\phi^2$
 $V_{\text{eff}}(\phi) = \frac{1}{2}m^2\phi^2 + \frac{\lambda}{4!}\phi^4 + \frac{M(\phi)^4}{64\pi^2} \left[\log\left(\frac{M(\phi)^2}{\mu^2}\right) - \frac{3}{2}\right]$


The physical result must not depend on μ:

$$\frac{d}{d\mu}V_{\rm eff}(\phi) = 0 \quad \Leftrightarrow \quad \left\{\mu\frac{\partial}{\partial\mu} + \beta_\lambda\frac{\partial}{\partial\lambda} + \gamma_\phi\phi\frac{\partial}{\partial\phi}\right\}V_{\rm eff}(\phi) = 0$$

 \Rightarrow can be used to improve the perturbative result [4]

Stability results (Minkowski)



• For large H (~ $10^3\overline{\Lambda}_{max}$), the SM is not stable [5]

 [5] Kobakhidze & Spencer-Smith (2014); Hook et. al. (2014); Fairbairn & Hogan (2014);

 Enqvist, Meriniemi & Nurmi (2014)

Stability results (Minkowski)

• For large $H (\sim 10^{3}\overline{\Lambda}_{max})$, the SM is not stable [5]

Does including spacetime curvature in the quantum calculation change this?

 [5] Kobakhidze & Spencer-Smith (2014); Hook et. al. (2014); Fairbairn & Hogan (2014);

 Enqvist, Meriniemi & Nurmi (2014)

1 Introduction

Pliggs stability during inflation (QFT in Minkowski)

Higgs stability during inflation (QFT in curved space)

4 Conclusions

イロト イポト イヨト イヨト

Curved space effective action

What is usually meant by "curved space QFT"?
No graviton loops

$$Z[J,g^{\mu
u}] = \int {\cal D}arphi e^{\,iS[arphi,g^{\mu
u}] + i\int Jarphi}$$

• Loops also generate a term $\propto R\phi^2$

< ∃⇒

Curved space effective action

- What is usually meant by "curved space QFT"?
 - No graviton loops

$$Z[J,g^{\mu
u}] = \int {\cal D}arphi e^{\,iS[arphi,g^{\mu
u}] + i\int Jarphi}$$

- Loops also generate a term $\propto R\phi^2$
- We must solve Klein-Gordon equation in FRW space

$$\begin{bmatrix} -\Box + m^2 \end{bmatrix} \hat{\phi} = 0; \qquad \hat{\phi} = \int \frac{d^3k}{a(t)^{3/2}} \left[\hat{a}_{\mathbf{k}} u_{\mathbf{k}} + \hat{a}_{\mathbf{k}}^{\dagger} u_{\mathbf{k}}^* \right],$$
$$u_{\mathbf{k}} = \frac{1}{\sqrt{W}} e^{-i \int^t W dt'} e^{i\mathbf{k}\cdot\mathbf{x}}$$

Curved space effective action

- What is usually meant by "curved space QFT"?
 - No graviton loops

$$Z[J,g^{\mu
u}] = \int {\cal D}arphi e^{\,iS[arphi,g^{\mu
u}] + i\int Jarphi}$$

- Loops also generate a term $\propto R\phi^2$
- We must solve Klein-Gordon equation in FRW space

$$\begin{bmatrix} -\Box + m^2 \end{bmatrix} \hat{\phi} = 0; \qquad \hat{\phi} = \int \frac{d^3k}{a(t)^{3/2}} \left[\hat{a}_{\mathbf{k}} u_{\mathbf{k}} + \hat{a}_{\mathbf{k}}^{\dagger} u_{\mathbf{k}}^* \right],$$
$$u_{\mathbf{k}} = \frac{1}{\sqrt{W}} e^{-i\int W dt'} e^{i\mathbf{k}\cdot\mathbf{x}}$$

$$\Rightarrow W^{2} = \frac{k^{2}}{a(t)^{2}} + m^{2} - \frac{R}{6} + \mathcal{O}(k^{-2})$$
Markkanen Higgs Vacuum

10/20

э

イロト イヨト イヨト イヨト

• Works also for spinors and gauge fields [6]

 [6] Our method coincides with Jack & Parker (1985)
 < 그 > < 골 > < 돌 > < 돌 > < 2 < </td>

 Markkanen
 Higgs Vacuum
 11/20

- Works also for spinors and gauge fields [6]
- Rederive $V_{\rm eff}(\phi)$ with curved space modes
 - Also include a non-minimal ξ -term [7]

- Works also for spinors and gauge fields [6]
- Rederive $V_{\rm eff}(\phi)$ with curved space modes
 - Also include a non-minimal ξ-term [7]

The optimal scale in curved space

$$\mu(t)^2 \sim \phi(t)^2 + \mathbf{R}$$

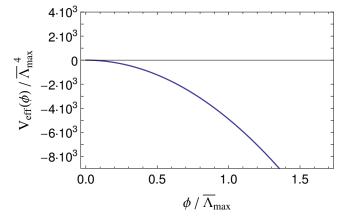
[6] Our method coincides with Jack & Parker (1985) [7] $\xi_{EW} < 10^{15}$, Atkins & Calmet (2012)

1-loop Effective potential in curved space

$$V_{\text{eff}}(\phi, R) = -\frac{1}{2}m^2(t)\phi(t)^2 + \frac{1}{2}\xi(t)R\phi(t)^2 + \frac{1}{4}\lambda(t)\phi(t)^4 + \sum_{i=1}^9 \frac{n_i}{64\pi^2}M_i^4(t)\left[\log\frac{|M_i^2(t)|}{\mu^2(t)} - c_i\right] \qquad ; M_i^2(t) = \kappa_i\phi(t)^2 - \kappa_i' + \theta_i R$$

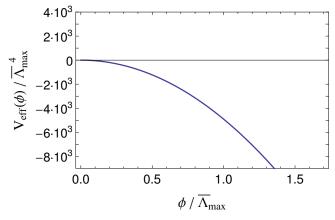
Φ	i	n_i	κ_i	κ'_i	$ heta_i$	Ci
	1	2	$g^{2}/4$	0	1/12	3/2
W^{\pm}	2	6	$g^{2}/4$	0	-1/6	5/6
	3	-2	$g^{2}/4$	0	-1/6	3/2
	4	1	$(g^2 + g'^2)/4$	0	1/12	3/2
Z^0	5	3	$(g^2 + g'^2)/4$	0	-1/6	5/6
	6	-1	$(g^2 + g'^2)/4$	0	-1/6	3/2
t	7	-12	$y_{t}^{2}/2$	0	1/12	3/2
ϕ	8	1	3λ	m^2	$\xi - 1/6$	3/2
χ_i	9	3	λ	m^2	$\xi - 1/6$	3/2

Markkanen

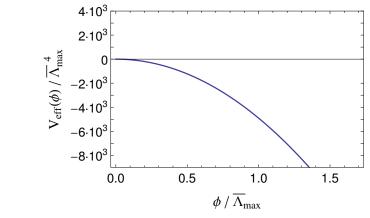

æ

문▶ ★ 문≯

• First attempt, set $\xi_{\rm EW} = 0$ and $H \sim 10^{10} {\rm GeV} \ (\sim 10^3 {\overline \Lambda}_{\rm max})$


イロト イポト イヨト イヨト

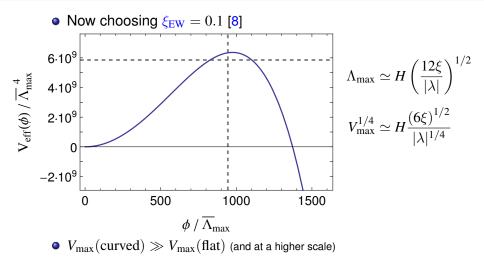
• First attempt, set $\xi_{\rm EW} = 0$ and $H \sim 10^{10} {\rm GeV} \ (\sim 10^3 {\overline \Lambda}_{\rm max})$


• Potential negative everywhere

• First attempt, set $\xi_{\rm EW} = 0$ and $H \sim 10^{10} {\rm GeV} \ (\sim 10^3 {\overline \Lambda}_{\rm max})$

- Potential negative everywhere
 - In curved space $\lambda(\mu) < 0$ since $\mu^2 \sim \phi^2 + \textit{R}$

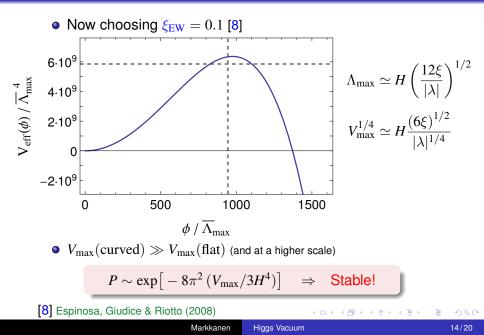
• First attempt, set $\xi_{\rm EW} = 0$ and $H \sim 10^{10} {\rm GeV} \ (\sim 10^3 {\overline \Lambda}_{\rm max})$



- Potential negative everywhere
 - In curved space $\lambda(\mu) < 0$ since $\mu^2 \sim \phi^2 + \textit{R}$
 - ξ Can become positive or negative depending on ξ_{EW}

• Now choosing $\xi_{\rm EW} = 0.1$ [8]

[8] Espinosa, Giudice & Riotto (2008)


イロト イ理ト イヨト イヨト

[8] Espinosa, Giudice & Riotto (2008)

イロト 不得 とくほ とくほ とう

э

1 Introduction

2 Higgs stability during inflation (QFT in Minkowski)

Biggs stability during inflation (QFT in curved space)

イロト イポト イヨト イヨト

Work for the future

- More loops
 - In flat space Λ_{max} changes by orders of magnitude
- Smaller H

Work for the future

- More loops
 - In flat space Λ_{max} changes by orders of magnitude
- Smaller H

Conclusions

- SM with $\xi_{EW} = 0$ is unstable during inflation for large *H*
- Curvature changes the quantum calculation significantly
- Having $\xi_{EW} \gtrsim 6 \times 10^{-2}$ stabilizes the vacuum

イロト 不得 とくき とくき とうき

Work for the future

- More loops
 - In flat space Λ_{max} changes by orders of magnitude
- Smaller H

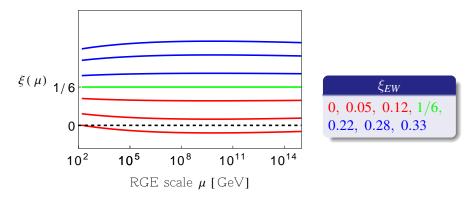
Conclusions

- SM with $\xi_{EW} = 0$ is unstable during inflation for large *H*
- Curvature changes the quantum calculation significantly
- Having $\xi_{EW} \gtrsim 6 \times 10^{-2}$ stabilizes the vacuum

Image: A matrix and a matrix

< 注→ 注

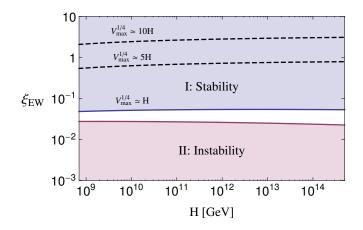
1 Introduction


Pliggs stability during inflation (QFT in Minkowski)

3 Higgs stability during inflation (QFT in curved space)

4 Conclusions

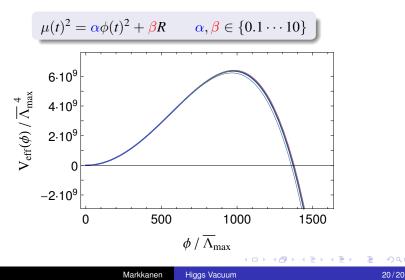
イロト イポト イヨト イヨト


• ξ Can become positive or negative depending on $\xi_{\rm EW}$

э

イロト イポト イヨト イヨト

• The (in)stability of the potential is determined by ξ_{EW}


• • • • • • • • •

э

- < ⊒ →

Sensitivity to the choice of μ

- A loop calculation is never fully scale invariant
- How dependent is the result on the choice $\mu(t)^2 = \phi(t)^2 + R$?

