LHC prospects for minimal decaying Dark Matter

Federico Dradi

University of Göttingen

DESY Theory Workshop, 24 September 2014

・ロット 御ママ キョマ キョン

э

Based on: G. Arcadi, L. Covi and F. D. - arXiv: 1408.1005 -

Outline

Introduction

 $\Sigma_{\mathit{f}}\text{-}\mathsf{production}$ at LHC

 Σ_f in cosmology

Results

Conclusions

Introduction - model

We consider:

- a minimal model where a Majorana fermion DM ψ (SM-singlet) is coupled to a SM fermion f and scalar Σ_f (non-trivially SM-charged):

 *L*_{eff} = λψfΣ[†]_f + h.c. = λ_{ψd}ψdΣ[†]_d + λ_{ψe}ψeΣ[†]_e + λ_{ψℓ}ψℓΣ[†]_ℓ + h.c.
- no symmetry to guarantee the stability of DM and, thus, Σ_f-only SM fermions couplings are allowed, e.g.

$$\mathcal{L}_{eff} = \lambda'_d \bar{d}\ell \Sigma_d + \lambda'_e \bar{\ell^c} \ell \Sigma_e^{\dagger} + \lambda'_\ell \bar{e} \ell \Sigma_\ell + \lambda'_\ell \bar{d}d \Sigma_\ell + h.c.$$

 three-body decays for DM (caused by these additional SM-interactions) with a rate given by:

$${\sf F}_{
m DM} = rac{c_f |\lambda|^2 |\lambda'|^2}{128 (2\pi)^3} \, x^4 \, m_\psi$$

with $c_f = \#$ of d.f. of the intermediate Σ_f , $x = \frac{m_{\psi}}{m_{\Sigma_f}}$ $\downarrow \downarrow$ 4-relevant parameters: m_{Σ_f} , m_{DM} , λ , λ'

Introduction - DM generation

DM can be produced in different way depending on the value of λ . Basically, two main scenarios are possible:

- ▶ $\lambda \simeq 1$: DM is in thermal equilibrium in the early universe and, therefore, produced through the freeze-out paradigm.
- λ < 10⁻⁷: DM can not be in thermal equilibrium in the early universe. DM is generated from the Σ_f-decays either in thermal equilibrium (freeze-in) or out-of-equilibrium (sWIMP).

We study the sWIMP and freeze-in mechanisms of DM production:

$$\Omega_{\rm DM} h^2 = \Omega_{\rm DM}^{\rm FI} h^2 + \Omega_{\rm DM}^{\rm SW} h^2 \approx x \mathsf{BR}_{\Sigma_f \psi} \left[\frac{1.09 \times 10^{27} g_{\Sigma}}{g_*^{3/2}} \frac{\Gamma_{tot.}}{m_{\Sigma}} + \Omega_{\Sigma} h^2 \right]$$

where $BR_{\Sigma_f\psi} = \frac{\lambda^2}{\lambda^2 + \lambda'^2}$, $\Gamma_{tot.} = \Gamma_{\psi f} + \Gamma_{ff}$, $\Gamma_{\psi f(ff)} = \frac{\lambda^{(\prime)2}}{8\pi}m_{\Sigma}$

Introduction - production

Contributions of sWIMP and freeze-in mechanisms depend strongly on the Σ_f -properties \rightarrow 3 different LHC Σ_f -productions via MG5 at $\sqrt{s} = 14$ TeV:

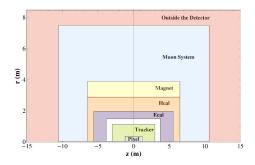
• Colored
$$\Sigma_f \implies \Sigma_d (\tilde{b}_R$$
-quantum numbers)

(Colored states are the most efficiently produced ones (gluon fusion). Production depends on m_{Σ_d})

• Electroweak $\Sigma_f \implies \Sigma_\ell \& \Sigma_e (\tilde{\ell} \& \tilde{\mu}_R$ -quantum numbers)

(EW states less produced (Drell-Yan) that colored ones. MP bounds are reduced ($\rightarrow m \simeq 300-400$ GeV). Production depends on $m_{\Sigma_{\ell}}$.)

sWIMP and freeze-in mechanisms make λ , λ' tiny \rightarrow No prompt decay!


We concentrate on the prospects for discovery of Σ_f displaced vertices (d.v.) inside pixel (pi.), tracker (tr.) and outside CMS detector (out.)

▲□▶ ▲@▶ ▲≧▶ ▲≧▶ = Ξ

Introduction - CMS design & purposes

Layout of two quarters of CMS used in this analysis is:

Purposes of this research are:

- 1) Parameter region where DM ID signal is within the future LHC reach and the produced DM abundance fits data
- 2) Possible collider detection of both Σ_f -decays:

 $\Sigma_f
ightarrow \mathsf{DM} + \mathsf{SM}$ & $\Sigma_f
ightarrow \mathsf{SM} + \mathsf{SM}$

э

・ロット 御 マ イロット キャー

Σ_f -production at LHC

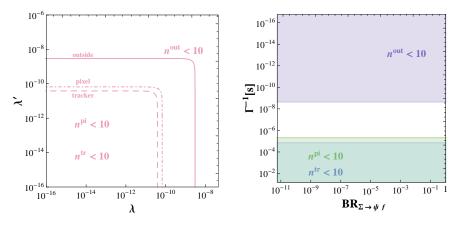
The numerical approach consists of:

- ▶ running MG5 for $\{m_{\Sigma_f}\}$ and Γ_{Σ_f} (10,000 events and kinematics)
- computing the decay length and direction of Σ produced
- circumventing the problem of launching MG5 for all of Γ_{Σ_f} by rescaling the dimensions of all parts of the detector consistently

In doing so, the spatial distribution of the Σ_{f} -vertices $\forall \Gamma_{\Sigma_{f}}$ is obtained ! Assuming the working hypothesis:

 background is negligible and the required minimum number of particles decaying within pi. and tr. or out. is n_{min} = 10 and using the formulas:

$$\lambda' = \sqrt{\frac{8\pi\hbar}{m_{\Sigma}\tau_{\Sigma}} - \lambda^2}, \ \lambda = \sqrt{\frac{8\pi\Gamma_{tot.}}{m_{\Sigma}}}\mathsf{BR}_{\Sigma_f\psi}, \ \lambda' = \sqrt{\frac{8\pi\Gamma_{tot.}}{m_{\Sigma}}}(1 - BR_{\Sigma_f\psi})$$


at $L = \{25, 300, 3000\} \text{ fb}^{-1}$, we achieve:

 $\implies \left| \Sigma \text{ LHC reach in } \lambda \text{-} \lambda' \text{ and } \mathsf{BR}_{\Sigma_f \psi} \text{-} \Gamma_{tot.}^{-1} \text{ planes} \right|$

Σ_d in λ - λ' and $\mathsf{BR}_{\Sigma_f\psi}$ - $\Gamma_{tot.}^{-1}$ planes

 Σ_d -production for $m_{\Sigma_d} = 800 \text{ GeV} \& L = 300 \text{ fb}^{-1}$:

N.B. Studies for d.v. and particles escaping from CMS are complementary! Def. Double detection (d.d.): region with at least 10 events in one of the components of the inner detector and 10 tracks leaving the detector

Σ_f in cosmology

In order to investigate the parameter space where the model is both cosmologically viable and observable via multiple signals, we consider:

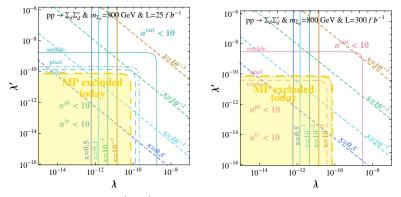
 $\blacktriangleright \ \ bounds \ on \ the \ DM \ indirect \ detection \ (DM \ ID) \\ (Correlation \ between \ DM \ ID \ and \ collider \ signals: \ \lambda' \ and \ \lambda, \ involved \ in \ \Gamma_{\rm DM}, \ also \ induce \ \Sigma_f-decays.)$

Constraints on $\tau_{\rm DM}$ as a function of m_{ψ} for DM decays into q- \bar{q} pair and ν by Garny et al. (JCAP 1208 (2012) 025): $\tau_{\rm DM} = 10^{27-29}$ s, according as the propagation model used and $m_{\rm DM}$.

► sWIMP and freeze-in mechanisms generate $\Omega_{\rm DM} h^2 = 0.11$ (We expect Ω_{Σ} to be very low for a charged relic because of efficient interactions of Σ_{f} . sWIMP contribution should be suppressed at lower $m_{\Sigma_{f}}$.)

see e.g. Arcadi and Covi's paper (JCAP 1308 (2013) 005)

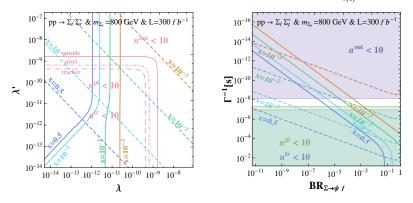
DM abundance and DM ID bounds in $\lambda - \lambda'$ and $BR_{\Sigma_f \psi} - \Gamma_{tot.}^{-1}$ planes


N.B. These bounds fix λ , λ' as a function of m_{Σ_f} , $x \to \text{Plots}$ for fixed m_{Σ_f}

Results - Σ_d & $m_{\Sigma_d} = 800 \,\text{GeV}$

To study if the model parameter space is accessible from CMS and DM ID bounds where DM has the right abundance, we plot all together:

(au_ψ = 10²⁸s has been used for ID bounds & MP (metastable particle) bound: JHEP 1307 (2013) 122)



N.B. Double detection (d.d.) region with DM- and Σ_{f} - decays corresponds to a quite definite range: $10^{-2} < x < 10^{-1} \rightarrow$ Benchmark at $x \sim 10^{-2}$ (later)

(日)

Results - Σ_{ℓ} & $m_{\Sigma_{\ell}} = 800 \,\text{GeV}$

- ► Hierarchy in production: σ_{ΣℓΣℓ} < σ_{ΣdΣℓ}
- Detector stable bounds are relaxed \rightarrow No bounds for $m_{\Sigma_{\ell(e)}} =$ 800 GeV

N.B. Contribution from sWIMP at $\lambda, \lambda' \sim 10^{-11} - 10^{-14} \rightarrow \text{signal of MP }$ Tiny Σ_{ℓ} -d.d. region, smaller that the Σ_{d} -one for $m_{\Sigma_{d}} = 800 \,\text{GeV}$

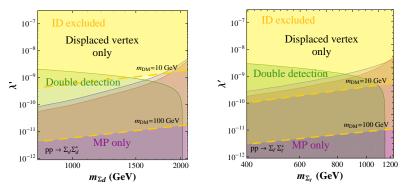
 * In Σ_ℓ -d.d. region for $m_{\Sigma_\ell}{=}400\,{
m GeV}$, crossing of $\Omega_{
m DM}$ and $au_{
m DM}$ -lines at $BR\lesssim 10^{-3}$ ** Σ_e -d.d. region is closed (open) for $m_{\Sigma_e} = 800 (400)$ GeV э

ロト (得) (ヨ) (ヨ)

Results - Most favorable benchmark of Σ_d

Looking at the plots for $m_{\Sigma_d} = 800 \text{ GeV}$ and $L = \{25, 300, 3000\} \text{ fb}^{-1}$, a benchmark where the DM ID signal, d.v.- and MP- signals and a not too small BR can be found:

Σ_d : $\lambda = 1.8 \times 10^{-11}, \ \lambda' = 5.5 \times 10^{-10}, x \sim 10^{-2}$			
Part of detector	Total	$\Sigma \rightarrow DM$	$\Sigma \to SM$ only
$\mathcal{L} = 25 \text{fb}^{-1}$		-	
Pixel	63	0	63
Tracker	125	0	125
Out	907	1	906
$\mathcal{L} = 300 \text{fb}^{-1}$			
Pixel	757	0	757
Tracker	1504	2	1502
Out	10889	11	10878
$\mathcal{L} = 3000 \text{fb}^{-1}$			
Pixel	7571	8	7563
Tracker	15043	15	15028
Out	108892	113	108779


CMS Σ_d -double-signal with an acceptable cosmology at $L = 3000 \text{ fb}^{-1}$

* The analogous benchmark for the case of Σ_ℓ has a smaller number of expected events than the colored one \rightarrow No detection of " $\Sigma_f \rightarrow DM$ "

Results - Summary

To summarize the outcome of this analysis and discuss if the next future LHC signal can distinguish the two studied Σ -decay channels, the LHC reach has been showed for Σ_{ℓ} and Σ_{d} scenarios at $L = 300 \, \text{fb}^{-1}$ in λ' - m_{Σ} plane.

N.B. Double detection is ruled out for $m_{\Sigma_d} > 100 \text{ GeV}$ and $m_{\Sigma_\ell} > 10 \text{ GeV} \&$ Only MP expected at $m_{\text{DM}} = 100(10) \text{ GeV}$ in $\Sigma_{d(\ell)}$ scenario & Σ_d : future ID region is in the double detection corner: $m_{\text{DM}} = 10 \text{ GeV}$ and $m_{\Sigma_d} < 1500 \text{ GeV}$

Conclusions

- ► Decaying DM in a very simple setup (i.e. DM Majorana, scalar $\Sigma \rightarrow$ 4 relevant param.) is cosmologically well-motivated
- LHC detection prospects of such a simple setup: Σ_f -displaced vertices (both decay channels) and Σ_f -metastable particles
- DM ID and DM density bounds on our scenarios lead to particular values of x and τ_{DM} for Σ_d (Σ_ℓ) which are cosmologically consistent
- Combination of DM cosmological bounds and LHC reach draws 3 regions in λ'-m_Σ: double detection/displaced vertex only/MP only → Benchmark for Σ_d (Σ_ℓ)
- A collider detection of both Σ decay channels with a consistent cosmology can be obtained for Σ_d!!

< ロ > < 四 > < 注 > < 注 > < 注 > 注

Thank you!

